CS 4810: Homework 7

due 10/31 11:59pm

(your name + netid)

Collaborators: (names and netids)
Each problem is worth 25 points.

Problem 1

Show that NP is closed under union, concatenation, intersection, and Kleene star.

Problem 2

Show that the following language is NP-complete (polynomial-time reduction from SAT),

DOUBLE SAT $=\{\langle\varphi\rangle \mid \varphi$ is a Boolean formula with at least two satisfying assignments $\}$.

Problem 3

Let G be a graph. A clique in G is a subset C of vertices such that any two vertices $u, v \in C$ are adjacent. A vertex cover of G is a subset S of vertices such that every edge of G has at least one endpoint in S.

Show polynomial-time reductions between the following languages,

$$
\text { CLIQUE }=\{\langle G, k\rangle \mid G \text { contains a clique of size } k\},
$$

VERTEX COVER $=\{\langle G, \ell\rangle \mid G$ has a vertex cover of size $\ell\}$.

Problem 4

This problem investigates resolution, a method for proving the unsatisfiability of CNF formulas. Let $\varphi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be a CNF formula with clauses C_{1}, \ldots, C_{m}. Let

$$
\mathcal{C}=\left\{C_{i} \mid C_{i} \text { is a clause of } \varphi\right\}
$$

A resolution step proceeds as follows: Take two clauses C_{a} and C_{b} in \mathcal{C}, which both have some variable x occurring positively in one of the clauses and negatively in the other. Thus, $C_{a}=\left(x \vee y_{1} \vee y_{2} \vee \cdots \vee y_{k}\right)$ and $C_{b}=\left(\neg x \vee z_{1} \vee z_{2} \vee \cdots \vee z_{\ell}\right)$, where the y_{i} and the z_{j} are literals. Form the new clause ($y_{1} \vee y_{2} \vee \cdots \vee y_{k} \vee z_{1} \vee z_{2} \vee \cdots \vee z_{\ell}$) and remove repeated literals. Add this new clause to \mathcal{C}.

Repeat the resolution steps until no additional clauses can be obtained. If the empty clause () is in \mathcal{C}, then declare φ unsatisfiable.
Say that resolution is sound if it never declares satisfiable formulas to be unsatisfiable. Say that resolution is complete if all unsatisfiable formulas are declared to be unsatisfiable.

Part a

Show that resolution is sound and complete.

Part b

Use Part a to show that 2 -CNF SAT $\in \mathbf{P}$. (2-CNF SAT is the set of satisfiable formulas in conjunctive normal form with at most two literals per clause.)

