CS 4810: Homework 7

due 10/31 11:59pm

(your name + netid)

Collaborators: (names and netids) Each problem is worth 25 points.

Problem 1

Show that ${\bf NP}$ is closed under union, concatenation, intersection, and Kleene star.

Problem 2

Show that the following language is **NP**-complete (polynomial-time reduction from SAT),

DOUBLE SAT = { $\langle \varphi \rangle \mid \varphi$ is a Boolean formula with at least two satisfying assignments}.

Problem 3

Let G be a graph. A *clique* in G is a subset C of vertices such that any two vertices $u, v \in C$ are adjacent. A *vertex cover* of G is a subset S of vertices such that every edge of G has at least one endpoint in S.

Show polynomial-time reductions between the following languages,

 $\begin{aligned} \text{CLIQUE} &= \{ \langle G, k \rangle \mid G \text{ contains a clique of size } k \}, \\ \text{VERTEX COVER} &= \{ \langle G, \ell \rangle \mid G \text{ has a vertex cover of size } \ell \}. \end{aligned}$

Problem 4

This problem investigates resolution, a method for proving the unsatisfiability of CNF formulas. Let $\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ be a CNF formula with clauses C_1, \ldots, C_m . Let

 $\mathcal{C} = \{ C_i \mid C_i \text{ is a clause of } \varphi \}.$

A resolution step proceeds as follows: Take two clauses C_a and C_b in C, which both have some variable x occurring positively in one of the clauses and negatively in the other. Thus, $C_a = (x \vee y_1 \vee y_2 \vee \cdots \vee y_k)$ and $C_b = (\neg x \vee z_1 \vee z_2 \vee \cdots \vee z_\ell)$, where the y_i and the z_j are literals. Form the new clause $(y_1 \vee y_2 \vee \cdots \vee y_k \vee z_1 \vee z_2 \vee \cdots \vee z_\ell)$ and remove repeated literals. Add this new clause to C.

Repeat the resolution steps until no additional clauses can be obtained. If the empty clause () is in \mathcal{C} , then declare φ unsatisfiable.

Say that resolution is sound if it never declares satisfiable formulas to be unsatisfiable. Say that resolution is complete if all unsatisfiable formulas are declared to be unsatisfiable.

Part a

Show that resolution is sound and complete.

Part b

Use Part a to show that 2-CNF SAT $\in \mathbf{P}$. (2-CNF SAT is the set of satisfiable formulas in conjunctive normal form with at most two literals per clause.)