CS 4810: Homework 6

due 10/24 11:59pm

(your name + netid)

Collaborators: (names and netids) Each problem is worth 25 points.

Problem 1

You may attempt parts a and b independently.

Part a

Consider the following function $h : \mathbb{N} \to \mathbb{N}$,

 $h(k) = \max\{q \in \mathbb{N} \mid \text{there exists a Turing machine } M \text{ and an input } w$

with $|\langle M, w \rangle| \leq k$ and M halts on input w in q steps}.

Show that h grows too fast to be computable, in the sense that not only is h not computable, but neither is any function h' such that $h(k) \leq h'(k)$ for all natural numbers k.

Part b

Suppose h is a non-decreasing function that grows to be too fast to be computable (e.g., the function in the previous part). Define a strictly increasing function f(k) = h(k) + k. For $x \in \mathbb{N}$, let

$$g(x) = \sup\{k \mid f(k) \le x\},\$$

be the greatest natural number k such that f(k) is not larger than x. Note that g(f(k)) = k.

Show that g(k) grows too slowly to be computable, in the sense that not only is g not computable, but neither is any unbounded function g' such that $g'(k) \leq g(k)$ for all natural numbers k.

(A function f is unbounded if for any y, there is some x such that f(x) > y.)

Problem 2

Part a

Recall the acceptance problem for Turing machines,

 $A_{\rm TM} = \{ \langle M, w \rangle \mid M \text{ accepts on input } w \}.$

Prove or disprove: $A_{\rm TM} \leq_m \overline{A_{\rm TM}}$.

Part b

Suppose P = NP. Characterize the set of NP-complete languages in this case.

Problem 3

We say that two graphs G and H with vertex set $\{1, \ldots, n\}$ are *isomorphic*, if we can reorder the vertices of H such that G and H are the same graph.

Show that the following language is in NP:

GRAPH ISOMORPHISM = { $\langle G, H \rangle \mid G$ and H are isomorphic}.

Problem 4

Consider the language of satisfiable Boolean formulas:

SAT = { $\varphi \mid \varphi$ is a satisfiable Boolean formula}.

Suppose there exists a *t*-time algorithm to decide SAT for some function $t : \mathbb{N} \to \mathbb{N}$. Show that there exists a $O(t^2)$ -time algorithm that given a satisfiable Boolean formula outputs a satisfying assignment for the formula.