CS 4810: Homework 5

due 10/11 11:59pm

(your name + netid)

Collaborators: (names and netids)

Each problem is worth 25 points.

Problem 1

Show that there exists a Turing machine that on input $01^{i}01^{j}0$ outputs $01^{i\cdot j}0$ for all $i, j \in \mathbb{N}$. Describe how the Turing machine operates on the tape for a given input $01^{i}01^{j}$.

In all following problems, you may assume that there similarly exist Turing machines that compute other basic arithmetic and control-flow operations, such as addition, if-then-else, and while loops. You may therefore provide pseudocode whenever a description of a Turing machine is requested.

Problem 2

a. Show that there exists a Turing machine to decide if the language of a deterministic finite automaton is empty. In other words, show that the following lanugage is decidable,

 $L_1 = \{ \langle A \rangle \mid A \text{ is a DFA with } L(A) = \emptyset \}.$

b. Show that there exists a Turing machine to decide given two DFAs A and B if the language of A contains the language of B. In other words, show that the following language is decidable,

 $L_2 = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs with } L(A) \subseteq L(B) \}.$

Hint: Use closure properties of regular languages to reduce L_2 to L_1 .

Problem 3

Show that the following languages are undecidable. You may use Rice's theorem if it applies or you may reduce from the acceptance problem $A_{\rm TM}$ for Turing machines.

 \mathbf{a} .

 $L_1 = \{ \langle M, w \rangle \mid M \text{ is a single-tape TM that never modifies the portion}$ of the tape that contains the input $w \},$

b.

$$L_2 = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \}.$$

Problem 4

We say a function $f : \mathbb{N} \to \mathbb{N}$ is *computable* if there exists a Turing machine M that on input 1^n outputs¹ $1^{f(n)}$. (You may assume that M has tape alphabet $\{0, 1, \Box\}$.)

A busy beaver with n states is a Turing machine with tape alphabet $\{0, 1, \Box\}$, which on input ε outputs¹ a string of as many 1s as possible (among all such Turing machines with n states). For $n \in \mathbb{N}$, let BB(n) be the number of 1s a busy beaver with n states can produce.

- a. Prove that BB is nondecreasing, i.e. $BB(m) \ge BB(n)$ if $m \ge n$.
- b. Argue that for every computable function f, there exists a constant $c \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$. BB $(c+n) \geq f(BB(n))$.
- c. Show that $BB(n) \ge 2 \cdot n d$ for some constant $d \in \mathbb{N}$.
- d. Hence conclude that BB(n) is not computable.

Remark: Each of the four parts has a short answer.

¹Recall that we say that a Turing machine M on input w outputs a string w' if M halts with just w' written on the tape.