CS 4810: Homework 5

due 10/11 11:59pm

(your name + netid)

Collaborators: (names and netids)
Each problem is worth 25 points.

Problem 1

Show that there exists a Turing machine that on input $01^{i} 01^{j} 0$ outputs $01^{i \cdot j} 0$ for all $i, j \in \mathbb{N}$. Describe how the Turing machine operates on the tape for a given input $01^{i} 01^{j}$.

In all following problems, you may assume that there similarly exist Turing machines that compute other basic arithmetic and control-flow operations, such as addition, if-then-else, and while loops. You may therefore provide pseudocode whenever a description of a Turing machine is requested.

Problem 2

a. Show that there exists a Turing machine to decide if the language of a deterministic finite automaton is empty. In other words, show that the following lanugage is decidable,

$$
L_{1}=\{\langle A\rangle \mid A \text { is a DFA with } L(A)=\emptyset\} .
$$

b. Show that there exists a Turing machine to decide given two DFAs A and B if the language of A contains the language of B. In other words, show that the following language is decidable,

$$
L_{2}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs with } L(A) \subseteq L(B)\}
$$

Hint: Use closure properties of regular languages to reduce L_{2} to L_{1}.

Problem 3

Show that the following languages are undecidable. You may use Rice's theorem if it applies or you may reduce from the acceptance problem A_{TM} for Turing machines.
a.

$$
\begin{aligned}
L_{1}=\{\langle M, w\rangle \mid & M \text { is a single-tape TM that never modifies the portion } \\
& \text { of the tape that contains the input } w\},
\end{aligned}
$$

b.

$$
L_{2}=\left\{\langle M\rangle \mid M \text { is a TM and } L(M)=\Sigma^{*}\right\} .
$$

Problem 4

We say a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable if there exists a Turing machine M that on input 1^{n} outputs ${ }^{1} 1^{f(n)}$. (You may assume that M has tape alphabet $\{0,1, \square\}$.)

A busy beaver with n states is a Turing machine with tape alphabet $\{0,1, \square\}$, which on input ε outputs 1 a string of as many 1 s as possible (among all such Turing machines with n states). For $n \in \mathbb{N}$, let $\operatorname{BB}(n)$ be the number of 1 s a busy beaver with n states can produce.
a. Prove that BB is nondecreasing, i.e. $\mathrm{BB}(m) \geq \mathrm{BB}(n)$ if $m \geq n$.
b. Argue that for every computable function f, there exists a constant $c \in \mathbb{N}$ such that $\forall n \in \mathbb{N} . \mathrm{BB}(c+n) \geq f(\mathrm{BB}(n))$.
c. Show that $\mathrm{BB}(n) \geq 2 \cdot n-d$ for some constant $d \in \mathbb{N}$.
d. Hence conclude that $\mathrm{BB}(n)$ is not computable.

Remark: Each of the four parts has a short answer.

[^0]
[^0]: ${ }^{1}$ Recall that we say that a Turing machine M on input w outputs a string w^{\prime} if M halts with just w^{\prime} written on the tape.

