CS 4810: Homework 4

due 09/26 11:59pm
(your name + netid)

Collaborators: (names and netids)
Problem 1 is worth 10 points. Each of the remaining problems are worth 30 points.

Problem 1

Let M be any non-deterministic finite automaton. Let M^{\prime} be the automaton obtained from M by adding an ε-transition from each accept state to the start state and making the start state an accept state. Prove or give a counterexample to the statement $L\left(M^{\prime}\right)=L(M)^{*}$.

Problem 2

Give a regular expression for each of the following languages - full proofs are not necessary:
a. The set of all binary strings that start with 0 , end with 1 , and have at most three 1's.
b. The set of all binary that have an odd number of 1 's and contain 00 as a substring.
c. The set of all binary strings that do not contain the substring 001.

Problem 3

Give a non-deterministic finite automaton for each of the following regular expressions over the alphabet $\{0,1\}$ - full proofs are not necessary:
a. $0(011)^{*} \cup 1$.
b. $00^{*} \cup 01(01)^{*}$.
c. $\left(0 \cup 11^{*}\right) 00^{*} 11^{*}$.

Problem 4

For each of the following languages, prove or disprove that the language is regular:
a. $\left\{0^{s} 1^{t} 2^{\max \{s, t\}} \mid\right.$ integers $\left.s, t \geq 0\right\} \subseteq\{0,1,2\}^{*}$.
b. $\left\{0^{s} 1^{2 t} \mid\right.$ integers $\left.s, t \geq 0\right\} \subseteq\{0,1\}^{*}$.
c. $\left\{0^{s} 1^{2 t} 2^{3 t} \mid\right.$ integers $\left.s, t \geq 0\right\} \subseteq\{0,1,2\}^{*}$.

