CS 4810: Homework 3

due 09/19 11:59pm
(your name + netid)

Collaborators: (names and netids)
Each problem is worth 20 points.

Problem 1

Let M be a non-deterministic finite automaton. Show that there exists a nondeterministic finite automaton M^{\prime} with the same language as M, the same number of states as M, but without any ε-transitions.

Problem 2

For a word $w=x_{1} \ldots x_{n} \in \Sigma^{*}$, define the reverse of w, w^{R}, to be $x_{n} \cdots x_{1}$.
Let $L \subseteq \Sigma^{*}$ be a regular language.
Show that the reverse language $L^{R}:=\left\{w^{R} \mid w \in L\right\}$ is also regular.

Problem 3

Let $L \subseteq \Sigma^{*}$ be a regular language.
Show that the cycle language,

$$
\operatorname{cycle}(L)=\left\{w_{2} w_{1} \mid w_{1} w_{2} \in L\right\}
$$

is also regular.

Problem 4

Let $L \subseteq \Sigma^{*}$ be some language over Σ, not necessarily regular. Define an equivalence relation \sim_{L} on Σ^{*}, the set of finite strings over Σ, by saying that $u \sim_{L} v$ if and only if for any $w \in \Sigma^{*}$, either both $u w$ and $v w$ are in L or neither is.
(a) Suppose that L_{M} is the language accepted by some DFA M. Show that the number of $\sim_{L_{M}}$-equivalence classes is finite. (Hint: Consider the state that M will be in after reading a given string u.)
(b) Consider the language $L_{\text {match }}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Show that there are infinitely many $\sim_{L_{\text {match }}}$-equivalence classes.
(c) Show that if for some language L, there are only finitely many $\sim_{L^{-}}$ equivalence classes, then L is regular.

Problem 5

(a) For languages $A, B \subseteq \Sigma^{*}$, the perfect shuffle of A and B is the language

$$
\begin{aligned}
\left\{x_{1} y_{1} \cdots x_{k} y_{k} \quad \mid\right. & x_{1} \cdots x_{k} \in A \text { and } y_{1} \cdots y_{k} \in B \\
& \text { symbols } \left.x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in \Sigma\right\}
\end{aligned}
$$

Show that if A and B are regular, then the perfect shuffle of A and B is also regular.
(b) For languages $A, B \subseteq \Sigma^{*}$, the shuffle of A and B is the language

$$
\begin{aligned}
\left\{u_{1} v_{1} \cdots u_{k} v_{k} \quad \mid\right. & u_{1} \cdots u_{k} \in A \text { and } v_{1} \cdots v_{k} \in B \\
& \text { strings } \left.u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k} \in \Sigma^{*}\right\}
\end{aligned}
$$

Show that if A and B are regular, then the shuffle of A and B is also regular.

