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Overview 

aka Lasserre hierarchy 

[Parrilo’00, Lasserre’01] 



Max Cut 

Given: undirected graph on 𝑛 vertices 

Find: bipartition that cuts as many edges as possible 



Max Cut 

Given: undirected graph on 𝑛 vertices 

Find: bipartition that cuts as many edges as possible 

polynomial optimization problem 

max
𝑥∈ ±1 𝑛

 ¼ 𝑥𝑖 − 𝑥𝑗
2

𝑖∼𝑗

 

sum of local terms 
can understand set of polynomials  
(ideal) vanishing on this set  constraint satisfaction problem 

(constraints of form 𝑥𝑖 ≠ 𝑥𝑗) 

simple space 
quadratic polynomial 



Max Cut 

Given: undirected graph on 𝑛 vertices 

Find: bipartition that cuts as many edges as possible 

best known approximation ratio: 𝛼GW ≈ 0.878… [Goemans-Williamson] 

What does it take to beat this bound? 



Semidefinite Programming (SDP) Hierarchies 

…
 

level-𝑘 relaxation, time 𝑛𝑂 𝑘  

MAX CUT(𝛼GW + 𝜀) 

? 

sequence of increasingly stronger SDP relaxations 

general approach for any combinatorial optimization problem 

no creativity required to 
come up with relaxations! 

plausibly optimal approximation-time tradeoff 
for large class of problems, including MAX CUT 

Grand Unified Theory  
for optimization? 

(contrast: ad-hoc relaxations) systematic 
+ 

powerful 

Appeal: 

(𝑘 is even) 

[Sherali-Adams’90, 
 Lovász-Schrijver’91,… 
 Parrilo’00, Lasserre’01] 



[Sherali-Adams’90, 
 Lovász-Schrijver’91,… 
 Parrilo’00, Lasserre’01] 

Semidefinite Programming (SDP) Hierarchies 

…
 

level-𝑘 relaxation, time 𝑛𝑂 𝑘  

MAX CUT(𝛼GW + 𝜀) 

? 

sequence of increasingly stronger SDP relaxations 

general approach for any combinatorial optimization problem 

So far:  for many problems, e.g., MAX CUT, 
 understanding is poor 

But:  there is progress 

Grand Unified Theory  
for optimization? 

systematic 
+ 

powerful 

Appeal: 

(𝑘 is even) 

level-2 ratio = 𝛼GW 
level-4 ratio = ?? 



Unique Games Conjecture (UGC) 

Given: system of equations 𝑥𝑖 − 𝑥𝑗 = 𝑐 mod 𝑘 

For every 𝜀 > 0, the following is NP-hard: 

YES: at  least 1 − 𝜀 of equations satisfiable 

NO: at  most 𝜀 of equations satisfiable 

(say k = log𝑛) 

Distinguish: 

UG(𝜀) 

[Khot’02] 



Implications of UGC 

For large class of problems, BASIC SDP achieves optimal approximation 

Examples:  MAX CUT, VERTEX COVER, any MAX CSP 

Is the conjecture true? 

[Khot-Regev’03, Khot-Kindler-Mossel-O’Donnell’04,  
 Mossel-O’Donnell-Oleszkiewicz’05, Raghavendra’08] 

Unique Games Conjecture (UGC) [Khot’02] 

= level-2 SDP relaxation 



Implications of UGC 

Is the conjecture true? 

Unique Games Conjecture (UGC) [Khot’02] 

Difference to other complexity conjectures 

plausibility: relatively weak evidence (might very well be false!) 

difficulty: seems only barely out of reach (good bang-for-buck!) 



Framework: general & simple approach for analyzing SDP hierarchies 

gives subexponential algorithm for UNIQUE GAMES 

Limitations: this approach cannot give much faster algorithms 

construction of small-set expanders with many large eigenvalues 

New approach: these instances are not hard for (stronger) SDP hierarchies 

can be solved in a constant number of levels 

contrast: many NP-hard approximation problems  
require exponential time (assuming 3-SAT does) 

leads to hard instances for weaker SDP hierarchies 

some other application (later in talk) 

[Barak-Gopalan-Håstad-Meka-Raghavendra-S.’11] 

[Barak-Raghavendra-S.’11, Guruswami-Sinop’11] 

[Arora-Barak-S.’10] 
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max
𝑥
 ¼ 𝑥𝑖 − 𝑥𝑗

2

𝑖∼𝑗

 

max
𝜇
𝔼𝑥∼𝜇 ¼ 𝑥𝑖 − 𝑥𝑗

2

𝑖∼𝑗

 

max
𝑀
 ¼ 𝑀𝑖𝑖 − 2𝑀𝑖𝑗 −𝑀𝑗𝑗

2

𝑖∼𝑗

 

not convex! 

too large to represent! 

Three equivalent formulations of MAX CUT 

assignments 𝑥 ∈ ±1 𝑛 

distributions 𝜇 over ±1 𝑛 

low-degree moments 𝑀 of 
distributions over ±1 𝑛 

𝑀𝑖𝑗 = 𝔼𝑥∼𝜇𝑥𝑖𝑥𝑗 



𝑀𝛼 = 𝔼𝑥∼𝜇𝑥
𝛼 is moment of monomial 𝑥𝛼 Example: 𝑀𝑖𝑗𝑗𝑘 = 𝔼𝑥∼𝜇𝑥𝑖𝑥𝑗

2𝑥𝑘 

𝑛𝑂(ℓ) monomial-moments of degree ℓ 

degree-ℓ moments form convex set 

 try to describe it by linear equalities and inequalities 

 easy to represent 

 𝑀  ¼ 𝑥𝑖 − 𝑥𝑗
2

𝑖∼𝑗  

For polynomial 𝑝 =  𝑝𝛼𝑥
𝛼 , moment 𝑀 𝑝 = 𝔼𝑥∼𝜇𝑝 𝑥 =  𝑝𝛼𝑀𝛼 

Which linear equalities? all of them! 

Which linear inequalities? just one (class)! 𝑀 𝑝2 ≥ 0 for all p 

e.g., 𝑀𝑖𝑗𝑗𝑘 = 𝑀𝑖𝑘 

𝑥𝛼 = ∏𝑥𝑖
𝛼𝑖 

Multivariate moments 

max
𝑀
 ¼ 𝑀𝑖𝑖 − 2𝑀𝑖𝑗 −𝑀𝑗𝑗

2

𝑖∼𝑗

 low-degree moments 𝑀 of 
distributions over ±1 𝑛 



degree-ℓ pseudo-moments 𝑀 of 
distributions over ±1 𝑛 

max
𝑀
𝑀  ¼ 𝑥𝑖 − 𝑥𝑗

2

𝑖∼𝑗

 

𝑀 𝑝2 ≥ 0 for all degree-ℓ/2 polynomials  p 

e.g., 𝑀𝑖𝑗𝑗𝑘 = 𝑀𝑖𝑘 , 𝑀𝑖𝑖 = 𝑀∅ = 1 

Level-ℓ Sum-of-Squares (SoS) relaxation (for MAX CUT) 

one variable 𝑀𝛼 per  
degree-ℓ monomial 𝑥𝛼 

all valid linear equalities 

Constraints on pseudo-moments 𝑀 

non-negativity of squares 

𝑀 𝑝 =  𝑝𝛼𝑀𝛼 Notation: for degree-ℓ polynomial 𝑝 =  𝑝𝛼𝑥
𝛼 

depends on ±1 𝑛 

independent of ±1 𝑛 Separation Problem 

min
𝑝
𝑀(𝑝2) is smallest eigenvalue of quadratic form 𝑝 ↦ 𝑀 𝑝2  

  𝑀𝛼,𝛽𝑝𝛼𝑝𝛽𝛼,𝛽   running time 𝑛𝑂(ℓ) 

𝑀 = 𝑀𝛼; 𝛼 ≤ ℓ  degree-ℓ pseudo-moments  
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Contrast 

Subexponential Algorithm for Unique Games 

UG(𝜀) in time exp 𝑛𝜀
1 3  

via level-𝑛𝜀
1 3 

 SDP relaxation 

many NP-hard approximation problems require exponential time  
           (assuming 3-SAT does) 

(often these lower bounds are known unconditionally for SDP hierarchies) 

[Schoenebeck, Tulsiani] 

[Arora-Barak-S.’10, Barak-Raghavendra-S.’11] 

[…,Moshkovitz-Raz] 

 separation of UG from known NP-hard approximation problems 



General framework for rounding SDP hierarchies (not restricted to Unique Games) 

[Barak-Raghavendra-S.’11, Guruswami-Sinop’11] 

Potentially applies to wide range of  “graph problems” 

Examples: MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP 

Some more successes    (polynomial time algorithms) 

Approximation scheme for general MAX 2-CSP  

on constraint graphs with 𝑂(1) significant eigenvalues 

Better 3-COLORING approximation for some graph families 

Better approximation for MAX BISECTION (general graphs) 

Subexponential Algorithm for Unique Games 

UG(𝜀) in time exp 𝑛𝜀
1 3  

via level-𝑛𝜀
1 3 

 SDP relaxation 

[Arora-Ge’11] 

[Raghavendra-Tan’12] 

[Barak-Raghavendra-S.’11] 

[Austrin-Benabbas-Georgiou’12] 



Subexponential Algorithm for Unique Games 

UG(𝜀) in time exp 𝑛𝜀
1 3  

via level-𝑛𝜀
1 3 

 SDP relaxation 

Key concept: global correlation 

General framework for rounding SDP hierarchies (not restricted to Unique Games) 

[Barak-Raghavendra-S.’11, Guruswami-Sinop’11] 

Potentially applies to wide range of  “graph problems” 

Examples: MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP 



Interlude: Pairwise Correlation 

Correlation measures dependence between 𝑋 and 𝑌 

Examples: 

Mutual Information I 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌) 

Covariance 𝐄 𝑋𝑌 − (𝐄 𝑋)(𝐄 𝑌)   (if 𝑋 and 𝑌 are real-valued) 

(Statistical) distance between {𝑋, 𝑌} and {𝑋}{𝑌} 

Does the distribution of 𝑿 change if we condition 𝒀? 

Two jointly distributed random variables 𝑋 and 𝑌 

entropy loss due to conditioning 



Rounding problem 

Given 

Sample 

distribution over assignments with expected value ≥ 𝜀 

+   level-ℓ SDP solution with value ≥ 1 − 𝜀 UG instance (ℓ = 𝑛𝑂 𝜀
1/3

) 

Sampling 

degree-ℓ moments of a distribution over  
assignments with value ≥ 1 − 𝜀 

similar (?) 

More convenient to think about actual distributions  
instead of SDP solutions 

But: proof should only “use” linear equalities satisfied by these moments 
         and certain linear inequalities, namely non-negativity of squares 

(Can formalize this restriction as proof system  later in talk) 

random variables 𝑋1, … , 𝑋𝑛 over ℤ𝑘  

Pr 𝑋𝑖 − 𝑋𝑗 = 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 = 𝑐 



Sampling by conditioning 

Pick an index 𝑗 

Sample assignment 𝑎 for index 𝑗 from its marginal distribution 𝑋𝑗  

Condition distribution on this assignment,  𝑋𝑖
′ ≔ 𝑋𝑖 𝑋𝑗 = 𝑎  

Hope: need to condition only a small number of times; then do something else 

How can conditioning help? 

Issue: after conditioning step, know only degree ℓ − 1 moments   (instead of degree ℓ) 

If we condition 𝑛 times, we correctly sample the underlying distribution 



How can conditioning help? 

Allows us to assume: distribution has low global correlation 

Claim: general cases reduces to case of low global correlation 

typical pair of variables  
almost pairwise independent 

Proof:  

Idea: significant global correlation  conditioning decreases entropy 

𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤ 𝑂𝑘 1 ⋅
1
ℓ  

Potential function Φ = 𝐄𝑖𝐻 𝑋𝑖  

Φ−Φ′ ≥ 𝐄𝑖  𝐻 𝑋𝑖 − 𝐄𝑖  𝐻 𝑋𝑖 𝑋𝑗 = 𝐄𝑖  𝐼 𝑋𝑖, 𝑋𝑗 ≥ 𝐄𝑖,𝑗 𝐼 𝑋𝑖 , 𝑋𝑗  

Can always find index 𝑗 such that for 𝑋𝑖
′ ≔ 𝑋𝑖 𝑋𝑗  

Potential can decrease ≤ ℓ/2 times by more than 𝑂𝑘 1/ℓ   



How can low global correlation help? 

Allows us to assume: distribution has low global correlation 

typical pair of variables  
almost pairwise independent 

𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤ 𝑂𝑘 1 ⋅
1
ℓ  

How can conditioning help? 



For some problems, this condition alone gives improvement over BASIC SDP 

Example: MAX BISECTION [Raghavendra-Tan’12, Austrin-Benabbas-Georgiou’12] 

(hyperplane rounding gives near-bisection if global correlation is low) 

How can low global correlation help? 𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤
1
ℓ  



How can low global correlation help? 𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤
1
ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginals  & ∃ partition: 

random variables 𝑋1, … , 𝑋𝑛 over ℤ𝑘  

Pr 𝑋𝑖 − 𝑋𝑗 = 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 = 𝑐 

... 𝑋𝑝 𝑋𝑞 

I 𝑋𝑝, 𝑋𝑞 = 0 
 inter-component constraint cannot be typical 
 ≤ 𝜀 fraction of constraints are inter-component 

ℓ equal-sized  
components 



How can low global correlation help? 𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤
1
ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginals  & ∃ partition: 

random variables 𝑋1, … , 𝑋𝑛 over ℤ𝑘  

Pr 𝑋𝑖 − 𝑋𝑗 = 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 = 𝑐 

... 

Show: no other cases 
are possible! (informal) 

Only 

ℓ equal-sized  
components 

≤ 𝜀 fraction of constraints are inter-component 



How can low global correlation help? 𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤
1
ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginals  & ∃ partition: 

random variables 𝑋1, … , 𝑋𝑛 over ℤ𝑘  

Pr 𝑋𝑖 − 𝑋𝑗 = 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 = 𝑐 

... 

Only 

 easy to “sample” 

ℓ equal-sized  
components 

≤ 𝜀 fraction of constraints are inter-component 

? 



How can low global correlation help? 𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤
1
ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginals  & ∃ partition: 

random variables 𝑋1, … , 𝑋𝑛 over ℤ𝑘  

Pr 𝑋𝑖 − 𝑋𝑗 = 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 = 𝑐 

... 

Only 

 easy to “sample” 

ℓ equal-sized  
components 

Idea: round components independently & recurse on them 

 2𝑛
𝛽

-time algorithm for UG(𝜀) 

How many edges ignored in total?  (between different components) 

We chose ℓ = 𝑛𝛽 for 𝛽 ≫ 𝜀  

 each level of recursion decrease component size by factor ≥ 𝑛𝛽 
 at most 1/𝛽 levels of recursion  
 total fraction of ignored edges ≤ 𝜀/𝛽 ≪ 1 

≤ 𝜀 fraction of constraints are inter-component 

? 



How can low global correlation help? 𝐄𝑖,𝑗I 𝑋𝑖 , 𝑋𝑗 ≤
1
ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginals  & ∃ partition: 

random variables 𝑋1, … , 𝑋𝑛 over ℤ𝑘  

Pr 𝑋𝑖 − 𝑋𝑗 = 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 = 𝑐 

... 

Only 

ℓ equal-sized  
components 

Proof: global correlation  mixing of random walks  small-set expansion 

≤ 𝜀 fraction of constraints are inter-component 
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Level-8 SoS relaxation refutes UG instances  
based on long-code and short-code graphs 

Result: 

SoS hierarchy is a natural candidate algorithm for refuting UGC 

Should try to prove that this algorithm fails on some instances 

Only candidate instances were based on long-code or short-code graph 

We don’t know any instances on which  
this algorithm could potentially fail! 



Show in this proof system that no assignments for these instances exist 

How to prove it? (rounding algorithm?) 

Interpret dual as proof system 

Level-8 SoS relaxation refutes UG instances  
based on long-code and short-code graphs 

Result: 

qualitative difference to other hierarchies:  basis independence 

Try to lift this proof to the proof system 

We already know “regular” proof of this fact!  (soundness proof) 



Sum-of-Squares Proof System 

𝑃1 𝑧 ≥ 0 

𝑃𝑚 𝑧 ≥ 0 

Axioms 

…
 

derive 

𝑄 𝑧 ≤ 𝑐 

(informal) 

Rules 

Polynomial operations 
“Positivstellensatz” [Stengel’74] 

𝑅 𝑧 2 ≥ 0 for any polynomial 𝑅 

Intermediate polynomials have bounded degree 

(𝑃1, … , 𝑃𝑚, 𝑄  
bounded-degree  
polynomials) 

(c.f. bounded-width resolution, 
 but basis independent) 



1 − 𝑧 = 𝑧 − 𝑧2 + 1 − 𝑧 2 

≥ 𝑧 − 𝑧2 

Axiom: 𝑧2 ≤ 𝑧 Derive:  𝑧 ≤ 1 

(non-negativity of squares) 

≥ 0 (axiom) 

Example 



Non-serious issues: 

Serious issues: 

Cauchy–Schwarz / Hölder 

Hypercontractivity 

Invariance Principle 

Influence decoding 

can use variant of inductive proof, 
work in Fourier basis 

typically uses bump functions,  
but for UG, polynomials suffice 

Components of soundness proof (for known UG instances) 

use 𝑥, 𝑦 ≤
1

2
𝑥 2 +

1

2
𝑦 2 

instead of 𝑥, 𝑦 ≤ 𝑥 𝑦  



Open Questions 

Does level-8 of SoS hierarchy refute UGC? 

Better approximations for for MAX CUT, VERTEX COVER, … 
in subexponential time? 

Thanks! 

Unique Games Conjecture 

Time vs Approximation Trade-offs 

Example:1/𝜀-approximation for SPARSEST CUT in time exp (𝑛𝜀)? 


