Tensor principal component analysis via sum-of-squares proofs

Sam Hopkins
Cornell

Jonathan Shi
Cornell

David Steurer
Cornell
principal component analysis (PCA)
vanilla PCA
2-wise correlation data

- basic data analysis technique
- given noisy pairwise correlation data $A \in \mathbb{R}^{n \times n}$, find direction of maximum empirical variance
$=$ matrix

maximize $\langle x, A x\rangle$ over all unit vectors $x \in \mathbb{R}^{n}$
- computationally efficient (take x to be top eigenvector of A)

3-wise correlation data variants of PCA = 3-tensor

- restrict to sparse directions (SPARSE PCA) or exploit higherorder correlation data $A \in \mathbb{R}^{n \times n \times \cdots \times n}$ (TENSOR PCA)
- better statistical properties in important applications; huge body of works
- but: computationally challenging (np-hard in worse case; unclear complexity in stochastic setting)
tensor principal component analysis
(k, τ)-stochastic model [Montanari-Richard]
given k-order tensor A as below, recover v (approximately)

$$
A=\tau \cdot v^{\otimes k}+Z \in \mathbb{R}^{n^{k}} \text { with } Z \sim N(0,1)^{\otimes k}
$$

signal-to-noise ratio
noise: random tensor
signal: rank- 1 tensor of unit vector $v \in \mathbb{R}^{n}$
maximum likelihood estimation (MLE) maximize $\left\langle A, x^{\otimes k}\right\rangle$ over all unit vectors $x \in \mathbb{R}^{n}$
$k=2$: computationally efficient (eigenvalue problem; even in worst case)
$k=3: \quad$ appears to capture difficulty of general k in stochastic model (also NP-hard in worst case, but no bearing on stochastic model)
$A=\tau \cdot v^{\otimes 3}+Z \in \mathbb{R}^{n^{3}}$ with $Z \sim N(0,1)^{\otimes 3}$
MLE: maximize $\left\langle A, x^{\otimes 3}\right\rangle$ over all unit vectors $x \in \mathbb{R}^{n}\left({ }^{*}\right)$
previous results [Montanari-Richard=MR]
3-tensor
information-theoretic recovery
$\left(^{*}\right)$ works as long as $\tau \geq \widetilde{\mathrm{O}}\left(n^{1 / 2}\right)$ (tight)
computational recovery
MR algorithm: reshape A to n^{2}-by- n matrix; output top right singular vector theoretical guarantee: algorithm works as long as $\tau \geq \widetilde{\mathrm{O}}(n)$ empirical performance: algorithm works as long as $\tau \geq \widetilde{0}\left(n^{3 / 4}\right)$
tension: theoretical analysis of MR tight in many ways but empirical performance should be predictive for mathematical truth (average-case problem \& large input sizes)
$A=\tau \cdot v^{\otimes 3}+Z \in \mathbb{R}^{n^{3}}$ with $Z \sim N(0,1)^{\otimes 3}$
MLE: maximize $\left\langle A, x^{\otimes 3}\right\rangle$ over all unit vectors $x \in \mathbb{R}^{n}\left({ }^{*}\right)$

this work

techniques: sum-of-squares meta-algorithm \& proof system; powerful general approach to unsupervised learning
[Barak-Kelner-S.'12+15,Potechin-Meka-Wigderson'15, Barak-Moitra, Ge-Ma, Ma-Wigderson,...]
recovery guarantee: theoretical analysis matches empirical performance of MR, $\tau \gg n^{3 / 4}$ - one algorithm very similar to MR
nearly-linear time: informed by theoretical analysis; exploit knowledge about eigenvalues to speed up eigenvector computation
lower bounds: rule out better recovery guarantees by algorithms based on broad set of techniques (deg-4 sum-of-squares proof system)
$A=\tau \cdot v^{\otimes 3}+Z \in \mathbb{R}^{n^{3}}$ with $Z \sim N(0,1)^{\otimes 3}$
MLE: maximize $\left\langle A, x^{\otimes 3}\right\rangle$ over all unit vectors $x \in \mathbb{R}^{n}\left({ }^{*}\right)$

relaxation \& rounding approach

relaxation: tractable (convex) optimization problem associated with (*); optimal value gives upper bound on optimal value of (*)
rounding: transform solution for relaxation to solution for (*) with approximately same objective value
failure of this approach: for $n^{3 / 4} \ll \tau \ll n$,
opt. value of MR relaxation (top singular value of A)
is far from opt. value of (*)
but (empirically)
opt. solution of MR relaxation
is close to opt. solution of (${ }^{*}$)
\rightarrow no rounding analysis possible (in the usual sense)
our explanation (for variant of MR relaxation)
second-order effect in opt. value of relaxation drives recovery
$A=\tau \cdot v^{\otimes 3}+Z \in \mathbb{R}^{n^{3}}$ with $Z \sim N(0,1)^{\otimes 3}$
MLE: maximize $\left\langle A, x^{\otimes 3}\right\rangle$ over all unit vectors $x \in \mathbb{R}^{n}\left({ }^{*}\right)$

sum-of-squares upper bounds

warm-up: upper bounds for homogeneous n-var. deg.-4 polynomial $p(x)$ consider affine linear subspace $H_{p(x)}$ of matrix representations of $p(x)$

$$
H_{p(x)} \stackrel{\text { def }}{=}\left\{P \in \mathbb{R}^{n^{2} \times n^{2}} \mid p(x)=\left\langle x^{\otimes 2}, P x^{\otimes 2}\right\rangle\right\} \quad \lambda_{\max }(P)=\max _{\|y\|=1}\langle y, P y\rangle
$$

then, $\max _{\|x\|=1} p(x) \leq \lambda_{\text {max }}(P)$ for every $P \in H_{p(x)}$
\rightarrow find best upper bound $\lambda_{\max }(P)$ with $P \in H_{p(x)}$ (semidefinite programming)
deg- d sum-of-squares upper bounds for general polynomial $p(x)$
find best upper bound $\lambda_{\text {max }}(P)$ with
 $\operatorname{deg} q(x) \leq d-2$
run time $n^{O(d)}$ (semidefinite programming)
$A=\tau \cdot v^{\otimes 3}+Z \in \mathbb{R}^{n^{3}}$ with $Z \sim N(0,1)^{\otimes 3}$
MLE: maximize $\left\langle A, x^{\otimes 3}\right\rangle$ over all unit vectors $x \in \mathbb{R}^{n}\left({ }^{*}\right)$

efficient upper bounds on random polynomials

can show: deg-4 sum-of-squares gives upper bound $\tau_{0}=\widetilde{\Theta}(n)^{3 / 4}$ for random deg-3 polynomial $z(x)=\left\langle Z, x^{\otimes 3}\right\rangle$ over unit sphere concretely: $z(x)+\tau_{0} / 2 \cdot\left(\|x\|^{4}-\|x\|^{2}\right)$ has matrix representation with $\lambda_{\text {max }}(\cdot) \leq \tau_{0}$
approach for recovery: for $\tau \gg \tau_{0}$, corresponding matrix representation of A has top eigenvector determined by signal v (eig.vec. is close to $v^{\otimes 2}$)

where does upper bound for $z(x)$ come from?

reshape Z to n^{2}-by- n matrix so that $z(x)=\left\langle Z x, x^{\otimes 2}\right\rangle$
tempting but poor Cauchy-Schwarz bound: $\left\langle Z x, x^{\otimes 2}\right\rangle \leq \sqrt{\|Z x\|^{2} \cdot\|x\|^{4}}$
tight Cauchy-Schwarz bound: $\left\langle x, Z^{\top} x^{\otimes 2}\right\rangle \leq \sqrt{\|x\|^{2} \cdot\left\|Z^{\top} x^{\otimes 2}\right\|^{2}}$
$Z_{i} \in \mathbb{R}^{n \times n}$ i-th slice of Z poor matrix representation for $\left\|Z^{\top} x^{\otimes 2}\right\|^{2}: Z Z^{\top}$ (only rank- n) best matrix representation for $-=\sum_{i}\left\langle x, Z_{i} x\right\rangle^{2}: \sum_{i} Z_{i} \otimes Z_{i}$
$A=\tau \cdot v^{\otimes 3}+Z \in \mathbb{R}^{n^{3}}$ with $Z \sim N(0,1)^{\otimes 3}$
MLE: maximize $\left\langle A, x^{\otimes 3}\right\rangle$ over all unit vectors $x \in \mathbb{R}^{n}\left({ }^{*}\right)$
conclusion

sum-of-squares gives new perspective on spectral algorithms

status quo: focus on spectrum of single matrix associated with problem; e.g., data matrix (matrix problems), Laplacian (graph problems)
sum-of-squares: associate hierarchy of increasingly rich families of matrices with single problem \rightarrow better algorithms
research directions

thank you!

faster algorithms via sum-of-squares

challenge: size of matrices increases quickly in the hierarchy (albeit poly.)
upcoming work: techniques to significantly compress matrices in higher levels of hierarchy (partial traces) [Hopkins-Schramm-Shi-S.'15]
$\operatorname{deg}-O(\log n)$ sum-of-squares enough for $\tau \geq \widetilde{\boldsymbol{O}}(n)^{1 / 2}$? (info.-theory limit)

