# Tensor principal component analysis via sum-of-squares proofs

Sam Hopkins Cornell Jonathan Shi Cornell David Steurer Cornell

COLT – Paris, July 2015

## principal component analysis (PCA)

vanilla PCA

- o basic data analysis technique
- given noisy pairwise correlation data  $A \in \mathbb{R}^{n \times n}$ , find direction of maximum empirical variance

maximize  $\langle x, Ax \rangle$  over all unit vectors  $x \in \mathbb{R}^n$ 

• computationally efficient (take *x* to be top eigenvector of *A*)

### variants of PCA

- restrict to sparse directions (SPARSE PCA) or exploit higherorder correlation data  $A \in \mathbb{R}^{n \times n \times \dots \times n}$  (TENSOR PCA)
- o better statistical properties in important applications; huge body of works
- *but:* computationally challenging (NP-hard in worse case; unclear complexity in stochastic setting)

#### 2-wise correlation data = matrix





3-wise correlation data

### tensor principal component analysis



k = 2: computationally efficient (eigenvalue problem; even in worst case)

k = 3: appears to capture difficulty of general k in stochastic model (also NP-hard in worst case, but no bearing on stochastic model)



### previous results [Montanari-Richard=MR]

information-theoretic recovery

(\*) works as long as  $\tau \ge \widetilde{O}(n^{1/2})$  (tight)

#### computational recovery

*MR algorithm:* reshape A to  $n^2$ -by-n matrix; output top right singular vector

*theoretical guarantee:* algorithm works as long as  $\tau \ge \widetilde{O}(n)$ 

*empirical performance:* algorithm works as long as  $\tau \ge \tilde{O}(n^{3/4})$ 

*tension:* theoretical analysis of MR *tight* in many ways **but** empirical performance *should be predictive* for mathematical truth (average-case problem & large input sizes)

# this work



### *techniques:* sum-of-squares meta-algorithm & proof system; *powerful general approach to unsupervised learning*

[Barak-Kelner-S.'12+15,Potechin-Meka-Wigderson'15, Barak-Moitra, Ge-Ma, Ma-Wigderson,...]

*recovery guarantee:* theoretical analysis matches empirical performance of MR,  $\tau \gg n^{3/4}$  — one algorithm very similar to MR

*nearly-linear time:* informed by theoretical analysis; exploit knowledge about eigenvalues to speed up eigenvector computation

*lower bounds:* rule out better recovery guarantees by algorithms based on broad set of techniques (deg-4 sum-of-squares proof system)

# relaxation & rounding approach



*relaxation:* tractable (convex) optimization problem associated with (\*); optimal value gives upper bound on optimal value of (\*)

*rounding:* transform solution for relaxation to solution for (\*) with approximately same objective value

### *failure of this approach:* for $n^{3/4} \ll \tau \ll n$ ,

opt. <u>value</u> of MR relaxation (top singular value of *A*) *is far* from opt. <u>value</u> of (\*) *but (empirically)* opt. <u>solution</u> of MR relaxation

*is close* to opt. <u>solution</u> of (\*)

→ no rounding analysis possible (in the usual sense)

*our explanation* (for variant of MR relaxation) *second-order effect* in opt. <u>value</u> of relaxation drives recovery



*warm-up:* upper bounds for homogeneous *n*-var. deg.-4 polynomial p(x)consider affine linear subspace  $H_{p(x)}$  of *matrix representations* of p(x) $H_{p(x)} \stackrel{\text{def}}{=} \left\{ P \in \mathbb{R}^{n^2 \times n^2} \middle| p(x) = \langle x^{\otimes 2}, Px^{\otimes 2} \rangle \right\}$   $\lambda_{\max}(P) = \max_{\|y\|=1} \langle y, Py \rangle$ then,  $\max_{\|x\|=1} p(x) \leq \lambda_{\max}(P)$  for every  $P \in H_{p(x)}$  $\rightarrow$  find best upper bound  $\lambda_{\max}(P)$  with  $P \in H_{p(x)}$  (semidefinite programming)

deg-d sum-of-squares upper bounds for general polynomial p(x)find best upper bound  $\lambda_{\max}(P)$  with  $P \in \bigcup_{\substack{deg \ q(x) \le d-2}} H_{p(x)+q(x)\cdot(||x||^2-1)} \checkmark$  different polynomials but same function as p(x) on unit sphere run time  $n^{O(d)}$  (semidefinite programming)

# efficient upper bounds on random polynomials



*can show:* deg-4 sum-of-squares gives upper bound  $\tau_0 = \widetilde{\Theta}(n)^{3/4}$  for random deg-3 polynomial  $z(x) = \langle Z, x^{\otimes 3} \rangle$  over unit sphere *concretely:*  $z(x) + \tau_0/2 \cdot (||x||^4 - ||x||^2)$  has matrix representation with  $\lambda_{\max}(\cdot) \leq \tau_0$ 

*approach for recovery:* for  $\tau \gg \tau_0$ , corresponding matrix representation of *A* has top eigenvector determined by signal v (eig.vec. is close to  $v^{\otimes 2}$ )

### where does upper bound for z(x) come from?

reshape Z to  $n^2$ -by-n matrix so that  $z(x) = \langle Zx, x^{\otimes 2} \rangle$ 

tempting but poor Cauchy-Schwarz bound:  $\langle Zx, x^{\otimes 2} \rangle \leq \sqrt{\|Zx\|^2 \cdot \|x\|^4}$ tight Cauchy-Schwarz bound:  $\langle x, Z^{\top}x^{\otimes 2} \rangle \leq \sqrt{\|x\|^2 \cdot \|Z^{\top}x^{\otimes 2}\|^2}$ poor matrix representation for  $\|Z^{\top}x^{\otimes 2}\|^2$ :  $ZZ^{\top}$  (only rank-n) best matrix representation for  $= \sum_i \langle x, Z_i x \rangle^2$ :  $\sum_i Z_i \otimes Z_i$ use matrix Bernstein

## conclusion



### sum-of-squares gives new perspective on spectral algorithms

*status quo:* focus on spectrum of single matrix associated with problem; e.g., data matrix (matrix problems), Laplacian (graph problems)

*sum-of-squares:* associate hierarchy of increasingly rich families of matrices with single problem → *better algorithms* 

### research directions

# thank you!

### faster algorithms via sum-of-squares

*challenge:* size of matrices increases quickly in the hierarchy (albeit poly.)

*upcoming work:* techniques to *significantly compress* matrices in higher levels of hierarchy (partial traces) [Hopkins-Schramm-Shi-S.'15]

deg- $O(\log n)$  sum-of-squares enough for  $\tau \geq \widetilde{O}(n)^{1/2}$ ? (info.-theory limit)