Tensor decompositions, sum-of-squares proofs, and spectral algorithms

David Steurer
Cornell

Sam B. Hopkins
Cornell

Tengyu Ma
Princeton

Tselil Schramm Jonathan Shi
Berkeley
tensor multi-index array of numbers (typically ≥ 3 indices/modes)

tensor multi-index array of numbers (typically ≥ 3 indices/modes)

$$
\begin{array}{r}
T=\sum_{i, j, k \in[d]} T_{i j k} \cdot e_{i} \otimes e_{j} \otimes e_{k} \in\left(\mathbb{R}^{d}\right)^{\otimes 3} \\
a \otimes b \otimes c=\sum_{i, j, k \in[d]}\left\langle a, e_{i}\right\rangle\left\langle b, e_{j}\right\rangle\left\langle c, e_{k}\right\rangle \cdot e_{i} \otimes e_{j} \otimes e_{k} \\
\text { standard basis } e_{1}, \ldots, e_{d} \in \mathbb{R}^{d}
\end{array}
$$

natural shape of data

moments of multivariate distributions $T=\mathbb{E}_{x \sim D} x^{\otimes 3}$ coefficients of multivariate polynomials $T=\sum_{i j k} T_{i j k} \cdot x_{i} x_{j} x_{k}$
states of composite quantum systems $|\psi\rangle \in A \otimes B \otimes C$
"deep learning" frameworks: torch / theano / tensorflow
"tensors are the new matrices" "algorithms for the tensor age"
tie together wide range of disciplines
hope to repeat success for matrices

tensor decomposition (tensor rank)

given 3-tensor T, find as few vectors $\left\{a_{i}, b_{i}, c_{i}\right\}_{i \in[r]}$ as possible such that

$$
T=\sum_{i=1}^{r} a_{i} \otimes b_{i} \otimes c_{i}
$$

intuition: explain data in simplest way possible key advantage over matrix rank/factorization

$$
\begin{aligned}
M & =A B^{\top} \\
\Leftrightarrow M & =(A U)\left(B U^{-1}\right)^{\top}
\end{aligned}
$$

matrix factorization suffers from "rotation problem"
in contrast: tensor decomposition often unique

key challenge

tensor decomposition is NP-hard in worst case
\rightarrow cannot hope for same theory as for matrices
but: can still hope for algorithms with strong provable guarantees tractability appears to go hand in hand with uniqueness

tensor decomposition (tensor rank)

given 3-tensor T, find as few vectors $\left\{a_{i}, b_{i}, c_{i}\right\}_{i \in[r]}$ as possible such that

$$
T=\sum_{i=1}^{r} a_{i} \otimes b_{i} \otimes c_{i}
$$

poly-time \& practical unsupervised learning via tensor decomposition

Gaussian mixtures [Bhaskara-Charikar-Moitra-Vijayaraghavan'14] topic modelling (latent Dirichlet allocation) $\begin{aligned} & {[\text { Anandkumar, Ge, Hsu) }} \\ & \text { Kakade, Telgarsk } 14]\end{aligned}$ phylogenetic tree / hidden Markov model [Chang'96; Mossel, Rochid "t
moment problem for multivariate discrete distributions
hidden: set of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ given: low-degree moments $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ of uniform distribution over a_{1}, \ldots, a_{n} find: set of vectors $\approx\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\mathcal{M}_{k}:=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}
$$

(reformulation of tensor decomposition problem)

under what conditions on the vectors and k can we solve this problem efficiently and robustly?

moment problem for multivariate discrete distributions

hidden: set of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$
given: low-degree moments $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ of
uniform distribution over a_{1}, \ldots, a_{n}
find: set of vectors $\approx\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\mathcal{M}_{k}:=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}
$$

linearly independent vectors (thus, $n \leq d$)
wlog a_{1}, \ldots, a_{n} orthonormal (apply linear transformation $\frac{1}{\sqrt{n}} \mathcal{M}_{2}^{-1 / 2}$)
spectral algorithm for $k=3$ (matrix diagonalization)
[Jennrich via Harshman'70; Leurgans-Ross-Abel'93; rediscovered many times]
key challenge: decompose overcomplete tensors, i.e., rank >> dimension

moment problem for multivariate discrete distributions

hidden: set of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$
given: low-degree moments $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ of uniform distribution over a_{1}, \ldots, a_{n}
find: set of vectors $\approx\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\mathcal{M}_{k}:=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}
$$

random unit vectors for rank $\boldsymbol{n} \gg \boldsymbol{d}$ and $\boldsymbol{k}=3$ moments
largest rankn running time

spectral algorithm	$C \cdot d$	$2^{C^{2}} \cdot d^{3}$	[Anandkumar-Ge-Janzamin'15]
tensor power iteration	$d^{1.5}$	(only local convergence)	[Anandkumar-Ge-Janzamin'15] sum-of-squares
[Ge-Ma'15 analysis of Barak-			

\exists poly-time algorithm for rank $n=d^{1.01}$?

moment problem for multivariate discrete distributions

hidden: set of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$
given: low-degree moments $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ of uniform distribution over a_{1}, \ldots, a_{n} find: \quad set of vectors $\approx\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\mathcal{M}_{k}:=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}
$$

random unit vectors for rank $\boldsymbol{n} \gg \boldsymbol{d}$ and $\boldsymbol{k}=3$ moments

largest rankn running time

spectral algorithm	$C \cdot d$	$2^{C^{2}} \cdot d^{3}$	[Anandkumar-Ge-Janzamin'15]
tensor power iteration	$d^{1.5}$	(only local convergence)	[Anandkumar-Ge-Janzamin'15] sum-of-squares
[Ge-Ma'15 analysis of Barak-			

this talk:

sum-of-squares	$d^{1.5}$	$d^{O(1)}$
SOS-flavored spectral	$d^{1.33}$	$d^{1+\omega} \leq d^{3.33}$

[Ma-Shi-S'16+]
[Hopkins-Schramm-Shi-S'16]

moment problem for multivariate discrete distributions

hidden: set of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$
given: low-degree moments $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ of

$$
\mathcal{M}_{k}:=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}
$$

find: \quad set of vectors $\approx\left\{a_{1}, \ldots, a_{n}\right\}$
smoothed unit vectors (Spielman-Teng smoothed analysis framework)
assume each vector is independently perturbed by $n^{-O(1)}$ norm Gaussian
poly-time algorithm for $k=4$ up to rank $n \leq d^{2}$
combines large linear system and spectral algorithm (FOOBI)
[Lathauwer, Castaing,
Cardoso'07] assumes exact input; not known to tolerate $n^{-O(1)}$ error poly-time algorithm for $k=5$ up to rank $n \leq d^{2}$
[Bhaskara-Charikar-MoitraVijayaraghavan'14] spectral algorithm; tolerates $n^{-O(1)}$ error
this talk: same guarantees as $F O O B I$ but tolerate $n^{-O(1)}$ error based on sum-of-squares

moment problem for multivariate discrete distributions

hidden: set of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$
given: low-degree moments $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ of
uniform distribution over a_{1}, \ldots, a_{n}
find: set of vectors $\approx\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\mathcal{M}_{k}:=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}
$$

general unit vectors

for simplicity: isotropic position $\sum_{i=1}^{n} a_{i} a_{i}^{\top}=\frac{n}{d}$ Id
quasi-poly time algorithm with accuracy ε for $k \geq \varepsilon^{-1} \log \left(\frac{n}{d}\right) \quad$ [Barak-Kelner-S.'15] based on sum-of-squares
this talk: poly-time algorithm (in size of input) with same recovery guarantees
corollary: overcomplete dictionary learning with constant relative sparsity and constant accuracy in polynomial time previous best: either sparsity $n^{-\Omega(1)}$ or time $n^{O(\log n)}$

moment problem for multivariate discrete distributions

hidden: set of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$
given: low-degree moments $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k}$ of
uniform distribution over a_{1}, \ldots, a_{n}

$$
\mathcal{M}_{k}:=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}
$$

find: set of vectors $\approx\left\{a_{1}, \ldots, a_{n}\right\}$
Jennrich's algorithm on $3^{\text {rd }}$ moments assume $\left\{a_{1}, \ldots, a_{n}\right\}$ orthonormal
let $g \sim \mathcal{N}\left(0, \mathrm{Id}_{d}\right)$ be standard Gaussian vector then, $\left(\mathrm{Id} \otimes \mathrm{Id} \otimes g^{\top}\right) \mathcal{M}_{3}=\frac{1}{n} \sum_{i}\left\langle g, a_{i}\right\rangle \cdot a_{i} a_{i}^{\top}$
\rightarrow every a_{i} is eigenvector with value $\left\langle g, a_{i}\right\rangle / n$; w.h.p. all eigenvalues distinct
\rightarrow eigendecomposition recovers a_{1}, \ldots, a_{n}

of one mode"
challenge: what can we do when $n>d$ (overcomplete case)?

approach for random overcomplete 3-tensors

let a_{1}, \ldots, a_{n} be random unit vectors for $n \ll d^{1.5}$

$$
\begin{aligned}
& 6^{\text {th }} \text { moments of } a_{1}, \ldots, a_{n} \\
= & 3^{\text {rd }} \text { moments of } a_{1}^{\otimes 2}, \ldots, a_{n}^{\otimes 2}
\end{aligned}
$$

(lifts $3^{\text {rd }}$ moments to $6^{\text {th }}$ moments)
$\rightarrow \begin{aligned} & \text { Jennrich's } \\ & \text { algorithm }\end{aligned} \rightarrow\left\{a_{1}^{\otimes 2}, \ldots, a_{n}^{\otimes 2}\right\}$
($a_{1}^{\otimes 2}, \ldots, a_{n}^{\otimes 2}$ orthogonal enough for Jennrich's algorithm)

approach for random overcomplete 3-tensors

let a_{1}, \ldots, a_{n} be random unit vectors for $n \ll d^{1.5}$

"ideal implementation"

(ignore efficiency for now)

($a_{1}^{\otimes 2}, \ldots, a_{n}^{\otimes 2}$ orthogonal enough for Jennrich's algorithm)

approach for random overcomplete 3-tensors

let a_{1}, \ldots, a_{n} be random unit vecto

"ideal implementation"

(ignore efficiency for now)

find distribution D over unit sphere subject to $\mathbb{E}_{u \sim D} u^{\otimes 3}=\mathcal{M}_{3}$
claim: $\mathbb{E}_{D(u)} u^{\otimes 6} \approx \mathcal{M}_{6}$

proof:

$$
\begin{gathered}
\left\langle\mathcal{M}_{3}, \mathbb{E}_{D(u)} u^{\otimes 3}\right\rangle=\frac{1}{n} \mathbb{E}_{D(u)} \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{3} \\
\left\langle\mathcal{M}_{3}, \mathcal{M}_{3}\right\rangle=\frac{1}{n^{2}} \sum_{i, j \in[n]}\left\langle a_{i}, a_{j}\right\rangle^{3}=\frac{1 \pm o(1)}{n} \\
\rightarrow \mathbb{E}_{D(u)} \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{3}=1 \pm o(1) \quad(*)
\end{gathered}
$$

crucially: with high prob. over a_{1}, \ldots, a_{n},

$$
\forall u . \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{3}=\max _{i \in[n]}\left\langle a_{i}, u\right\rangle^{3} \pm o(1)
$$

therefore, (*) implies

$$
\begin{aligned}
& \operatorname{Pr}_{D(u)}\left\{\max _{i}\left\langle a_{i}, u\right\rangle \geq 1-o(1)\right\} \geq 1-o(1) \\
& \rightarrow \mathbb{E}_{D(u)} \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{6}=1 \pm o(1) \\
& \ldots \\
& \rightarrow\left\|\mathcal{M}_{6}-\mathbb{E}_{D(u)} u^{\otimes 6}\right\| \leq o(1) \cdot\left\|\mathcal{M}_{6}\right\|
\end{aligned}
$$

approach for random overcomplete 3-tensors

let a_{1}, \ldots, a_{n} be random unit vectors for $n \ll d^{1.5}$

"ideal implementation"

(ignore efficiency for now)
find distribution D over unit sphere subject to $\mathbb{E}_{u \sim D} u^{\otimes 3}=\mathcal{M}_{3}$
claim: $\mathbb{E}_{D(u)} u^{\otimes 6} \approx \mathcal{M}_{6}$

$$
\mathbb{E}_{u \sim D} u^{\otimes 6}
$$

Jennrich's algorithm $\left\{a_{1}^{\otimes 2}, \ldots, a_{n}^{\otimes 2}\right\}$

$\left(a_{1}^{\otimes 2}, \ldots, a_{n}^{\otimes 2}\right.$ orthogonal enough for Jennrich's algorithm)
two remaining questions:

1. how to find D efficiently? relax search to sum-of-squares pseudo-distributions
2. can Jennrich tolerate this kind of error? no, error is too large!
\rightarrow add maximum entropy constraint $\left\|\mathbb{E}_{u \sim D} u^{\otimes 4}\right\|_{\text {spectral }} \leq \frac{1+o(1)}{n}$

robust analysis of Jennrich's algorithm

$a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ orthonormal; moments $\mathcal{M}_{k}=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}$ distribution D over sphere; moments $\widetilde{\mathcal{M}}_{k}=\mathbb{E}_{D(u)} u^{\otimes k}$
suppose $\left\|\widetilde{\mathcal{M}}_{3}-\mathcal{M}_{3}\right\|_{F} \leq o(1) \cdot\left\|\mathcal{M}_{3}\right\|_{F}$ and $\left\|\widetilde{\mathcal{M}}_{2}\right\|_{\text {spectral }} \leq O(1) / n$.
then, for most $i \in[n]$, with probability $\frac{1}{n^{0(1)}}$ over the choice $g \sim \mathcal{N}\left(0, \operatorname{Id}_{d^{2}}\right)$,

$$
\left(\operatorname{Id}_{d} \otimes \operatorname{Id}_{d} \otimes g^{\top}\right) \tilde{\mathcal{M}}_{3} \text { has top eigenvector } \approx a_{i}
$$

$\left(\mathrm{Id}_{d} \otimes \operatorname{Id}_{d} \otimes g^{\top}\right) \widetilde{\mathcal{M}}_{3}$
$=\left\langle g, a_{i}\right\rangle\left(\mathrm{Id}_{d} \otimes \mathrm{Id}_{d} \otimes a_{i}^{\top}\right) \tilde{\mathcal{M}}_{3}+\left(\mathrm{Id}_{d} \otimes \mathrm{Id}_{d} \otimes \hat{g}^{\top}\right) \tilde{\mathcal{M}}_{3}$

overwhelms noise with

$$
\|\cdot\|_{\text {spectral }} \leq \frac{\sqrt{\log d}}{n}
$$

probability $e^{-(\sqrt{\log d})^{2}} \geq d^{-O(1)}$

probability theory meets complexity theory

- low-complexity events always have nonnegative probability
- high-complexity events may have negative probability
degree-k pseudo-distribution over unit sphere $\mathbb{S}^{d-1} \subseteq \mathbb{R}^{d}$
- finitely supported function $D: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$
- $\sum_{u} D(u)=1$ (sum is only over support of D)
- $\sum_{u} D(u) \cdot f(u)^{2} \geq 0$ for every $f: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ with $\operatorname{deg} f \leq k / 2$
notation: $\widetilde{\mathbb{E}}_{D(u)} f(u) \xlongequal{\text { def }} \sum_{u} D(u) \cdot f(u)$ - pseudo-expectation of f under D
efficiency of pseudo-distributions [Shor, Parrilo, Lasserre]
set of degree- k pseudo-moments has $d^{O(k)}$-time separation oracle;
key step: check $k^{\text {th }}$ pseudo-moment satisfies $\widetilde{\mathbb{E}}_{D(u)} u^{\otimes k / 2}\left(u^{\otimes k / 2}\right)^{\top} \succcurlyeq 0$
generalizes best known poly-time algorithms for wide range of problems
degree-k pseudo-distribution over unit sphere $\mathbb{S}^{d-1} \subseteq \mathbb{R}^{d}$
- finitely supported function $D: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$
- $\sum_{u} D(u)=1$ (sum is only over support of D)
- $\sum_{u} D(u) \cdot f(u)^{2} \geq 0$ for every $f: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ with $\operatorname{deg} f \leq k$
notation: $\widetilde{\mathbb{E}}_{D(u)} f(u) \stackrel{\text { def }}{=} \sum_{u} D(u) \cdot f(u)$
degree- k sum-of-squares proof of $\forall u \in \mathbb{S}^{d-1} \cdot f(u) \geq g(u)$ functions h_{1}, \ldots, h_{r} with $\operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{r} \leq k / 2$

$$
\forall u \in \mathbb{S}^{d-1} . \quad f(u)-g(u)=h_{1}(u)^{2}+\cdots+h_{r}(u)^{2}
$$

duality: pseudo-distributions vs sum-of-squares proofs if $f \geq g$ has degree- k sos proof, then $\widetilde{\mathbb{E}}_{D(u)} f(u) \geq \widetilde{\mathbb{E}}_{D(u)} g(u)$ for every degree- k pseudo-distribution D

lifting moments higher via sum-of-squares

$\mathcal{N}_{3}=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes 3}$ for random unit vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ and $n \ll d^{1.5}$
theorem: w.h.p. over a_{1}, \ldots, a_{n}, every degree-12 pseudo-distribution D with $\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 3}=\mathcal{M}_{3}$ satisfies $\left\|\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 6}-\mathcal{M}_{6}\right\| \leq o(1)\left\|\mathcal{M}_{6}\right\|$.

lifting moments higher via sum-of-squares

$\mathcal{N}_{3}=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes 3}$ for random unit vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ and $n \ll d^{1.5}$
theorem: w.h.p. over a_{1}, \ldots, a_{n}, every degree-12 pseudo-distribution D with $\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 3}=\mathcal{M}_{3}$ satisfies $\left\|\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 6}-\mathcal{M}_{6}\right\| \leq o(1)\left\|\mathcal{M}_{6}\right\|$.
enough to show (same as in previous proof for probability distributions):

$$
\widetilde{\mathbb{E}}_{D(u)} \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{3} \geq 1-o(1) \quad \Rightarrow \quad \widetilde{\mathbb{E}}_{D(u)} \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{6} \geq 1-o(1)
$$

w.h.p. over a_{1}, \ldots, a_{n}, the following inequality has degree-12 sos proof

$$
\begin{equation*}
\forall u \in \mathbb{S}^{d-1} \cdot \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{3} \leq \frac{3}{4}+\frac{1}{4} \sum_{i=1}^{n}\left\langle a_{i}, u\right\rangle^{6}+o(1) \tag{Ge-Ma'15}
\end{equation*}
$$

key ingredient is to bound spectral norm of random matrix polynomial

$$
\left\|\sum_{i \neq j}\left\langle a_{i}, a_{j}\right\rangle \cdot a_{i} a_{i}^{\top} \otimes a_{j} a_{j}^{\top}\right\| \leq o(1)
$$

prevailing wisdom: sum-of-squares is "strictly theoretical"

sum-of-squares algorithms have nothing to do with practical ones
at odds with tenet of computational complexity that polynomial-time is a good model for practical algorithms

next:

algorithm to decompose random overcomplete 3-tensor with close to linear running time (in size of input) and guarantees close to those of sum-of-squares
general recipe for new kinds of fast spectral algorithms inspired by SOS
approach for fast decomposition of overcomplete 3-tensor random unit vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $n \ll d^{1.5} ;$ moments $\mathcal{M}_{k}=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}$

approach for fast decomposition of overcomplete 3-tensor

 random unit vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ with $n \ll d^{1.5} ;$ moments $\mathcal{M}_{k}=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{\otimes k}$| | $\sum\left\langle a_{i}, a_{k}\right\rangle\left\langle a_{j}, a_{k}\right\rangle \cdot\left(a_{i} \otimes a_{j}\right) \otimes\left(a_{i} \otimes a_{j}\right) \otimes a_{k}$ |
| :---: | :---: |
| direct algorithm to fool Jennrich | $\widehat{i j k}^{\prime}$ |
| | $\downarrow=\sum_{i=1}^{n} a_{i}^{\otimes 5}+E \quad \text { with } E \text { "random-like" }$ |
| $\mathcal{M}_{3} \rightarrow \mathrm{COS} \rightarrow \mathrm{NH}_{6}$ (huge Frobenius norm) | |
| | Jennrich's algorithm $\rightarrow\left\{a_{1}^{\otimes 2}, \ldots, a_{n}^{\otimes}\right.$ |

claim: if $n \ll d^{1.33}$ then E contributes negligible spectral error for Jennrich
input to Jennrich has "size" d^{5} (computing it takes naively $\mathrm{O}\left(d^{6}\right)$ time) exploit tensor structure to implement Jennrich in time $O\left(d^{1+\omega}\right) \leq O\left(d^{3.3 \ldots}\right)$

meta result*

sum-of-squares method (based on

 semidefinite programming) [Shor, Parrilo, Lasserre]efficient algorithm to solve polynomial optimization problems that have only few global optima
running time poly(\#solutions)
also need short sum-of-squares certificate for this fact
previous work: running time $n^{O \text { (log \#solutions) }}$
(quasi-poly time for poly \#solutions)
[Barak-Kelner-S STOC'15]
\# bad local optima
can be exponential
\rightarrow local-search algorithms fail
sum-of-squares method (based on semidefinite programming] [Shor, Parrilo, Lasserre]
efficient algorithm to solve polynomial optimization problems that have only few global optima
running time poly(\#solutions)
also need short sum-of-squares certificate for this fact
applications: unsupervised learning problems tend to have this property identifiability: data uniquely determines parameters of model our work: notion of constructive identifiability proofs that implies efficient inference algorithms

conclusions

tensor decomposition / polynomial optimization via sum-of-squares
sum-of-squares proof for approximate uniqueness (identifiability)
use Jennrich's algorithm (small spectral gaps) as rounding algorithm
fast spectral algorithms via sum-of-squares
fool rounding algorithm by low-degree matrix polynomial of input exploit tensor structure for fast algebraic operations
conclusions
tensor decomposition / polynomial optimization via sum-of-squares
sum-of-squares proof for approximate uniqueness (identifiability)
use Jennrich's algorithm (small spectral gaps) as rounding algorithm
fast spectral algorithms via sum-of-squares
fool rounding algorithm by low-degree matrix polynomial of input
exploit tensor structure for fast algebraic operations

questions

random 3-tensors beyond rank $d^{1.5}$?

thank you very much!

lower bounds? hard to distinguish from completely random 3-tensors?
smoothed analysis for overcomplete 3-tensors?
strong bounds known for 4-tensors [Lathauwer, Castaing, Cardoso'07]

