Tensor decompositions, sum-of-squares proofs, and spectral algorithms

David Steurer Cornell

Sam B. Hopkins *Cornell* Tengyu Ma Princeton Tselil Schramm Berkeley Jonathan Shi *Cornell*

Quarterly Theory Workshop, Northwestern, May 2016

natural shape of data

moments of multivariate distributions $T = \mathbb{E}_{x \sim D} x^{\otimes 3}$ coefficients of multivariate polynomials $T = \sum_{ijk} T_{ijk} \cdot x_i x_j x_k$ states of composite quantum systems $|\psi\rangle \in A \otimes B \otimes C$ "deep learning" frameworks: torch / theano / tensorflow

"tensors are the new matrices" tie together wide range of disciplines*"algorithms for the tensor age"* hope to repeat success for matrices

tensor decomposition (tensor rank)

given 3-tensor *T*, find as few vectors $\{a_i, b_i, c_i\}_{i \in [r]}$ as possible such that $T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$ $T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$ $T = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$

intuition: explain data in simplest way possible

key advantage over matrix rank/factorization

 $M = AB^{\top}$ $\Leftrightarrow M = (AU)(BU^{-1})^{\top}$

matrix factorization suffers from "rotation problem"

in contrast: tensor decomposition often *unique*

key challenge

tensor decomposition is NP-hard in worst case

- \rightarrow cannot hope for same theory as for matrices
- *but:* can still hope for algorithms with strong provable guarantees *tractability appears to go hand in hand with uniqueness*

tensor decomposition (*tensor rank*)

given 3-tensor *T*, find as few vectors $\{a_i, b_i, c_i\}_{i \in [r]}$ as possible such that $T = \sum_{i=1}^{\infty} a_i \otimes b_i \otimes c_i$ b_1 + b_2

poly-time & practical unsupervised learning via tensor decomposition

[Leurgans; Lathauwer. blind-source separation, independent component analysis Castaing, Cardoso'07

Gaussian mixtures [Bhaskara-Charikar-Moitra-Vijayaraghavan'14]

topic modelling (latent Dirichlet allocation)

[Anandkumar, Ge, Hsu, Kakade, Telgarsky'14]

phylogenetic tree / hidden Markov model [Chang'96; Mossel, Roch]

hidden:set of vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ given:low-degree moments $\mathcal{M}_1, \ldots, \mathcal{M}_k$ of
uniform distribution over a_1, \ldots, a_n find:set of vectors $\approx \{a_1, \ldots, a_n\}$

(reformulation of tensor decomposition problem)

 $\mathcal{M}_k \coloneqq \frac{1}{n} \sum a_i^{\otimes k}$

under what conditions on the vectors and k can we solve this problem efficiently and robustly?

hidden: set of vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ *given*: low-degree moments $\mathcal{M}_1, \ldots, \mathcal{M}_k$ of uniform distribution over a_1, \ldots, a_n

find: set of vectors $\approx \{a_1, \dots, a_n\}$

linearly independent vectors (thus, $n \leq d$)

wlog a_1, \ldots, a_n orthonormal (apply linear transformation $\frac{1}{\sqrt{n}} \mathcal{M}_2^{-1/2}$)

spectral algorithm for k = 3 (matrix diagonalization)

[Jennrich via Harshman'70; Leurgans-Ross-Abel'93; rediscovered many times]

key challenge: decompose <u>overcomplete</u> tensors, i.e., rank >> dimension

hidden: set of vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ *given:*low-degree moments $\mathcal{M}_1, \ldots, \mathcal{M}_k$ of
uniform distribution over a_1, \ldots, a_n *find:*set of vectors $\approx \{a_1, \ldots, a_n\}$

$$\mathcal{M}_k \coloneqq \frac{1}{n} \sum_{i=1}^n a_i^{\otimes k}$$

random unit vectors for rank $n \gg d$ and k = 3 moments

	largest rank n	running time	
spectral algorithm	$C \cdot d$	$2^{C^2} \cdot d^3$	[Anandkumar-Ge-Janzamin'15]
tensor power iteration	$d^{1.5}$	(only local convergence)	[Anandkumar-Ge-Janzamin'15]
sum-of-squares	$d^{1.5}$	$d^{\log d}$	[Ge-Ma'15 analysis of Barak- Kelner-S.'15 algorithm]

\exists poly-time algorithm for rank $n = d^{1.01}$?

hidden:set of vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ given:low-degree moments $\mathcal{M}_1, \ldots, \mathcal{M}_k$ of
uniform distribution over a_1, \ldots, a_n find:set of vectors $\approx \{a_1, \ldots, a_n\}$

$$\mathcal{M}_k \coloneqq \frac{1}{n} \sum_{i=1}^n a_i^{\otimes k}$$

random unit vectors for rank $n \gg d$ and k = 3 moments

	largest rank n	running time	
spectral algorithm	$C \cdot d$	$2^{C^2} \cdot d^3$	[Anandkumar-Ge-Janzamin'15]
tensor power iteration	$d^{1.5}$	(only local convergence)	[Anandkumar-Ge-Janzamin'15]
sum-of-squares	$d^{1.5}$	$d^{\log d}$	[Ge-Ma'15 analysis of Barak- Kelner-S.'15 algorithm]
this talk:			
sum-of-squares SOS-flavored spectra	$d^{1.5}$ al $d^{1.33}$	$d^{O(1)}$ $d^{1+\omega} \le d^{3.33}$	[Ma-Shi-S'16+] [Hopkins-Schramm-Shi-S'16]

hidden:set of vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ given:low-degree moments $\mathcal{M}_1, \ldots, \mathcal{M}_k$ of
uniform distribution over a_1, \ldots, a_n find:set of vectors $\approx \{a_1, \ldots, a_n\}$

smoothed unit vectors (Spielman–Teng smoothed analysis framework) assume each vector is independently perturbed by $n^{-O(1)}$ norm Gaussian

poly-time algorithm for k = 4 up to rank $n \le d^2$ combines large linear system and spectral algorithm *(FOOBI)* assumes exact input; not known to tolerate $n^{-O(1)}$ error

[Lathauwer, Castaing, Cardoso'07]

 $\mathcal{M}_k \coloneqq \frac{1}{n} \sum_{i=1}^n a_i^{\otimes k}$

poly-time algorithm for k = 5 up to rank $n \le d^2$ spectral algorithm; tolerates $n^{-O(1)}$ error

[Bhaskara-Charikar-Moitra-Vijayaraghavan'14]

this talk: same guarantees as *FOOBI* but tolerate $n^{-O(1)}$ error based on sum-of-squares

hidden:set of vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ given:low-degree moments $\mathcal{M}_1, \ldots, \mathcal{M}_k$ of
uniform distribution over a_1, \ldots, a_n find:set of vectors $\approx \{a_1, \ldots, a_n\}$

general unit vectors

for simplicity: isotropic position $\sum_{i=1}^{n} a_i a_i^{\mathsf{T}} = \frac{n}{d} \operatorname{Id}$

quasi-poly time algorithm with accuracy ε for $k \ge \varepsilon^{-1} \log(\frac{n}{d})$ [Barak-Kelner-S.'15] based on sum-of-squares

this talk: poly-time algorithm (in size of input) with same recovery guarantees

corollary: overcomplete dictionary learning with constant relative sparsity and constant accuracy in polynomial time

previous best: either sparsity $n^{-\Omega(1)}$ or time $n^{O(\log n)}$

[Barak-Kelner-S.'15]

 $\mathcal{M}_k \coloneqq \frac{1}{n} \sum_{i=1}^n a_i^{\otimes k}$

hidden:set of vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ given:low-degree moments $\mathcal{M}_1, \ldots, \mathcal{M}_k$ of
uniform distribution over a_1, \ldots, a_n find:set of vectors $\approx \{a_1, \ldots, a_n\}$

Jennrich's algorithm on 3rd moments

assume $\{a_1, \dots, a_n\}$ orthonormal

let $g \sim \mathcal{N}(0, \mathrm{Id}_d)$ be standard Gaussian vector then, $(\mathrm{Id} \otimes \mathrm{Id} \otimes g^{\mathsf{T}})\mathcal{M}_3 = \frac{1}{n}\sum_i \langle g, a_i \rangle \cdot a_i a_i^{\mathsf{T}}$

- → every a_i is eigenvector with value $\langle g, a_i \rangle / n$; w.h.p. all eigenvalues distinct
- \rightarrow eigendecomposition recovers a_1, \dots, a_n

"random contraction of one mode"

challenge: what can we do when $n \gg d$ (overcomplete case)?

let a_1, \ldots, a_n be random unit vectors for $n \ll d^{1.5}$

let a_1, \ldots, a_n be random unit vectors for $n \ll d^{1.5}$

let a_1, \ldots, a_n be random unit vecto

"ideal implementation" (ignore efficiency for now)

$$\mathcal{M}_3 = \sum_i a_i^{\otimes 3} - \frac{\text{magic}}{\text{box}} - \frac{1}{\text{box}}$$

find distribution *D* over unit sphere subject to $\mathbb{E}_{u\sim D} u^{\otimes 3} = \mathcal{M}_3$ *claim:* $\mathbb{E}_{D(u)} u^{\otimes 6} \approx \mathcal{M}_6$

proof: $\langle \mathcal{M}_3, \mathbb{E}_{D(u)} u^{\otimes 3} \rangle = \frac{1}{n} \mathbb{E}_{D(u)} \sum_{i=1}^n \langle a_i, u \rangle^3$ $\langle \mathcal{M}_3, \mathcal{M}_3 \rangle = \frac{1}{n^2} \sum_{i,j \in [n]} \langle a_i, a_j \rangle^3 = \frac{1 \pm o(1)}{n}$ $\rightarrow \mathbb{E}_{D(u)} \sum_{i=1}^{n} \langle a_i, u \rangle^3 = 1 \pm o(1) \quad (*)$ *crucially:* with high prob. over a_1, \ldots, a_n , $\forall u. \sum_{i=1}^{n} \langle a_i, u \rangle^3 = \max_{i \in [n]} \langle a_i, u \rangle^3 \pm o(1)$ therefore, (*) implies $\Pr_{D(u)}\left\{\max_{i}\langle a_{i}, u\rangle \geq 1 - o(1)\right\} \geq 1 - o(1)$ $\rightarrow \mathbb{E}_{D(u)} \sum_{i=1}^{n} \langle a_i, u \rangle^6 = 1 \pm o(1)$ $\rightarrow \left\| \mathcal{M}_6 - \mathbb{E}_{D(u)} u^{\otimes 6} \right\| \le o(1) \cdot \left\| \mathcal{M}_6 \right\|$

let a_1, \ldots, a_n be random unit vectors for $n \ll d^{1.5}$

two remaining questions:

1. how to find D efficiently? relax search to sum-of-squares pseudo-distributions

2. can Jennrich tolerate this kind of error? **no, error is too large!**

→ add maximum entropy constraint $\|\mathbb{E}_{u\sim D}u^{\otimes 4}\|_{\text{spectral}} \leq \frac{1+o(1)}{n}$

robust analysis of Jennrich's algorithm

 $a_1, \dots, a_n \in \mathbb{R}^d$ orthonormal; moments $\mathcal{M}_k = \frac{1}{n} \sum_{i=1}^n a_i^{\otimes k}$ distribution *D* over sphere; moments $\widetilde{\mathcal{M}}_k = \mathbb{E}_{D(u)} u^{\otimes k}$

suppose
$$\|\widetilde{\mathcal{M}}_3 - \mathcal{M}_3\|_F \le o(1) \cdot \|\mathcal{M}_3\|_F$$
 and $\|\widetilde{\mathcal{M}}_2\|_{\text{spectral}} \le O(1)/n$.

then, for most $i \in [n]$, with probability $\frac{1}{n^{O(1)}}$ over the choice $g \sim \mathcal{N}(0, \mathrm{Id}_{d^2})$, $(\mathrm{Id}_d \otimes \mathrm{Id}_d \otimes g^{\mathsf{T}}) \widetilde{\mathcal{M}}_3$ has top eigenvector $\approx a_i$

probability theory meets complexity theory

- *low-complexity events always have nonnegative probability*
- *high-complexity events* may have *negative probability*

degree-k pseudo-distribution over unit sphere $\mathbb{S}^{d-1} \subseteq \mathbb{R}^d$

- finitely supported function $D: \mathbb{S}^{d-1} \to \mathbb{R}$
- $\sum_{u} D(u) = 1$ (sum is only over support of *D*)
- $\sum_{u} D(u) \cdot f(u)^2 \ge 0$ for every $f: \mathbb{S}^{d-1} \to \mathbb{R}$ with deg $f \le k/2$

notation: $\widetilde{\mathbb{E}}_{D(u)} f(u) \stackrel{\text{def}}{=} \sum_{u} D(u) \cdot f(u) - pseudo-expectation of f under D$

efficiency of pseudo-distributions [Shor, Parrilo, Lasserre]

set of degree-k pseudo-moments has $d^{O(k)}$ -time separation oracle; key step: check k^{th} pseudo-moment satisfies $\widetilde{\mathbb{E}}_{D(u)} u^{\bigotimes k/2} (u^{\bigotimes k/2})^{\top} \ge 0$

generalizes best known poly-time algorithms for wide range of problems

degree-k pseudo-distribution over unit sphere $\mathbb{S}^{d-1} \subseteq \mathbb{R}^d$

- finitely supported function $D: \mathbb{S}^{d-1} \to \mathbb{R}$
- $\sum_{u} D(u) = 1$ (sum is only over support of *D*)
- $\sum_{u} D(u) \cdot f(u)^2 \ge 0$ for every $f: \mathbb{S}^{d-1} \to \mathbb{R}$ with deg $f \le k$

notation: $\widetilde{\mathbb{E}}_{D(u)}f(u) \stackrel{\text{\tiny def}}{=} \sum_{u} D(u) \cdot f(u)$

 $\begin{array}{l} \textit{degree-k sum-of-squares proof of } \forall u \in \mathbb{S}^{d-1}. \ f(u) \geq g(u) \\ \\ \text{functions } h_1, \dots, h_r \text{ with } \deg h_1, \dots, \deg h_r \leq k/2 \\ \\ \\ \forall u \in \mathbb{S}^{d-1}. \quad f(u) - g(u) = h_1(u)^2 + \dots + h_r(u)^2 \end{array}$

duality: pseudo-distributions vs sum-of-squares proofs

if $f \ge g$ has degree-k sos proof, then $\widetilde{\mathbb{E}}_{D(u)}f(u) \ge \widetilde{\mathbb{E}}_{D(u)}g(u)$ for every degree-k pseudo-distribution D

lifting moments higher via sum-of-squares

 $\mathcal{M}_3 = \frac{1}{n} \sum_{i=1}^n a_i^{\otimes 3}$ for random unit vectors $a_1, \dots, a_n \in \mathbb{R}^d$ and $n \ll d^{1.5}$

theorem: w.h.p. over $a_1, ..., a_n$, every degree-12 pseudo-distribution D with $\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 3} = \mathcal{M}_3$ satisfies $\|\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 6} - \mathcal{M}_6\| \le o(1) \|\mathcal{M}_6\|$.

lifting moments higher via sum-of-squares

 $\mathcal{M}_3 = \frac{1}{n} \sum_{i=1}^n a_i^{\otimes 3}$ for random unit vectors $a_1, \dots, a_n \in \mathbb{R}^d$ and $n \ll d^{1.5}$

theorem: w.h.p. over $a_1, ..., a_n$, every degree-12 pseudo-distribution D with $\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 3} = \mathcal{M}_3$ satisfies $\|\widetilde{\mathbb{E}}_{D(u)} u^{\otimes 6} - \mathcal{M}_6\| \le o(1) \|\mathcal{M}_6\|$.

enough to show (same as in previous proof for probability distributions):

$$\widetilde{\mathbb{E}}_{D(u)} \sum_{i=1}^{n} \langle a_i, u \rangle^3 \ge 1 - o(1) \qquad \Longrightarrow \qquad \widetilde{\mathbb{E}}_{D(u)} \sum_{i=1}^{n} \langle a_i, u \rangle^6 \ge 1 - o(1)$$

w.h.p. over a_1, \ldots, a_n , the following inequality has degree-12 sos proof

$$\forall u \in \mathbb{S}^{d-1}$$
. $\sum_{i=1}^{n} \langle a_i, u \rangle^3 \le \frac{3}{4} + \frac{1}{4} \sum_{i=1}^{n} \langle a_i, u \rangle^6 + o(1)$ [Ge-Ma'15]

key ingredient is to bound spectral norm of random matrix polynomial $\left\|\sum_{i\neq j} \langle a_i, a_j \rangle \cdot a_i a_i^{\mathsf{T}} \otimes a_j a_j^{\mathsf{T}}\right\| \le o(1)$ prevailing wisdom: sum-of-squares is "strictly theoretical"

sum-of-squares algorithms have nothing to do with practical ones

at odds with tenet of computational complexity that polynomial-time is a good model for practical algorithms

next:

algorithm to decompose random overcomplete 3-tensor with **close to linear running time** (in size of input) and guarantees close to those of sum-of-squares

general recipe for new kinds of **fast spectral algorithms inspired by SOS**

approach for fast decomposition of overcomplete 3-tensor

random unit vectors $a_1, ..., a_n \in \mathbb{R}^d$ with $n \ll d^{1.5}$; moments $\mathcal{M}_k = \frac{1}{n} \sum_{i=1}^n a_i^{\otimes k}$

approach for fast decomposition of overcomplete 3-tensor random unit vectors $a_1, ..., a_n \in \mathbb{R}^d$ with $n \ll d^{1.5}$; moments $\mathcal{M}_k = \frac{1}{n} \sum_{i=1}^n a_i^{\otimes k}$ $\sum_{ijk} \langle a_i, a_k \rangle \langle a_j, a_k \rangle \cdot (a_i \otimes a_j) \otimes (a_i \otimes a_j) \otimes a_k$ $= \sum_{i=1}^n a_i^{\otimes 5} + E \quad \text{with } E \text{ "random-like"}$ $\text{and } \|E\|_F^2 \leq \frac{n^3}{d^2}$ (huge Frobenius norm)direct algorithm to fool Jennrich \mathcal{M}_3 Jennrich's algorithm $\longrightarrow \{a_1^{\otimes 2}, \dots, a_n^{\otimes 2}\}$

claim: if $n \ll d^{1.33}$ then E contributes negligible spectral error for Jennrich

input to Jennrich has "size" d^5 (computing it takes naively $O(d^6)$ time) exploit tensor structure to implement Jennrich in time $O(d^{1+\omega}) \leq O(d^{3.3...})$

previous work: running time n^{O(log #solutions)} (quasi-poly time for poly #solutions) [Barak-Kelner-S STOC'15]

bad local optima

can be exponential → local-search algorithms fail

conclusions

tensor decomposition / polynomial optimization via sum-of-squares sum-of-squares proof for approximate uniqueness (identifiability) use Jennrich's algorithm (small spectral gaps) as rounding algorithm

fast spectral algorithms via sum-of-squares

fool rounding algorithm by low-degree matrix polynomial of input exploit tensor structure for fast algebraic operations

conclusions

tensor decomposition / polynomial optimization via sum-of-squares sum-of-squares proof for approximate uniqueness (identifiability) use Jennrich's algorithm (small spectral gaps) as rounding algorithm

fast spectral algorithms via sum-of-squares

fool rounding algorithm by low-degree matrix polynomial of input exploit tensor structure for fast algebraic operations

questions

thank you very much!

random 3-tensors beyond rank $d^{1.5}$?

lower bounds? hard to distinguish from completely random 3-tensors?

smoothed analysis for overcomplete 3-tensors?

strong bounds known for 4-tensors [Lathauwer, Castaing, Cardoso'07]