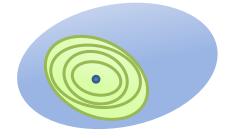
Subexponential Algorithms for Unique Games and Related Problems

Sanjeev Arora Princeton University & CCI

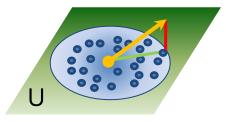
Boaz Barak

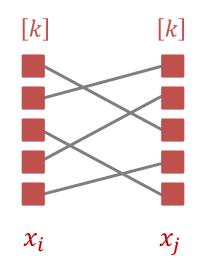
MSR New England & Princeton

David Steurer MSR New England



UC Berkeley Theory Seminar, January 2011





UNIQUE GAMES

Input: list of constraints of form $x_i - x_j = c \mod k$

Goal: satisfy as many constraints as possible

UNIQUE GAMES

- *Input:* list of constraints of form $x_i x_j = c \mod k$
- *Goal:* satisfy as many constraints as possible

Unique Games Conjecture (UGC) [Khot'02]

For every $\varepsilon > 0$, the following is NP-hard:

- *Input:* UNIQUE GAMES instance with $k \ll \log n$ (say)
- $UG(\varepsilon) = \begin{bmatrix} Goal: & Distinguish two cases \\ & YES: & more than 1 \varepsilon of constraints satisfiable \\ & NO: & Lecc than \varepsilon of constraints satisfiable \end{bmatrix}$

Implications of UGC

For many basic optimization problems, it is NP-hard to beat current algorithms (based on simple LP or SDP relaxations)

Examples:

VERTEX COVER [Khot-Regev'03], MAX CUT [Khot-Kindler-Mossel-O'Donnell'04, Mossel-O'Donnell-Oleszkiewicz'05], every MAX CSP [Raghavendra'08], ... Implications of UGC

For many basic optimization problems, it is NP-hard to beat current algorithms (based on simple LP or SDP relaxations)

Unique Games Barrier

Example: $(\alpha_{GW} + \varepsilon)$ -approximation for Max Cut at least as hard as UG (ε')

UNIQUE GAMES is common barrier for improving current algorithms of many basic problems $\alpha_{GW} = 0.878 \dots$ Goemans–Williamson bound for Max Cut

Time vs Approximation Trade-off

Input:UNIQUE GAMES instance with alphabet size ksuch that $1 - \varepsilon$ of constraints are satisfiable,Output:assignment satisfying $1 - C\sqrt{\varepsilon}$ of constraintsTime: $\exp\left(k n^{1/C^{2/3}}\right)$

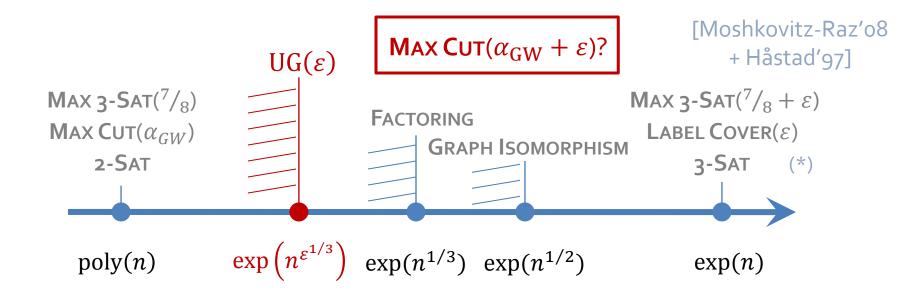
Consequences

NP-hardness reduction for $UG(\varepsilon)$ must have blow-up $n^{1/\varepsilon^{1/3}}$ (*) \rightarrow rules out certain classes of reductions for proving UGC

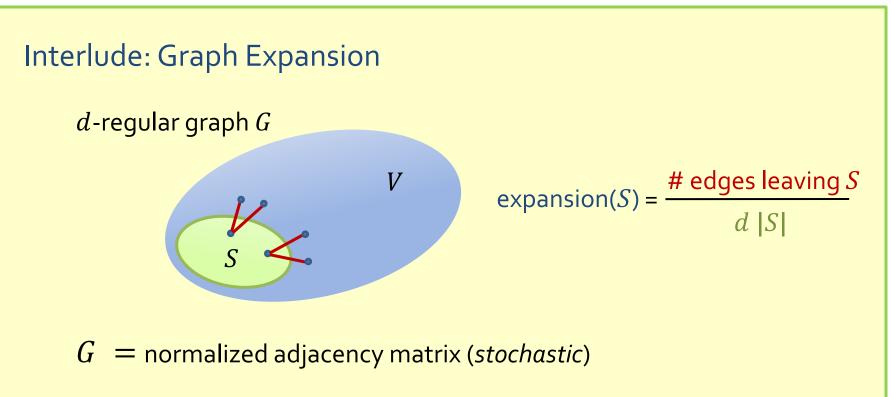
Analog of UGC with subconstant ε (say $\varepsilon = 1/\log \log n$) is false (*) (contrast: subconstant hardness for LABEL COVER [Moshkovitz-Raz'08])

UGC-based hardness *does not rule out* subexponential algorithms, \rightarrow *Possibility:* $\exp(n^{\varepsilon})$ -time algorithm for MAX $CUT(\alpha_{GW} + \varepsilon)$?

(*) assuming 3-SAT does not have subexponential algorithms, $\exp(n^{o(1)})$



(*) assuming *Exponential Time Hypothesis* [Impagliazzo-Paturi-Zane'01] (**3-SAT** has no $2^{o(n)}$ algorithm)

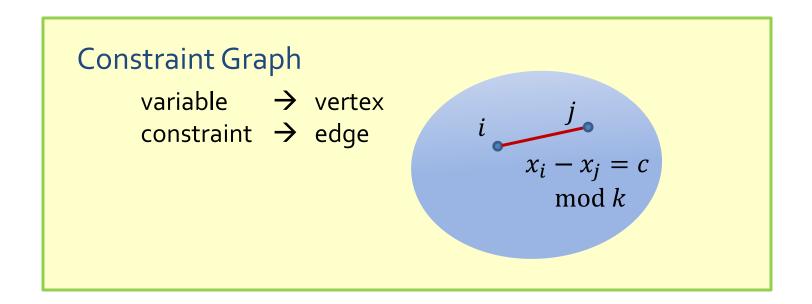


x = normalized indicator vector

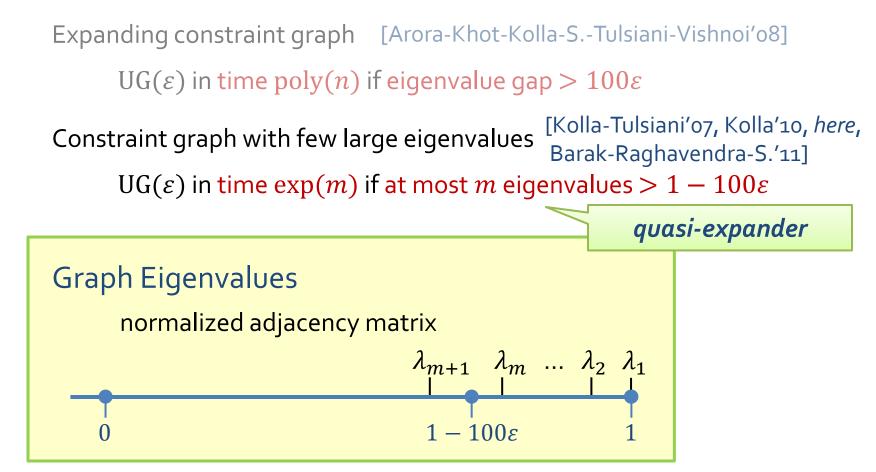
expansion(S) = $\varepsilon \iff \langle x, Gx \rangle = 1 - \varepsilon$

Easy graphs for UNIQUE GAMES

Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi'08] $UG(\varepsilon)$ in time poly(n) if eigenvalue gap > 100ε



Easy graphs for **UNIQUE GAMES**



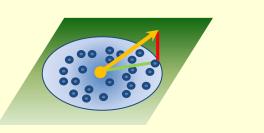
Easy graphs for UNIQUE GAMES

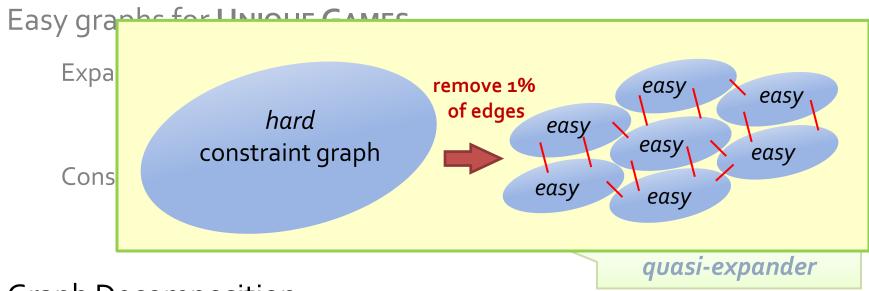
Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi'08] UG(ε) in time poly(n) if eigenvalue gap > 100 ε

Constraint graph with few large eigenvalues [Kolla-Tulsiani'07, Kolla'10, here, Barak-Raghavendra-S.'11] $UG(\varepsilon)$ in time exp(m) if at most m eigenvalues > $1 - 100\varepsilon$

quasi-expander

Subspace Enumeration [Kolla-Tulsiani'07] *exhaustive search* over certain subspace *Question:* Dimension of this subspace?

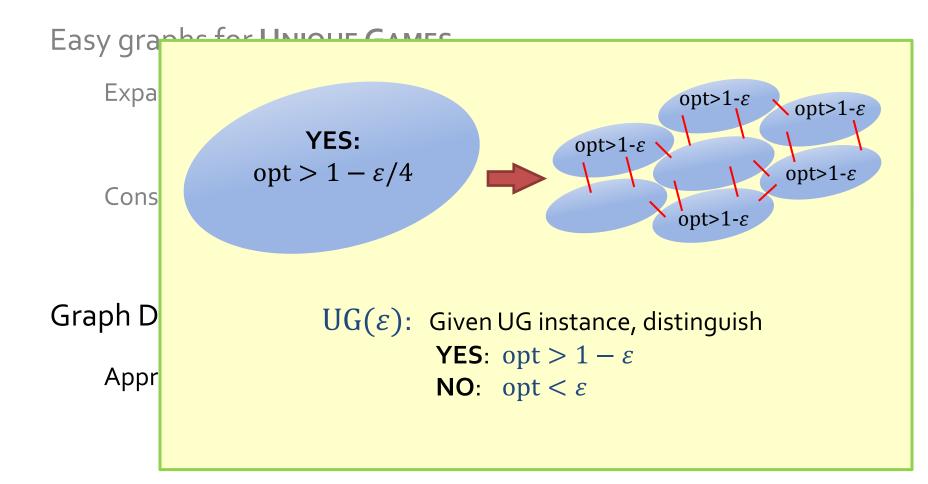


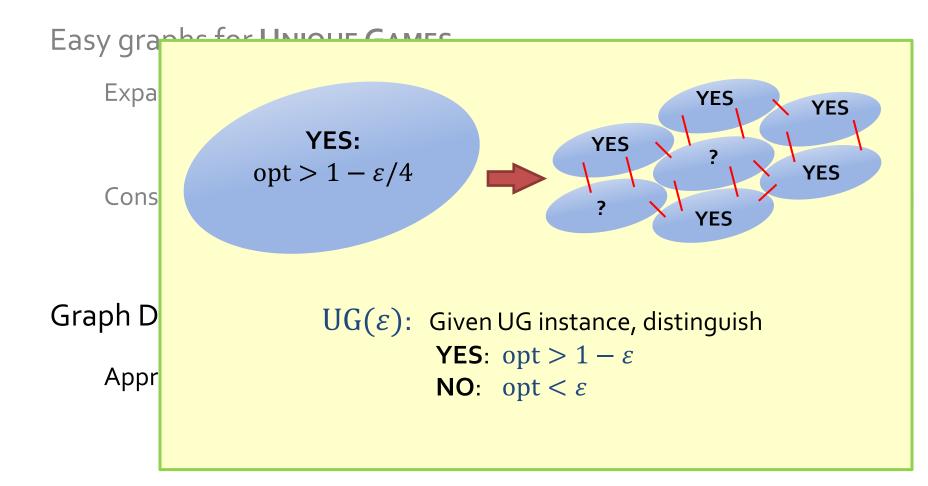


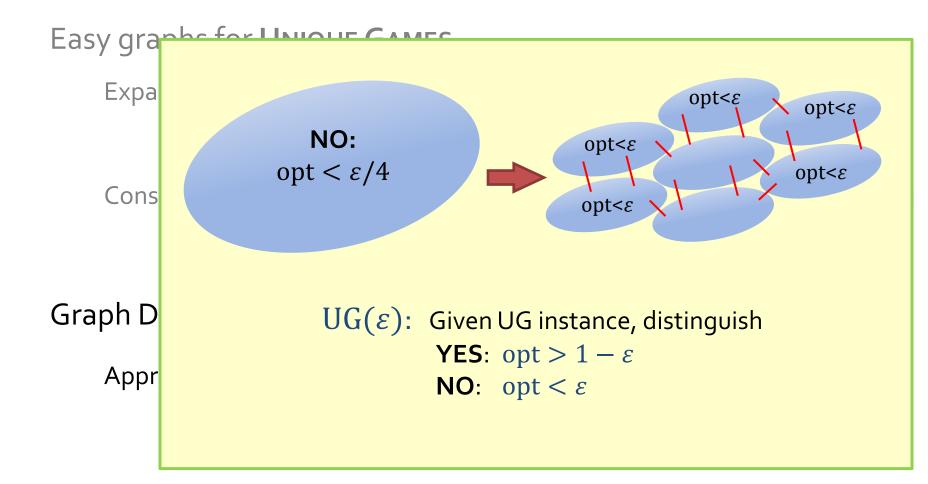
Graph Decomposition

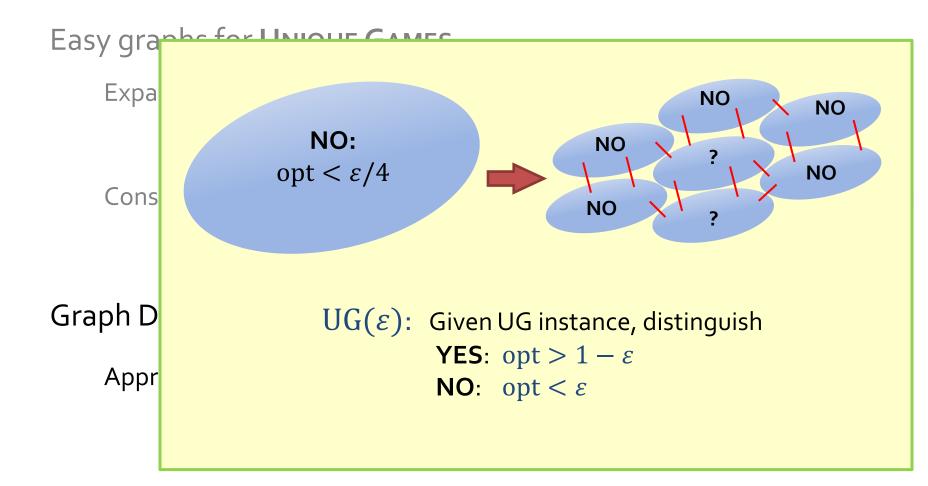
Approach [Trevisan'05, Arora-Impagliazzo-Matthews-S.'10]

By removing 1% of edges, decompose constraint graph into components for which $UG(\varepsilon)$ is "easy"









Easy graphs for UNIQUE GAMES

Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi'08] UG(ε) in time poly(n) if eigenvalue gap > 100 ε

Constraint graph with few large eigenvalues [Kolla-Tulsiani'07, Kolla'10, here, Barak-Raghavendra-S.'11] $UG(\varepsilon)$ in time exp(m) if at most m eigenvalues > $1 - 100\varepsilon$

quasi-expander

Graph Decomposition Here Classical [Leighton-Rao By removing 1% of edges, every graph can be decomposed into components with eigenvalue gap 1/polylog(n) at most $n^{O(\varepsilon^{1/3})}$ eigenvalues > $1 - 100\varepsilon$

Easy graphs for UNIQUE GAMES

Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi'08]

 $UG(\varepsilon)$ in time poly(n) if eigenvalue $gap > 100\varepsilon$

Constraint graph with few large eigenvalues [Kolla-Tulsiani'o7, Kolla'10, here, Barak-Raghavendra-S.'11] $UG(\varepsilon)$ in time exp(m) if at most m eigenvalues > $1 - 100\varepsilon$

quasi-expander

Graph Decomposition

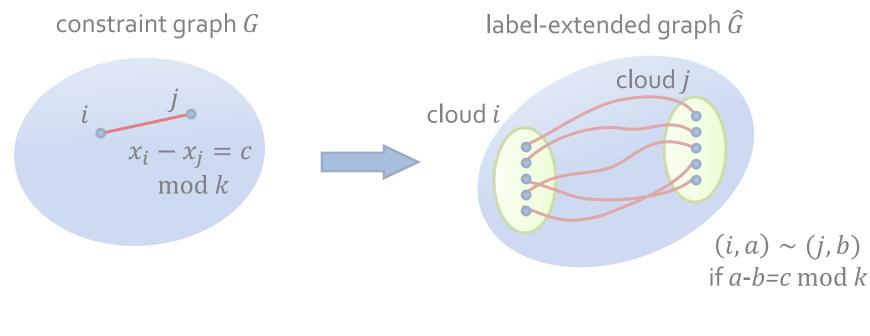
Here Classical <u>Idea</u>: quasi-expander ≈ small-set expander

By removing 1% of edges, every graph can be decomposed into components with eigenvalue gap 1/polylog(n)

at most $n^{O(\varepsilon^{1/3})}$ eigenvalues > $1 - 100\varepsilon$

Constraint graph with few large eigenvalues $\begin{bmatrix} \text{Kolla-Tulsiani'07, Kolla'10, here,} \\ \text{Barak-Raghavendra-S.'11} \end{bmatrix}$ $UG(\varepsilon) \text{ in time } \exp(m) \text{ if at most } m \text{ eigenvalues} > 1 - 100\varepsilon$

Assume: label-extended graph has at most m eigenvalues $> 1 - 100\varepsilon$

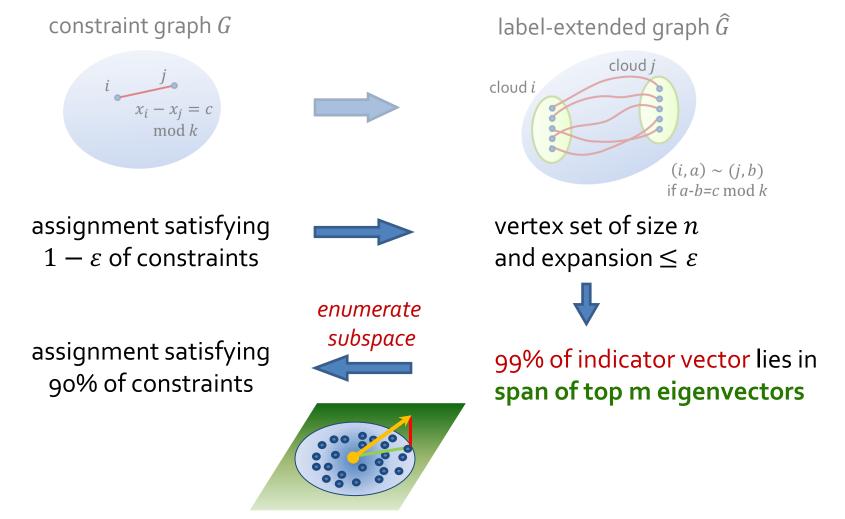


assignment satisfying

 $1 - \varepsilon$ of constraints

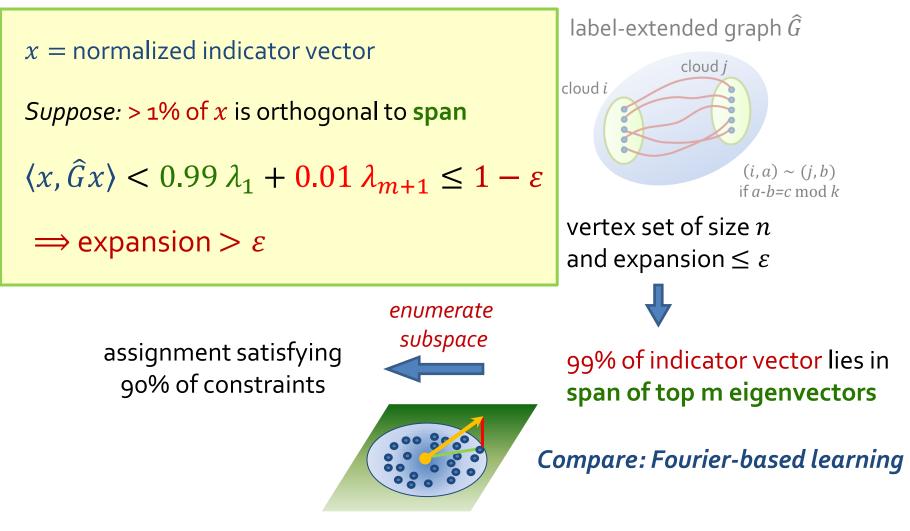
vertex set of size nand expansion $\leq \varepsilon$ Constraint graph with few large eigenvalues $\begin{bmatrix} \text{Kolla-Tulsiani'07, Kolla'10, here,} \\ \text{Barak-Raghavendra-S.'11} \end{bmatrix}$ $UG(\varepsilon) \text{ in time } \exp(m) \text{ if at most } m \text{ eigenvalues} > 1 - 100\varepsilon$

Assume: label-extended graph has at most m eigenvalues $> 1 - 100\varepsilon$



Constraint graph with few large eigenvalues [Kolla-Tulsiani'07, Kolla'10, here, Barak-Raghavendra-S.'11] $UG(\varepsilon)$ in time exp(m) if at most m eigenvalues > $1 - 100\varepsilon$

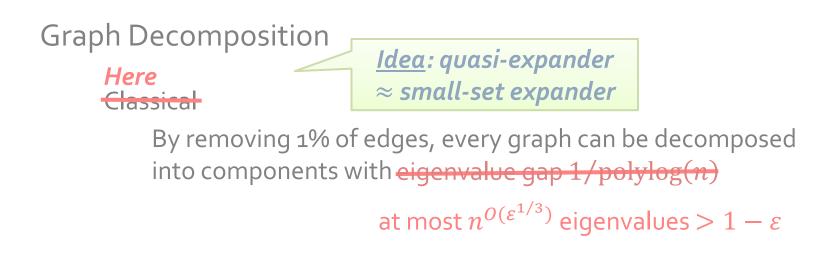
Assume: label-extended graph has at most m eigenvalues $> 1 - 100\varepsilon$



Constraint graph with few large eigenvalues $\begin{bmatrix} \text{Kolla-Tulsiani'07, Kolla'10, here,} \\ \text{Barak-Raghavendra-S.'11} \end{bmatrix}$ $UG(\varepsilon) \text{ in time } \exp(m) \text{ if at most } m \text{ eigenvalues} > 1 - 100\varepsilon$

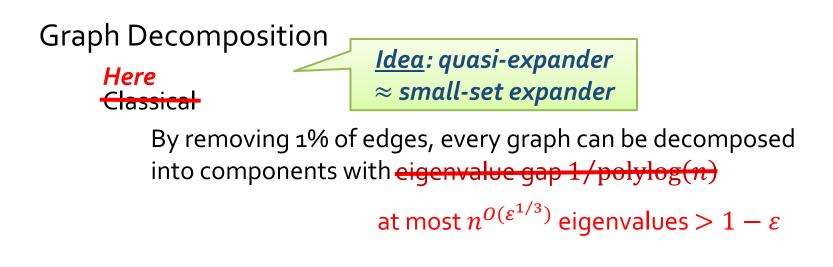
Easy graphs for **UNIQUE GAMES**

Constraint graph with few large eigenvalues [Kolla-Tulsiani'07, Kolla'10, here, Barak-Raghavendra-S.'11] $UG(\varepsilon)$ in time exp(m) if at most m eigenvalues > $1 - 100\varepsilon$



Easy graphs for UNIQUE GAMES

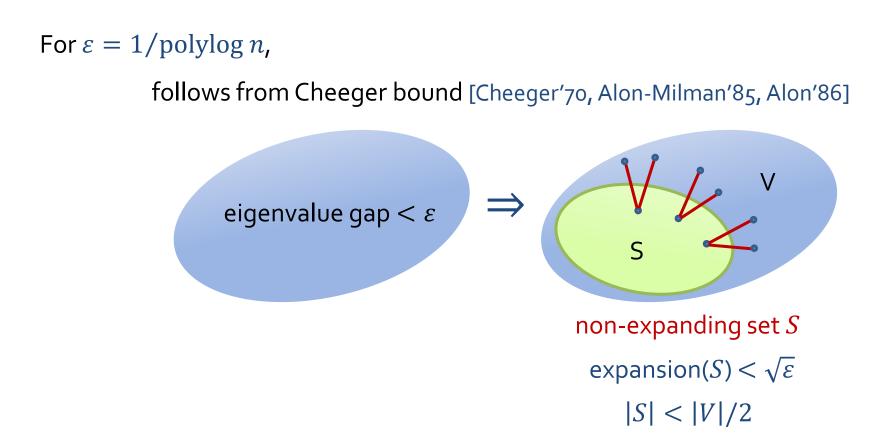
Constraint graph with few large eigenvalues [Kolla-Tulsiani'07, Kolla'10, here, Barak-Raghavendra-S.'11] $UG(\varepsilon)$ in time exp(m) if at most m eigenvalues > $1 - 100\varepsilon$



Graph Decomposition

By removing 1% of edges, every graph can be decomposed into components with at most $n^{O(\varepsilon^{1/3})}$ eigenvalues > $1 - \varepsilon$

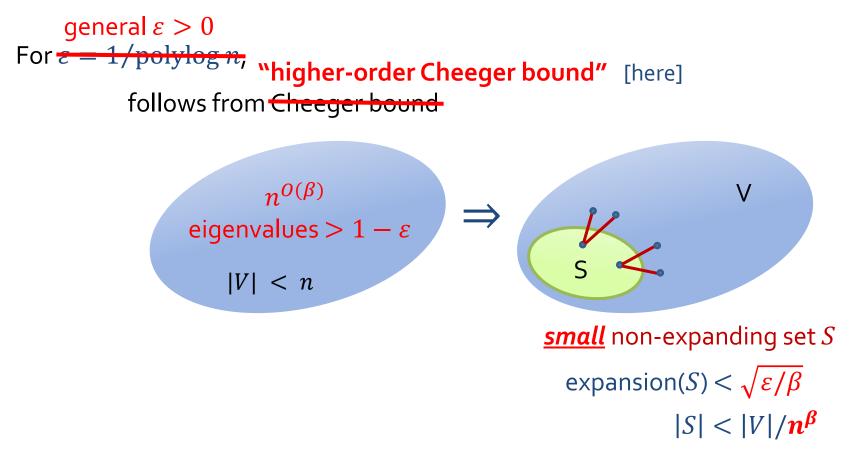
Assume graph is d-regular



Graph Decomposition

By removing 1% of edges, every graph can be decomposed into components with at most $n^{O(\varepsilon^{1/3})}$ eigenvalues > $1 - \varepsilon$

Assume graph is d-regular



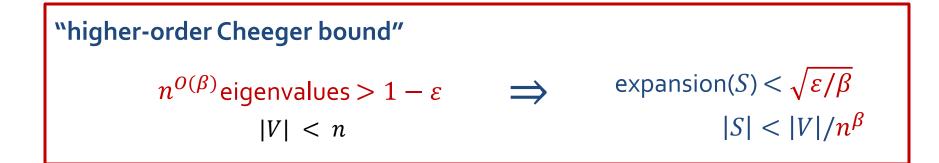
"higher-order Cheeger bound"

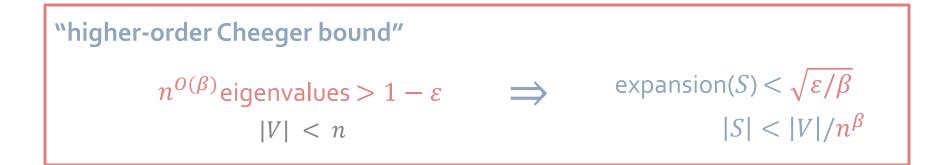
$$n^{O(\beta)}$$
eigenvalues > $1 - \varepsilon$

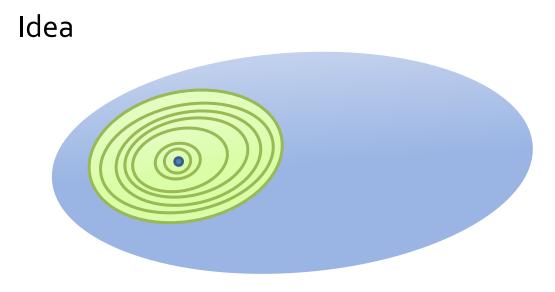
$$|V| < n$$

expansion(S) <
$$\sqrt{\epsilon/\beta}$$

 $|S| < |V|/n^{\beta}$



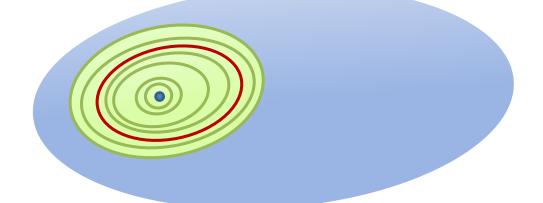




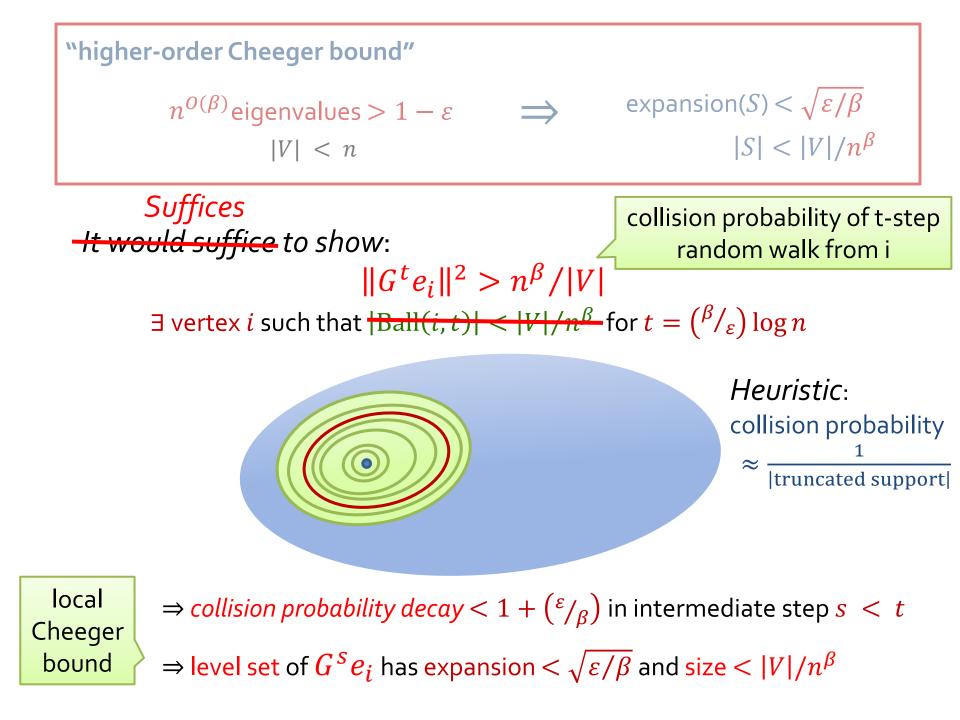
"higher-order Cheeger bound"			
n	V < n	\Rightarrow	expansion(S) < $\sqrt{\epsilon/\beta}$ $ S < V /n^{\beta}$

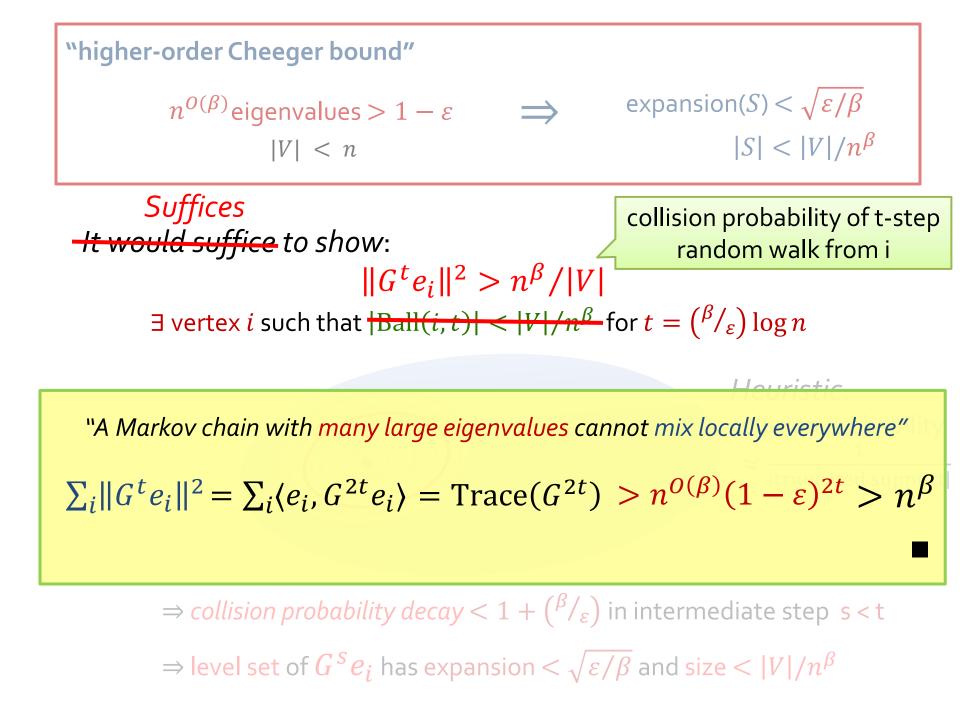
It would suffice to show: (for degree d = O(1))

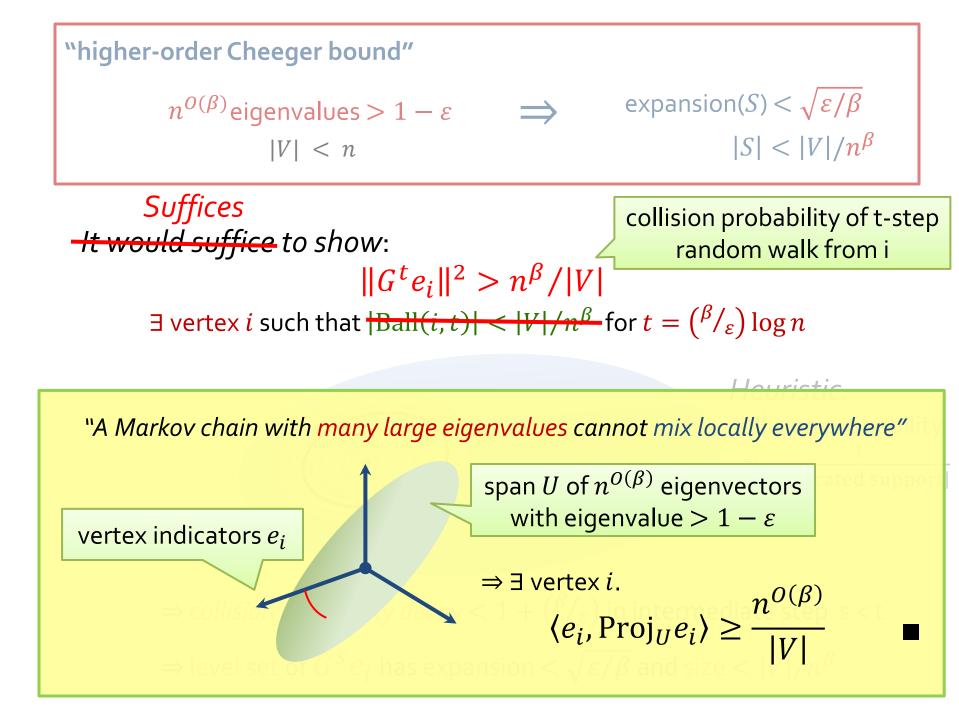
 $\exists \text{ vertex } i \text{ such that } |\text{Ball}(i, t)| < |V|/n^{\beta} \text{ for } t = \binom{\beta}{\epsilon} \log n$



⇒ volume growth < 1 + $\binom{\varepsilon}{\beta}$ in intermediate step s < t⇒ Ball(i, s) has expansion < $O\binom{\varepsilon}{\beta}$







More Subexponential Algorithms

Similar approximation for MULTI CUT and SMALL SET EXPANSION Better approximations for MAX CUT and VERTEX COVER on small-set expanders Improved approximations for d-TO-1 GAMES (-> Khot's d-to-1 Conjecture) [S.'10]

Open Questions

What else can be done in subexponential time?

Better approximations for **Max Cut** or **VERTEX COVER on general instances**? *Example:* $f(\varepsilon)$ -approximation for **SPARSEST CUT** in time $\exp(n^{\varepsilon})$?

Towards refuting the Unique Games Conjecture

How many large eigenvalues can a small-set expander have?

Is Boolean noise graph the worst case? (polylog(n) large eigenvalues)

Thank you! Questions?