Rounding SUM-OF-SQUARES Relaxations

David Steurer Cornell

joint work with

Boaz Barak MSR Jonathan Kelner MIT

STOC, New York, June 2014

bird's eye view: sum-of-squares (SOS) method

conceptually simple meta algorithm studied by many disciplines [Shor, Nesterov, Parrilo, Lasserre]

applies to wide range of problems in unified way

contrast: problem-specific methods, very general algorithmic techniques (like LP/SDP)

what do we lose? surprisingly little

captures best-known algorithms in most cases (even problem-specific ones)

prediction of Unique Games Conjecture (UGC): very restricted special case of SOS gives best-possible approximations for many problems [Khot-Regev, Khot-Kindler-Mossel-O'Donnell, ..., Raghavendra, ...]

what do we gain? potentially a lot

only few limitations known [Grigoriev, Schoenebeck]

[Barak-Brandao-Harrow -Kelner-S.-Zhou]

for "all known instances," better approx. than predicted by UGC in worst-case

this talk: first general framework for proving guarantees of SOS; better guarantees for various problems (related to small-set expansion, unsupervised learning, quantum information)

results: polynomial optimization over unit sphere

given: low-degree *n*-variate polynomial *P* with only nonneg. coefficients *find:* $||P|| \stackrel{\text{def}}{=} \max_{\|x\|=1} |P(x)|$ within error $\varepsilon \cdot ||P||_{\text{spectral}}$

this paper: SOS runs in quasi-poly(*n*) time

naïve upper bound on ||P||: minimum $v \in \mathbb{R}$ s.t. v - P is sum of squares

follow-up: LOCC-1 polynomial instead of nonneg. coefficients [Brandao-Harrow'13] → greatly simplifies quantum breakthrough [Brandao-Christiandl-Yard'11]

- open: general instead of nonneg. coefficients?
 → could solve major open problem in quantum; QMA vs QMA[2]
- *open:* replace $||P||_{spectral}$ by ||P||? \rightarrow could solve small-set expansion on \mathbb{F}_2^n -Cayley graphs
- *open:* remove both restrictions? → refute Small-Set Expansion Hypothesis—relative of UGC

results: sparse vectors in subspaces

given: d-dim. linear subspace *W* of \mathbb{R}^n that contains *k*-sparse vector v_0 *find:* vector $v \in W$ with ℓ_4/ℓ_2 -sparsity $C \cdot k$

worst case: connection to small-set expansion / Unique Games Conjecture

solve small-set expansion for very small sets (beating other algorithms) C = O(1) in worst case would refute SSE hypothesis

average case: connection to learning (sparse coding & over-complete dictionaries)

previous methods: work only for sparsity $\frac{k}{n} \leq 1/\sqrt{d}$ [Spielman-Wang-Wright, Demanet-Hand]`

upcoming work: SOS learns over-complete dictionaries [Barak-Kelner-S.]

previous methods: assume strong incoherence and sparsity [Arora-Ge-Moitra Anankumar et al.]

multivariate polynomials $P_1, \dots, P_m \in \mathbb{R}[x_1, \dots, x_n]$

SOS method:

when is \mathcal{E} unsatisfiable over \mathbb{R}^n ?

system of equations $\mathcal{E} = \{P_1 = 0, ..., P_m = 0\}$

idea: derive "obviously unsatisfiable equation" from \mathcal{E}

sum-of-squares (SOS) refutation of \mathcal{E}

 $\begin{array}{l} \textit{vanishes on } \mathcal{E} \longrightarrow \ Q_1 \cdot P_1 + \dots + Q_m \cdot P_m \\ = 1 + R_1^2 + \dots + R_t^2 \quad \longleftarrow \quad \textit{positive over } \mathbb{R}^n \end{array}$

intuitive proof system: many common inequalities have proofs in this form, e.g., Cauchy-Schwarz, Hölder, ℓ_p -triangle inequalities

Real Nullstellensatzlinear case: Gaussian
elimination, Farkas lemma[Artin, Krivine, Stengle]every polynomial system is either satisfiable over \mathbb{R}^n or SOS refutable

 $n^{O(k)}$ -time algorithm to find SOS refutation with degrees $\leq k$ if one exists (uses SDP)

[Shor, Nesterov, Parrilo, Lasserre]

maximize P_0 over $\{P_1 = 0, ..., P_m = 0\}$

v-vs-v' approximation:

given: sat. system { $P_0 = v, P_1 = 0, ..., P_m = 0$ } *find*: solution to { $P_0 = v', P_1 = 0, ..., P_m = 0$ }

claim: SOS reduces approximation in time $n^{O(k)}$ to "deg.-*k* combining"

"proof:" obstructions to degree-*k* SOS refutations *indistinguishable* from deg.-*k* moments *with respect to deg.-k SOS arguments*

planted sparse vector recovery

idealized inference problem; subproblem for dictionary learning

proxy for sparsity: if vector x is k-sparse then $\frac{\|x\|_{\infty}}{\|x\|_{1}} \ge \frac{1}{k}$ and $\frac{\|x\|_{4}^{4}}{\|x\|_{2}^{4}} \ge \frac{1}{k}$

previous best algorithm

find vector $x \in W$ with maximum ℓ_{∞}/ℓ_1 ratio (exact using linear programming)

[Spielman-Wang-Wright, Demanet-Hand]

recovers $x \approx \pm a_0$ if and only if $\frac{k}{n} \ll 1/\sqrt{d}$

idea: use ℓ_4/ℓ_2 ratio instead $\left\{ \|x\|_4^4 = \frac{1}{k}, \|x\|_2^2 = 1, x \in W \right\}$

good: better proxy for sparsity ($d \ll \sqrt{n}$); system of polynomial equations

bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)

here: SOS works for this problem (exploit randomness in *W*)

combining problem: given $\mathcal{X} \subseteq \left\{ \|x\|_4^4 = \frac{1}{k}, \|x\|_2^2 = 1, x \in W \right\}$, find $x^* \approx \pm a_0$

claim: set X concentrated around planted vector (up to sign)

combiner: sample Gaussian distr. γ_X with same deg.-2 moments as X

 $\mathbb{E}_{\gamma_{X}} x x^{\mathsf{T}} = \mathbb{E}_{\chi} x x^{\mathsf{T}} \approx a_{0} a_{0}^{\mathsf{T}} \xrightarrow{} \text{random sample from } \gamma_{X} \text{ is close to } \pm a_{0}$

deg.-2 SOS proof that $Cov(X) \ge 0$

 \rightarrow get algorithm via SOS

conclusions

low-degree combiner: general way to make proofs into algorithms

unsupervised learning: higher-degree SOS gives better guarantees for recovering hidden structures

polynomial optimization: often easy when global optima unique (occurs naturally for recovery problems)

And And

thank you!