Rounding
 SUM-OF-SQUARES
 Relaxations

David Steurer
 Cornell

joint work with
Boaz Barak Jonathan Kelner MSR MIT

STOC, New York, June 2014

bird's eye view: sum-of-squares (SOS) method

conceptually simple meta algorithmstudied by many disciplines
[Shor, Nesterov,
Parrilo, Lasserre]
applies to wide range of problems in unified way
contrast: problem-specific methods,
very general algorithmic techniques (like LP/SDP)
what do we lose? surprisingly little
captures best-known algorithms in most cases (even problem-specific ones)
prediction of Unique Games Conjecture (UGC): very restricted special case of SOS gives best-possible approximations for many problems
[Khot]
[Khot-Regev,
Khot-Kindler-Mossel-O'Donnell, ..., Raghavendra, ...]
what do we gain? potentially a lot only few limitations known [Grigoriev, Schoenebeck]
[Barak-Brandao-Harrow -Kelner-S.-Zhou]
for "all known instances," better approx. than predicted by UGC in worst-case this talk: first general framework for proving guarantees of SOS; better guarantees for various problems (related to small-set expansion, unsupervised learning, quantum information)

results: polynomial optimization over unit sphere

given: low-degree n-variate polynomial P with only nonneg. coefficients find: $\quad\|P\| \xlongequal{\text { def }} \max _{\|x\|=1}|P(x)|$ within error $\varepsilon \cdot\|P\|_{\text {spectral }}$
naïve upper bound on $\|P\|$:
this paper: SOS runs in quasi-poly (n) time $\operatorname{minimum} v \in \mathbb{R}$ s.t. $v-P$ is sum of squares
follow-up: LOCC-1 polynomial instead of nonneg. coefficients [Brandao-Harrow'13] \rightarrow greatly simplifies quantum breakthrough [Brandao-Christiandl-Yard'11]
open: general instead of nonneg. coefficients?
\rightarrow could solve major open problem in quantum; QMA vs QMA[2]
open: replace $\|P\|_{\text {spectral }}$ by $\|P\|$?
\rightarrow could solve small-set expansion on \mathbb{F}_{2}^{n}-Cayley graphs
open: remove both restrictions?
\rightarrow refute Small-Set Expansion Hypothesis—relative of UGC

results: sparse vectors in subspaces

given: d-dim. linear subspace W of \mathbb{R}^{n} that contains k-sparse vector v_{0} find: \quad vector $v \in W$ with ℓ_{4} / ℓ_{2}-sparsity $C \cdot k$
this paper: SOS runs in poly (n) time for $C=d^{1 / 3}$ in worst case ——" for $C=O(1)$ in average case
worst case: connection to small-set expansion / Unique Games Conjecture solve small-set expansion for very small sets (beating other algorithms) $C=O(1)$ in worst case would refute SSE hypothesis
average case: connection to learning (sparse coding \& over-complete dictionaries) previous methods: work only for sparsity $\frac{k}{n} \leq 1 / \sqrt{d} \quad \begin{aligned} & \text { [Spielman-Wang-Wright, } \\ & \text { Demanet-Hand] }\end{aligned}$ upcoming work: SOS learns over-complete dictionaries [Barak-Kelner-S.] previous methods: assume strong incoherence and sparsity
multivariate polynomials
$P_{1}, \ldots, P_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
when is \mathcal{E} unsatisfiable over \mathbb{R}^{n} ?
system of equations
$\mathcal{E}=\left\{P_{1}=0, \ldots, P_{m}=0\right\}$
idea: derive "obviously
unsatisfiable equation" from \mathcal{E}
sum-of-squares (SOS) refutation of \mathcal{E}
vanishes on $\mathcal{E} \longrightarrow Q_{1} \cdot P_{1}+\cdots+Q_{m} \cdot P_{m}$ $=1+R_{1}^{2}+\cdots+R_{t}^{2} \longleftarrow$ positive over \mathbb{R}^{n}
intuitive proof system: many common inequalities have proofs in this form, e.g., Cauchy-Schwarz, Hölder, ℓ_{p}-triangle inequalities
linear case: Gaussian
Real Nullstellensatz
elimination, Farkas lemma
[Artin, Krivine, Stengle]
every polynomial system is either satisfiable over \mathbb{R}^{n} or SOS refutable

SOS method: $\quad n^{O(k)}$-time algorithm to find SOS refutation [Shor, Nesterov, with degrees $\leq k$ if one exists (uses SDP)
$\begin{array}{ll}\begin{array}{l}\text { given: } \\ \text { find: }\end{array} & \text { sat. system }\left\{P_{0}=v, P_{1}=0, \ldots, P_{m}=0\right\} \\ \text { solution to }\left\{P_{0}=v^{\prime}, P_{1}=0, \ldots, P_{m}=0\right\}\end{array}$
optimization (e.g., MAX CUT)
v-vs-v' approximation: given: sat. system $\left\{P_{0}=v, P_{1}=0, \ldots, P_{m}=0\right\}$
maximize P_{0} over $\left\{P_{1}=0, \ldots, P_{m}=0\right\}$
claim: SOS reduces approximation in time $n^{O(k)}$ to "deg.- k combining"
subset X of solutions to

$$
\left\{P_{0} \geq v, P_{1}=0, \ldots, P_{m}=0\right\}
$$

$\bullet \bullet \bullet$
"proof:" obstructions to degree-k SOS refutations indistinguishable from deg.-k moments with respect to deg.-k SOS arguments

planted sparse vector recovery

one k-sparse vector among d random vectors
 k non-zeros

$$
a_{0}=\frac{1}{\sqrt{k}}(0, \ldots, 0, \pm 1, \ldots, \pm 1) \in \mathbb{R}^{n}
$$

$$
a_{1}=\frac{1}{\sqrt{n}}(\pm 1, \ldots, \pm 1)
$$

:

$$
a_{d}=\frac{1}{\sqrt{n}}(\pm 1, \ldots, \pm 1)
$$

arbitrary / random basis of span W of these vectors

$$
\begin{aligned}
y_{0} & =(\pm 1, \ldots, \pm 1) \in \mathbb{R}^{n} \\
y_{1} & =(\pm 1, \ldots, \pm 1) \\
& \vdots \\
y_{d} & =(\pm 1, \ldots, \pm 1)
\end{aligned}
$$

$$
\text { goal: } \quad \text { given } y_{0}, \ldots, y_{d} \text {, recover vector } a^{*} \approx \pm a_{0} \quad[\text { Demanet-Hand'13] }
$$

idealized inference problem; subproblem for dictionary learning
proxy for sparsity: if vector x is k-sparse then $\frac{\|x\|_{\infty}}{\|x\|_{1}} \geq \frac{1}{k}$ and $\frac{\|x\|_{4}^{4}}{\|x\|_{2}^{4}} \geq \frac{1}{k}$ previous best algorithm

> find vector $x \in W$ with maximum ℓ_{∞} / ℓ_{1} ratio (exact using linear programming)
recovers $x \approx \pm a_{0}$ if and only if $\frac{k}{n} \ll 1 / \sqrt{d}$
idea: use ℓ_{4} / ℓ_{2} ratio instead

$$
\left\{\|x\|_{4}^{4}=\frac{1}{k},\|x\|_{2}^{2}=1, x \in W\right\}
$$

good: better proxy for sparsity $(d \ll \sqrt{n})$; system of polynomial equations
bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)
here: \quad SOS works for this problem (exploit randomness in W)
combining problem: given $X \subseteq\left\{\|x\|_{4}^{4}=\frac{1}{k},\|x\|_{2}^{2}=1, x \in W\right\}$, find $x^{*} \approx \pm a_{0}$
claim: set \mathcal{X} concentrated around planted vector (up to sign)
arguments used in analysis
ℓ_{4} triangle inequality

§deg.-4 SOS proofs
[Barak-Brandao-Harrow

combiner: sample Gaussian distr. γ_{x} with same deg. -2 moments as χ

$$
\mathbb{E}_{\gamma x} x x^{\top}=\mathbb{E}_{x} x x^{\top} \approx a_{0} a_{0}^{\top} \rightarrow \text { random sample from } \gamma_{X} \text { is close to } \pm a_{0}
$$

\rightarrow get algorithm via SOS

conclusions

low-degree combiner:
general way to make proofs into algorithms
unsupervised learning: higher-degree SOS gives better guarantees for recovering hidden structures
polynomial optimization: often easy when global optima unique (occurs naturally for recovery problems)

thank you!

