Unique Games, Sum of Squares, and the Quest for Optimal Algorithms

David Steurer Cornell

Max Planck Institute Informatik, Saarbrücken, July 2014

algorithms we can use

Ρ

problems we wish to solve

NP

algorithms we can use

Ρ

why meta-algorithms?

- → problems often change / negotiable (problem-specific methods of limited use)
- \rightarrow do not require domain knowledge

we can use

theory strong guarantees

P

problem-specific

practice

weak guarantees

meta-algorithms

apply to wide range of problems

examples: gradient descent, EM, belief propagation, SAT solvers;

(all local-search based heuristics)

why meta-algorithms?

- → problems often change / negotiable (problem-specific methods of limited use)
- \rightarrow do not require domain knowledge

vision: unified theory based on new meta-algorithms (non-local) apply to equally wide range of problems best-possible guarantees among all efficient algorithms

theorypracticestrong guaranteesweak guaranteesproblem-specificmeta-algorithms

apply to wide range of problems

examples: gradient descent, EM, belief propagation, SAT solvers;

(all local-search based heuristics)

why meta-algorithms?

- → problems often change / negotiable (problem-specific methods of limited use)
- \rightarrow do not require domain knowledge

vision: unified theory based on new meta-algorithms (non-local) apply to equally wide range of problems best-possible guarantees among all efficient algorithms

theorypracticestrong guaranteesweak guaranteesproblem-specificmeta-algorithms

apply to wide range of problems

examples: gradient descent, EM, belief propagation, SAT solvers;

(all local-search based heuristics)

vision: unified theory based on
 new meta-algorithms (non-local)
 apply to equally
 wide range of problems
 best-possible guarantees
 among all efficient algorithms

Unique Games Conjecture (UGC)

sum-of-squares (SOS) method

Unique Games Conjecture (UGC)

... asserts intractability of detecting small "communities" in networks

sum-of-squares (SOS) method

Unique Games Conjecture (UGC)

... asserts intractability of detecting small "communities" in networks

predictions of UGC

sum-of-squares (SOS) method

... greatly generalizes algorithms that UGC predicts to be optimal

ongoing works

unified theory for optimization problemsfirst evidence: UGC-theory falsearound concrete meta-algorithm& SOS right basis for unified theory(based on rounding convex relaxations)

challenge: which *candidate theory* is correct?

bigger picture:

gain new insights at frontier of *tractability* & *intractability already:* applications to *quantum information, machine learning, ...*

Newton's approach

search through local optima (local-search based heuristics)

but: non-convex polynomials can have exponential number of bad local optima

decompose function into simple pieces

UGC-optimal algorithms: very restricted special case

Hilbert's approach

sum-of-squares method: find decomposition efficiently whenever a small one exists polynomial P

concrete strength of SOS method:

SOS works if not too many **global peaks**

(local-search based algorithms can work only if not too many local optima)

max P

Hilbert's approach

decompose function into simple pieces

UGC-optimal algorithms: very restricted special case

sum-of-squares method: find decomposition efficiently whenever a small one exists

unified theory: UGC vs. SOS

learning sparse dictionaries

previous works: only very sparse models

SOS method: full sparsity range; novel, general approach to unsupervised learning average-case complexity [Barak-Kindler-**S**.'13]

> intermediate complexity

[Arora-Barak-**S**.'10 Dinur-**S**.'13]

complexity

unified theory:

UGC vs. SOS

physics

machine learning [Barak-Kelner-**S.**'14b]

learning

math

functional analysis [BBHKZ**S**'13]

high-dimensional data [Barak-Kelner-**S**.'14a]

quantum information [BBHKZ**S**'13]

$$x_i = 1 \qquad \qquad x_i = -1$$

combinatorial viewpoint:

polynomial viewpoint:

given undirected graph *G*, bipartition vertex set to cut as many edges as possible

given polynomial $L_G(x) = \sum_{ij \in E(G)} \frac{1}{4} (x_i - x_j)^2$, find maximum over $x \in \{\pm 1\}^{V(G)}$ (hypercube)

how to certify upper bound c on maximum?

 $R_1^2 + \dots + R_t^2$ decompose $c - L_G$ as sum of squares of polynomials plus quadratic polynomial vanishing over hypercube $\alpha_1 \cdot (X_1^2 - 1) + \dots + \alpha_n \cdot (X_n^2 - 1)$

n²-size semidefinite program

$$x_i = 1$$
 $x_i = -$

combinatorial viewpoint:

polynomial viewpoint:

given undirected graph *G*, bipartition vertex set to cut as many edges as possible

given polynomial $L_G(x) = \sum_{ij \in E(G)} \frac{1}{4} (x_i - x_j)^2$, find maximum over $x \in \{\pm 1\}^{V(G)}$ (hypercube)

how to certify upper bound c on maximum?

 $R_{1}^{2} + \dots + R_{t}^{2}$ decompose $c - L_{G}$ as sum of squares of polynomials plus quadratic polynomial vanishing over hypercube $\alpha_{1} \cdot (X_{1}^{2} - 1) + \dots + \alpha_{n} \cdot (X_{n}^{2} - 1)$ n^{2} -size semidefinite program

sum-of-squares polynomial
↔ positive-semidefinite coefficient matrix

$$x_i = 1$$
 $x_i = -$

combinatorial viewpoint:

polynomial viewpoint:

given undirected graph *G*, bipartition vertex set to cut as many edges as possible

given polynomial $L_G(x) = \sum_{ij \in E(G)} \frac{1}{4} (x_i - x_j)^2$, find maximum over $x \in \{\pm 1\}^{V(G)}$ (hypercube)

how to certify upper bound c on maximum?

 $R_1^2 + \dots + R_t^2$ decompose $c - L_G$ as sum of squares of polynomials plus quadratic polynomial vanishing over hypercube $\alpha_1 \cdot (X_1^2 - 1) + \dots + \alpha_n \cdot (X_n^2 - 1)$

n²-size semidefinite program

Goemans-Williamson bound: either decomposition exists or max. $\geq 0.868 \cdot c$ (\rightarrow current best known approximation guarantee)

spectral method: add restriction $\alpha_1 = \cdots = \alpha_n \rightarrow \text{largest}$ Laplacian eigenvalue basic object in spectral graph theory

$$x_i = 1$$
 $x_i =$

combinatorial viewpoint:

polynomial viewpoint:

given undirected graph *G*, bipartition vertex set to cut as many edges as possible

given polynomial $L_G(x) = \sum_{ij \in E(G)} \frac{1}{4} (x_i - x_j)^2$, find maximum over $x \in \{\pm 1\}^{V(G)}$ (hypercube)

how to certify upper bound c on maximum?

 $R_1^2 + \dots + R_t^2$ decompose $c - L_G$ as sum of squares of polynomials plus quadratic polynomial vanishing over hypercube degree-k $\alpha_1 \cdot (X_1^2 - 1) + \dots + \alpha_n \cdot (X_n^2 - 1)$

degree-*n* bound is exact (interpolate $\sqrt{c - L_G}$ as degree-*n* polynomial over hypercube)

does degree-n^{o(1)} bound improve over GW in worst-case? (would refute UGC)

for every candidate graph construction, degree-16 bound improves over GW [Brandao-Barak-Harrow-Kelner-S.-Zhou] multivariate polynomials $P_1, \dots, P_m \in \mathbb{R}[x_1, \dots, x_n]$

SOS method:

when is \mathcal{E} unsatisfiable over \mathbb{R}^n ?

system of equations $\mathcal{E} = \{P_1 = 0, ..., P_m = 0\}$

idea: derive "obviously unsatisfiable equation" from \mathcal{E}

sum-of-squares (SOS) refutation of \mathcal{E}

 $\begin{array}{l} \textit{vanishes on } \mathcal{E} \longrightarrow \ Q_1 \cdot P_1 + \dots + Q_m \cdot P_m \\ = 1 + R_1^2 + \dots + R_t^2 \quad \longleftarrow \quad \textit{positive over } \mathbb{R}^n \end{array}$

intuitive proof system: many common inequalities have proofs in this form, e.g., Cauchy-Schwarz, Hölder, ℓ_p -triangle inequalities

Real Nullstellensatzlinear case: Gaussian
elimination, Farkas lemma[Artin, Krivine, Stengle]every polynomial system is either satisfiable over \mathbb{R}^n or SOS refutable

 $n^{O(k)}$ -time algorithm to find SOS refutation with degrees $\leq k$ if one exists (uses SDP)

[Shor, Nesterov, Parrilo, Lasserre]

pseudo-moments

"proof:" obstructions to degree-*k* SOS refutations *indistinguishable* from deg.-*k* moments *with respect to deg.-k SOS arguments*

dictionary learning (aka sparse coding)

application: machine learning (*feature extraction*) neuroscience (*model for visual cortex*)

example: dictionary for natural images [Olshausen-Fields'96]

 a_1, \ldots, a_m unknown unit vectors in isotropic position x_1, \ldots, x_t are i.i.d. samples from unknown "nice" distr. over sparse vectors (only small correlations between coord's)

sparse vectors

goal: given data vectors y_1, \ldots, y_T , reconstruct A

[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon] previous methods (local search): only very sparse vectors, up to \sqrt{n} non-zeros [Barak-Kelner-S.'14] sum-of-squares method: full sparsity range, up to constant fraction non-zeros (quasipolynomial-time for o(1); polynomial-time for $n^{-\varepsilon}$)

dictionary learning (aka sparse coding)

application: machine learning (*feature extraction*) neuroscience (*model for visual cortex*)

example: dictionary for natural images [Olshausen-Fields'96]

 a_1, \ldots, a_m unknown unit vectors in isotropic position x_1, \ldots, x_t are i.i.d. samples from unknown "nice" distr. over sparse vectors (only small correlations between coord's)

sparse vectors

theorem:

[Barak-Kelner-S.'14]

suppose m = O(n) and correlations between coord's small enough then, $O(\log n)$ -SOS can recover set $A^* \approx \{\pm a_1, \dots, \pm a_m\}$ in Hausdorff distance

theorem:

suppose m = O(n) and correlations between coord's small enough then, $O(\log n)$ -SOS can recover set $A^* \approx \{\pm a_1, \dots, \pm a_m\}$ in Hausdorff distance

$$\begin{array}{c} \pm a_1 \quad \pm a_2 \quad \dots \\ + a_n \\ + a_2 \quad \dots \\ + a_{n-1} \quad \pm a_m \\ + a_n \\ +$$

1. construct polynomial $P_0(u) = \frac{1}{T} \sum_t \langle y_t, u \rangle^4$ from data vectors *can show:* global optima of P_0 correspond to $\pm a_1, \dots, \pm a_m$ [*but no control over local optima of* P_0]

low-degree SOS proof

2. compute global optima of P₀ ...
 in general: NP-hard problem (even approximately)

approach: use SOS method and degree-*O*(log *m*) combiner

works because every solution set clustered around $\leq m$ points

conclusions

polynomial optimization: often easy when global optima unique (occurs naturally for recovery problems)

unsupervised learning: higher-degree SOS gives better guarantees for recovering hidden structures

low-degree combiner:

general way to make proofs into algorithms

UGC and SOS method:

opportunity for unified approach to algorithm design for hard problems

thank you!

Martha And

planted sparse vector recovery

idealized inference problem; subproblem for dictionary learning

proxy for sparsity: if vector x is k-sparse then $\frac{\|x\|_{\infty}}{\|x\|_{1}} \ge \frac{1}{k}$ and $\frac{\|x\|_{4}^{4}}{\|x\|_{2}^{4}} \ge \frac{1}{k}$

previous best algorithm

find vector $x \in W$ with maximum ℓ_{∞}/ℓ_1 ratio (exact using linear programming)

[Spielman-Wang-Wright, Demanet-Hand]

recovers $x \approx \pm a_0$ if and only if $\frac{k}{n} \ll 1/\sqrt{d}$

idea: use ℓ_4/ℓ_2 ratio instead $\left\{ \|x\|_4^4 = \frac{1}{k}, \|x\|_2^2 = 1, x \in W \right\}$

good: better proxy for sparsity ($d \ll \sqrt{n}$); system of polynomial equations

bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)

here: SOS works for this problem (exploit randomness in *W*)

combining problem: given $\mathcal{X} \subseteq \left\{ \|x\|_4^4 = \frac{1}{k}, \|x\|_2^2 = 1, x \in W \right\}$, find $x^* \approx \pm a_0$

claim: set X concentrated around planted vector (up to sign)

combiner: sample Gaussian distr. γ_X with same deg.-2 moments as X

 $\mathbb{E}_{\gamma_{\chi}} x x^{\mathsf{T}} = \mathbb{E}_{\chi} x x^{\mathsf{T}} \approx a_0 a_0^{\mathsf{T}} \xrightarrow{} \text{random sample from } \gamma_X \text{ is close to } \pm a_0$

deg.-2 SOS proof that $Cov(X) \ge 0$

 \rightarrow get algorithm via SOS