Unique Games, Sum of Squares, and the Quest for Optimal Algorithms

David Steurer
Cornell

algorithms we can use

problems

we wish to solve

P
algorithms
we can use

why meta-algorithms?
\rightarrow problems often change / negotiable (problem-specific methods of limited use)
\rightarrow do not require domain knowledge

we can use

intractable

NP

theory

strong guarantees
problem-specific

practice

weak guarantees
meta-algorithms
apply to wide range of problems examples: gradient descent, EM, belief propagation, SAT solvers; (all local-search based heuristics)
why meta-algorithms?
\rightarrow problems often change / negotiable (problem-specific methods of limited use)
\rightarrow do not require domain knowledge
vision: unified theory based on new meta-algorithms (non-local) apply to equally wide range of problems best-possible guarantees among all efficient algorithms

theory

strong guarantees
problem-specific

practice

weak guarantees
meta-algorithms
apply to wide range of problems examples: gradient descent, EM, belief propagation, SAT solvers;
(all local-search based heuristics)
why meta-algorithms?
\rightarrow problems often change / negotiable (problem-specific methods of limited use)
\rightarrow do not require domain knowledge
vision: unified theory based on new meta-algorithms (non-local) apply to equally wide range of problems best-possible guarantees among all efficient algorithms

theory

strong guarantees
problem-specific

practice

weak guarantees
meta-algorithms
apply to wide range of problems examples: gradient descent, EM, belief propagation, SAT solvers; (all local-search based heuristics)
vision: unified theory based on new meta-algorithms (non-local) apply to equally wide range of problems best-possible guarantees among all efficient algorithms

Unique Games Conjecture (UGC)

sum-of-squares (SOS) method

Unique Games Conjecture (UGC)
... asserts intractability of detecting small "communities" in networks

Unique Games Conjecture (UGC)

... asserts intractability of detecting small "communities" in networks

sum-of-squares (SOS) method
... greatly generalizes algorithms that UGC predicts to be optimal
predictions of UGC
ongoing works
unified theory for optimization problems first evidence: UGC-theory false around concrete meta-algorithm (based on rounding convex relaxations)

challenge: which candidate theory is correct?

bigger picture:

gain new insights at frontier of tractability \& intractability already: applications to quantum information, machine learning, ...

Newton's approach

$$
\begin{gathered}
P=1-(x-1)^{2}(x+1)^{2} \\
-\frac{1}{8}(x-1)^{2}
\end{gathered}
$$

Hilbert's approach
search through local optima (local-search based heuristics)
but: non-convex polynomials can have exponential number of bad local optima
decompose function into simple pieces

UGC-optimal algorithms: very restricted special case
sum-of-squares method: find decomposition efficiently whenever a small one exists
concrete strength of SOS method:
(local-search based algorithms can work only if not too many local optima)

decompose function
into simple pieces
UGC-optimal algorithms: very restricted special case

$$
\begin{gathered}
P=1-(x-1)^{2}(x+1)^{2} \\
-\frac{1}{8}(x-1)^{2} \\
\text { Hilbert's approach }
\end{gathered}
$$

sum-of-squares method: find decomposition efficiently whenever a small one exists

unified theory: UGC vs. SOS

combinatorial viewpoint:
polynomial viewpoint:
given undirected graph G, bipartition vertex set to cut as many edges as possible given polynomial $L_{G}(x)=\sum_{i j \in E(G)} \frac{1}{4}\left(x_{i}-x_{j}\right)^{2}$, find maximum over $x \in\{ \pm 1\}^{V(G)}$ (hypercube)
how to certify upper bound c on maximum?

$$
\begin{array}{l}R_{1}^{2}+\cdots+R_{t}^{2} \\ \text { decompose } c-L_{G} \text { as sum of squares of polynomials } \\ \text { plus quadratic (polynomial vanishing) over hypercube }\end{array}
$$

n^{2}-size semidefinite program

$$
\alpha_{1} \cdot\left(X_{1}^{2}-1\right)+\cdots+\alpha_{n} \cdot\left(X_{n}^{2}-1\right)
$$

combinatorial viewpoint:
polynomial viewpoint:
given undirected graph G, bipartition vertex set to cut as many edges as possible find maximum over $x \in\{ \pm 1\}^{V(G)}$ (hypercube)
how to certify upper bound c on maximum?

$$
R_{1}^{2}+\cdots+R_{t}^{2}
$$

decompose $c-L_{G}$ as sum of squares of polynomials plus quadratic polynomial vanishing over hypercube

$$
\alpha_{1} \cdot\left(X_{1}^{2}-1\right)+\cdots+\alpha_{n} \cdot\left(X_{n}^{2}-1\right)
$$

sum-of-squares polynomial
\leftrightarrow positive-semidefinite coefficient matrix

combinatorial viewpoint:
polynomial viewpoint:
given undirected graph G, bipartition vertex set to cut as many edges as possible

$$
\text { find maximum over } x \in\{ \pm 1\}^{V(G)} \text { (hypercube) }
$$

how to certify upper bound c on maximum?

$$
R_{1}^{2}+\cdots+R_{t}^{2}
$$

decompose $c-L_{G}$ as sum of squares of polynomials plus quadratic polynomial vanishing over hypercube
n^{2}-size semidefinite program

$$
\alpha_{1} \cdot\left(X_{1}^{2}-1\right)+\cdots+\alpha_{n} \cdot\left(X_{n}^{2}-1\right)
$$

Goemans-Williamson bound: either decomposition exists or max. $\geq 0.868 \cdot c$ (\rightarrow current best known approximation guarantee)
spectral method: add restriction $\alpha_{1}=\cdots=\alpha_{n} \rightarrow$ largest Laplacian eigenvalue basic object in spectral graph theory

combinatorial viewpoint:
polynomial viewpoint:
given undirected graph G, bipartition vertex set to cut as many edges as possible
given polynomial $L_{G}(x)=\sum_{i j \in E(G)} \frac{1}{4}\left(x_{i}-x_{j}\right)^{2}$,
find maximum over $x \in\{ \pm 1\}^{V(G)}$ (hypercube)
how to certify upper bound c on maximum?

$$
R_{1}^{2}+\cdots+R_{t}^{2}
$$

decompose $c-L_{G}$ as sum of squares of polynomials plus quadratic polynomial vanishing over hypercube

$$
n^{k}
$$

$$
x^{2} \text {-size }
$$

semidefinite program

$$
\text { degree- } k \quad \alpha_{1} \cdot\left(X_{1}^{2}-1\right)+\cdots+\alpha_{n} \cdot\left(X_{n}^{2}-1\right)
$$

degree- n bound is exact (interpolate $\sqrt{c-L_{G}}$ as degree-n polynomial over hypercube) does degree- $n^{o(1)}$ bound improve over GW in worst-case? (would refute UGC)
for every candidate graph construction, degree-16 bound improves over GW
multivariate polynomials
$P_{1}, \ldots, P_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
when is \mathcal{E} unsatisfiable over \mathbb{R}^{n} ?
system of equations
$\mathcal{E}=\left\{P_{1}=0, \ldots, P_{m}=0\right\}$
idea: derive "obviously
unsatisfiable equation" from \mathcal{E}
sum-of-squares (SOS) refutation of \mathcal{E}
vanishes on $\mathcal{E} \longrightarrow Q_{1} \cdot P_{1}+\cdots+Q_{m} \cdot P_{m}$ $=1+R_{1}^{2}+\cdots+R_{t}^{2} \longleftarrow$ positive over \mathbb{R}^{n}
intuitive proof system: many common inequalities have proofs in this form, e.g., Cauchy-Schwarz, Hölder, ℓ_{p}-triangle inequalities
linear case: Gaussian
Real Nullstellensatz
elimination, Farkas lemma
[Artin, Krivine, Stengle]
every polynomial system is either satisfiable over \mathbb{R}^{n} or SOS refutable

SOS method: $\quad n^{O(k)}$-time algorithm to find SOS refutation [Shor, Nesterov, with degrees $\leq k$ if one exists (uses SDP)
optimization (e.g., MAX CUT)
v-vs-v' approximation: given: sat. system $\left\{P_{0}=v, P_{1}=0, \ldots, P_{m}=0\right\}$
[Barak-Kelner-S.'14]
maximize P_{0} over $\left\{P_{1}=0, \ldots, P_{m}=0\right\}$
find: solution to $\left\{P_{0}=v^{\prime}, P_{1}=0, \ldots, P_{m}=0\right\}$
claim: SOS reduces approximation in time $n^{O(k)}$ to "deg. k combining"
subset X of solutions to

$$
\left\{P_{0} \geq v, P_{1}=0, \ldots, P_{m}=0\right\}
$$

$\bullet \bullet \cdot 0$

dictionary learning (aka sparse coding)

application: machine learning (feature extraction) neuroscience (model for visual cortex)

example: dictionary for natural images
[Olshausen-Fields'96]
a_{1}, \ldots, a_{m} unknown unit vectors in isotropic position x_{1}, \ldots, x_{t} are i.i.d. samples from unknown "nice" distr. over sparse vectors (only small correlations between coord's)
goal: given data vectors y_{1}, \ldots, y_{T}, reconstruct A
[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon] previous methods (local search): only very sparse vectors, up to \sqrt{n} non-zeros [Barak-Kelner-S.'14] sum-of-squares method: full sparsity range, up to constant fraction non-zeros (quasipolynomial-time for $o(1)$; polynomial-time for $n^{-\varepsilon}$)
application: machine learning (feature extraction) neuroscience (model for visual cortex)

sparse vectors

example: dictionary for natural images
[Olshausen-Fields'96]
a_{1}, \ldots, a_{m} unknown unit vectors in isotropic position
x_{1}, \ldots, x_{t} are i.i.d. samples from unknown "nice" distr. over sparse vectors (only small correlations between coord's)

theorem:

suppose $m=O(n)$ and correlations between coord's small enough then, $O(\log n)$-SOS can recover set $\mathrm{A}^{*} \approx\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\}$ in Hausdorff distance

theorem:

suppose $m=O(n)$ and correlations between coord's small enough then, $O(\log n)$-SOS can recover set $\mathrm{A}^{*} \approx\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\}$ in Hausdorff distance

1. construct polynomial $P_{0}(u)=\frac{1}{T} \sum_{t}\left\langle y_{t}, u\right\rangle^{4}$ from data vectors can show: global optima of P_{0} correspond to $\pm a_{1}, \ldots, \pm a_{m}$ low-degree (but no control over local optima of P_{0}) SOS proof
2. compute global optima of $P_{0} \ldots$ in general: NP-hard problem (even approximately)
approach: use SOS method and degree- $O(\log m)$ combiner
works because every solution set clustered around $\leq m$ points

conclusions

polynomial optimization: often easy when global optima unique (occurs naturally for recovery problems)
unsupervised learning: higher-degree SOS gives better guarantees for recovering hidden structures
low-degree combiner: general way to make proofs into algorithms

UGC and SOS method: opportunity for unified approach to algorithm design for hard problems

thank you!

planted sparse vector recovery

one k-sparse vector among d random vectors
 k non-zeros

$$
a_{0}=\frac{1}{\sqrt{k}}(0, \ldots, 0, \pm 1, \ldots, \pm 1) \in \mathbb{R}^{n}
$$

$$
a_{1}=\frac{1}{\sqrt{n}}(\pm 1, \ldots, \pm 1)
$$

:

$$
a_{d}=\frac{1}{\sqrt{n}}(\pm 1, \ldots, \pm 1)
$$

arbitrary / random basis of span W of these vectors

$$
\begin{aligned}
y_{0} & =(\pm 1, \ldots, \pm 1) \in \mathbb{R}^{n} \\
y_{1} & =(\pm 1, \ldots, \pm 1) \\
& \vdots \\
y_{d} & =(\pm 1, \ldots, \pm 1)
\end{aligned}
$$

$$
\text { goal: } \quad \text { given } y_{0}, \ldots, y_{d} \text {, recover vector } a^{*} \approx \pm a_{0} \quad[\text { Demanet-Hand'13] }
$$

idealized inference problem; subproblem for dictionary learning
proxy for sparsity: if vector x is k-sparse then $\frac{\|x\|_{\infty}}{\|x\|_{1}} \geq \frac{1}{k}$ and $\frac{\|x\|_{4}^{4}}{\|x\|_{2}^{4}} \geq \frac{1}{k}$ previous best algorithm

> find vector $x \in W$ with maximum ℓ_{∞} / ℓ_{1} ratio (exact using linear programming)
recovers $x \approx \pm a_{0}$ if and only if $\frac{k}{n} \ll 1 / \sqrt{d}$
idea: use ℓ_{4} / ℓ_{2} ratio instead

$$
\left\{\|x\|_{4}^{4}=\frac{1}{k},\|x\|_{2}^{2}=1, x \in W\right\}
$$

good: better proxy for sparsity $(d \ll \sqrt{n})$; system of polynomial equations
bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)
here: \quad SOS works for this problem (exploit randomness in W)
combining problem: given $X \subseteq\left\{\|x\|_{4}^{4}=\frac{1}{k},\|x\|_{2}^{2}=1, x \in W\right\}$, find $x^{*} \approx \pm a_{0}$
claim: set \mathcal{X} concentrated around planted vector (up to sign)
arguments used in analysis
ℓ_{4} triangle inequality

§deg.-4 SOS proofs
[Barak-Brandao-Harrow

combiner: sample Gaussian distr. γ_{x} with same deg. -2 moments as χ

$$
\mathbb{E}_{\gamma x} x x^{\top}=\mathbb{E}_{x} x x^{\top} \approx a_{0} a_{0}^{\top} \rightarrow \text { random sample from } \gamma_{X} \text { is close to } \pm a_{0}
$$

\rightarrow get algorithm via SOS

