Unique Games, Sum of Squares, and
the Quest for Optimal Algorithms

David Steurer
Cornell

Max Planck Institute Informatik, Saarbriticken, July 2014



algorithms
we can use

problems
we wish to solve

NP



algorithms
Wwe can use




r

-

why meta-algorithms?

—> problems often change / negotiable
(problem-specific methods of limited use)

—> do not require domain knowledge
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theory practice

strong guarantees = weak guarantees

problem-specific @-algori@
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apply to wide range of problems

examples: gradient descent, EM,
belief propagation, SAT solvers;

(all local-search based heuristics)
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Unique Games Conjecture (UGC) sum-of-squares (SOS) method




Unique Games Conjecture (UGC)

... asserts intractability of detecting
small “communities” in networks
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sum-of-squares (SOS) method



Unique Games Conjecture (UGC)

... asserts intractability of detecting
small “communities” in networks
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predictions of UGC

sum-of-squares (SOS) method

... greatly generalizes algorithms

that UGC predicts to be optimal

ongoing works

unified theory for optimization problems first evidence: UGC-theory false

around concrete meta-algorithm
(based on rounding convex relaxations)

& SOS right basis for unified theory

challenge: which candidate theory is correct?

bigger picture:

gain new insights at frontier of tractability & intractability

already: applications to quantum information, machine learning, ...
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polynomial P / \
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Newton’s approach t“’ Hilbert’s approach

search through local optima decompose function

(local-search based heuristics) into simple pieces

but: non-convex polynomials can have UGC-optimal algorithms:

exponential number of bad local optima  very restricted special case

sum-of-squares method:
find decomposition efficiently
whenever a small one exists
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concrete strength of SOS method:

SOS works if not too many global peaks

(local-search based algorithms can work

only if not too many local optima)
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gl /ibert's approach

decompose function
into simple pieces

UGC-optimal algorithms:
very restricted special case

sum-of-squares method:
find decomposition efficiently
whenever a small one exists



unified theory:
UGC vs. SOS
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previous works: only very sparse models

SOS method: full sparsity range;

novel, general approach to
unsupervised learning

dverage-case
complexity
[Barak-Kindler-S.

/ complexity
machine learning unified theory:
[Barak-Kelner-S.”14b] _ UGC vs. SOS

learning math
physics

high-dimensional data
[Barak-Kelner-S.’14a]

'13]

intermediate
complexity

[Arora-Barak-S.”10
Dinur-S.13]

functional analysis
[BBHKZS'13]

quantum information

[BBHKZS'13]
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example: max cut

combinatorial viewpoint: given undirected graph G, bipartition vertex set
to cut as many edges as possible

polynomial viewpoint: given polynomial L (x) = X;jeg(q) i (xl- — xj)z,
find maximum over x € {+1}V(® (hypercube)

how to certify upper bound c on maximum?

R1 + + Rt 2 i
n<-size
decompose ¢ — L as(um of squares)of polynomials } semidefinite
plus quadraticipolynomial vamshmg)over hypercube program

arc Xf—D+tay,- (X5-1)
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example: max cut

combinatorial viewpoint: given undirected graph G, bipartition vertex set
to cut as many edges as possible

polynomial viewpoint: given polynomial L; (x) = X;jeg (o) % (xl- - xj)z,
find maximum over x € {+1}V(% (hypercube)

how to certify upper bound c on maximum?

Rf + -+ R?

n’-size
decompose ¢ — L as_sum of Squgres of'po.lynomials } semidefinite
plus quadratic polynomial vanishing over hypercube program

a1-<xf—1>+---+an-<x,%—1>/v

sum-of-squares polynomial
& positive-semidefinite coefficient matrix
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combinatorial viewpoint: given undirected graph G, bipartition vertex set
to cut as many edges as possible

polynomial viewpoint: given polynomial L; (x) = X;jeg (o) i (xl- = xj)z,
find maximum over x € {+1}V(6)

how to certify upper bound c on maximum?

Rf + -+ R?

n?-size
decompose ¢ — L as.sum of Squgres of.po.lynomials } semidefinite
plus quadratic polynomial vanishing over hypercube program

a Xe—D++a, X2-1)

Goemans-Williamson bound: either decomposition exists or max. = 0.868 - ¢
(2 current best known approximation guarantee)

spectral method: add restrictiona; = - = a,, 2 largest(Laplacia@ eigenvalue

basic object in spectral graph theory
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combinatorial viewpoint: given undirected graph G, bipartition vertex set

to cut as many edges as possible

2

polynomial viewpoint: given polynomial L; (x) = X;jeg (o) i (xl- = xj) ,

find maximum over x € {+1}V(6)
how to certify upper bound c on maximum? "

n
Ry &=+ R M -size
decompose ¢ — L; as sum of squares of polynomials } e Al e
plus guaératic polynomial vanishing over hypercube program

degree-k ay- (Xt — D+ -+a, - XzZ—1)

degree-n bound is exact (interpolate \/c — L as degree-n polynomial over hypercube)

does degree-n®® bound improve over GW in worst-case? (would refute UGC)

for every candidate graph construction, degree-16 bound improves over GW
[Brandao-Barak-Harrow-Kelner-S.-Zhou]




multivariate polynomials system of equations
Pl,...,PmER[xl,...,xn] gz{P]_:O,,sz()}

when is € unsatisfiable over R"? idea: derive “obviously
unsatisfiable equation” from &

sum-of-squares (SOS) refutation of €

vanisheson € == Q- Py + -+ Q- Py
=1+Rf + -+ R <+— positive over R"

intuitive proof system:  many common inequalities have proofs in this form,
e.g., Cauchy-Schwarz, Holder, £, -triangle inequalities

linear case: Gaussian
Real Nullstellensatz elimination, Farkas lemma [Artin, Krivine, Stengle]

every polynomial system is either satisfiable over R™ or SOS refutable

SOS method: n°U)_time algorithm to find SOS refutation [Shor, Nesterov,
with degrees < k if one exists (uses SDP) Parrilo, Lasserre]




optimization (e.g., MAX CUT) maximize P, over {P; =0, ..., B,, = 0}

v-vs-v' approximation: given: sat.system{P, =v,P; =0,...,B,, = 0}

(Barak-Kelner-S/14] find:  solutionto {Py =v,P;, =0, ..., B, = 0}

claim: SOS reduces approximation in time n°® to “deg.-k combining”

f \
subset X of solutions to ~_
{Pp =2v,P,=0,..,B, =0} represented by all degree-k
©000%%%%%%%%%% % %° moments of X, €.8. [Exx1 "t Xk
COmbmer use only properties of moments /
solutions with degree-k SOS proofs
> M

single solution to

{PO > v,,Pl — 0, ,Pm — O}
S pseudo-moments ——

“proof:” obstructions to degree-k SOS refutations indistinguishable
from deg.-k moments with respect to deg.-k SOS arguments
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Sparse vectors
example: dictionary

linear transformation I ] for natural images

data vectors “dictionary” I i o’ § [Olshausen-Fields'96]
I 11
— X
A i .
V1 Yt a, Am X1 =
a, ...., a, unknown unit vectors in isotropic position
1 m

X1, ..., Xt are i.i.d. samples from unknown “nice” distr. over sparse vectors
(only small correlations between coord’s)

goal: given data vectors yy, ..., yr, reconstruct A

[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon]

previous methods (local search): only very sparse vectors, up to /n non-zeros

. . [Barak-Kelner-5.14]
sum-of-squares method: full sparsity range, up to constant fraction non-zeros

(quasipolynomial-time for o(1); polynomial-time for n™¢)
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Sparse vectors
example: dictionary

linear transformation I ] for natural images
data vectors “dictionary” I i o’ § [Olshausen-Fields'96]
I 11
_ X
— A i -
V1 Yt aq Am X1 2y
ay, ...., a;; unknown unit vectors in isotropic position

X1, ..., Xt are i.i.d. samples from unknown “nice” distr. over sparse vectors
(only small correlations between coord’s)

theorem: [Barak-Kelner-S.14]
suppose m = 0(n) and correlations between coord’s small enough
then, O(logn)-SOS can recover set A* = {+a,, ..., +a,,} in Hausdorff distance




theorem:

suppose m = 0(n) and correlations between coord’s small enough
then, O(logn)-SOS can recover set A* = {+a,, ..., +a,,} in Hausdorff distance

ial iaz ian—l iam

1. construct polynomial Py(u) = %Zt(yt, u)* from data vectors

can showy global optima of P correspond to +a;, ..., *a,;| low-degree
(but no control over local optima of P,) SOS proof

2. compute global optima of P ...
in general: NP-hard problem (even approximately)

approach: use SOS method and@egree-O(log m) Combiner)

works because every solution set
clustered around < m points




conclusions

polynomial optimization: often easy when global optima unique
(occurs naturally for recovery problems)

unsupervised learning:  higher-degree SOS gives better guarantees
for recovering hidden structures

low-degree combiner: ~ general way to make proofs into algorithms

UGC and SOS method: opportunity for unified approach to
algorithm design for hard problems

thank you!









planted sparse vector recovery

one k-sparse vector arbitrary / random basis
among d random vectors » of span W of these vectors

k non-zeros

ay = %(0, 0,41, ..., +1) ER" yo = (£1,...,+1) € R™

goal:  given y,, ..., Y4, recover vector a* = +a;, [Demanet-Hand'13]

idealized inference problem; subproblem for dictionary learning
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proxy for sparsity:  if vector x is k-sparse then

previous best algorithm

find vector x € W with maximum £, /£ ratio  [Spielman-Wang-Wright,
. . ! Demanet-Hand]
(exact using linear programming)

recovers x = ta, if and only if% & 1/\d

idea: use ¥, /¢, ratio instead {lellﬁ{ = %, Ix|l5=1,x € W}
good:  better proxy for sparsity (d <« /n); system of polynomial equations
bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)

here:  SOS works for this problem (exploit randomness in W)



. . 1 . .
combining problem: given X € {||x||2 =7 lx|l5 =1,x € W}, find x* = +a,
claim: set X concentrated around planted vector (up to sign)

X
.3
-7 \
\ d
\\ al
5 a
AY
\ as

. [Barak-Brandao-Harrow
£,/ ratio bound for random subspaces for d «< \n e S A

arguments used in analysis a eg.-4 SOS proofs

£, triangle inequality

combiner: sample Gaussian distr. y, with same deg.-2 moments as X

E, . xx" = Exxx" ~ ayay = random sample from yy is close to +a,

deg.-2 SOS proof that Cov(X) > 0
- get algorithm via SOS



