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Unique Games Conjecture (UGC)

… asserts intractability of detecting 
small “communities” in networks

predictions of UGC

unified theory for optimization problems
around concrete meta-algorithm
(based on rounding convex relaxations)

… greatly generalizes algorithms 
that UGC predicts to be optimal

first evidence: UGC-theory false
& SOS right basis for unified theory

challenge: which candidate theory is correct?

bigger picture:

ongoing works

gain new insights at frontier of tractability & intractability

already: applications to quantum information, machine learning, …

sum-of-squares (SOS) method
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but: non-convex polynomials can have 
exponential number of bad local optima 
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Newton’s approach Hilbert’s approach

decompose function 
into simple pieces

UGC-optimal algorithms:
very restricted special case

sum-of-squares method:
find decomposition efficiently
whenever a small one exists

concrete strength of SOS method:

SOS works if not too many global peaks

(local-search based algorithms can work 
only if not too many local optima)
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math

complexity

physics

learning

quantum information

intermediate
complexity

average-case 
complexity

[Barak-Kindler-S.’13]

[Arora-Barak-S.’10
Dinur-S.’13]

[BBHKZS’13]

high-dimensional data
[Barak-Kelner-S.’14a]

functional analysis

[BBHKZS’13]

machine learning
[Barak-Kelner-S.’14b]

learning sparse 
dictionaries

previous works: only very sparse models

SOS method: full sparsity range;
novel, general approach to 
unsupervised learning

unified theory:
UGC vs. SOS



example: max cut

combinatorial viewpoint: 

polynomial viewpoint:

given undirected graph 𝐺, bipartition vertex set 
to cut as many edges as possible

given polynomial 𝐿𝐺(𝑥) =  𝑖𝑗∈𝐸 𝐺
1

4
𝑥𝑖 − 𝑥𝑗

2
, 

find maximum over 𝑥 ∈ ±1 𝑉(𝐺) (hypercube)

𝑥𝑖 = 1 𝑥𝑖 = −1

how to certify upper bound 𝒄 on maximum?

decompose 𝑐 − 𝐿𝐺 as sum of squares of polynomials 
plus quadratic polynomial vanishing over hypercube

𝑅1
2 +⋯+ 𝑅𝑡

2

𝛼1 ⋅ 𝑋1
2 − 1 +⋯+ 𝛼𝑛 ⋅ 𝑋𝑛

2 − 1

𝑛2-size 
semidefinite
program



sum-of-squares polynomial 
↔ positive-semidefinite coefficient matrix
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Goemans-Williamson bound: either decomposition exists or max. ≥ 0.868 ⋅ 𝑐
( current best known approximation guarantee)
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spectral method: add restriction 𝛼1 = ⋯ = 𝛼𝑛 largest Laplacian eigenvalue

basic object in spectral graph theory



for every candidate graph construction, degree-16 bound improves over GW

does degree-𝒏𝒐(𝟏) bound improve over GW in worst-case? (would refute UGC)

degree-𝑛 bound is exact  (interpolate 𝑐 − 𝐿𝐺 as degree-𝑛 polynomial over hypercube)

[Brandao-Barak-Harrow-Kelner-S.-Zhou]
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multivariate polynomials
𝑃1, … , 𝑃𝑚 ∈ ℝ 𝑥1, … , 𝑥𝑛

system of equations
ℰ = 𝑃1 = 0,… , 𝑃𝑚 = 0

when is 𝓔 unsatisfiable over ℝ𝒏?

Real Nullstellensatz
every polynomial system is either satisfiable over ℝ𝑛 or SOS refutable 

idea: derive “obviously 
unsatisfiable equation” from ℰ

linear case: Gaussian 
elimination, Farkas lemma

SOS method: 𝑛𝑂 𝑘 -time algorithm to find SOS refutation 
with degrees ≤ 𝑘 if one exists (uses SDP)

[Shor, Nesterov, 
Parrilo, Lasserre]

[Artin, Krivine, Stengle]

𝑄1 ⋅ 𝑃1 +⋯+ 𝑄𝑚 ⋅ 𝑃𝑚
= 1 + 𝑅1

2 +⋯+ 𝑅𝑡
2

vanishes on ℰ

positive over ℝ𝑛

sum-of-squares (SOS) refutation of ℰ

intuitive proof system: many common inequalities have proofs in this form, 
e.g., Cauchy-Schwarz, Hölder, ℓ𝑝-triangle inequalities



𝑣-vs-𝑣′ approximation: given: sat. system 𝑃0 = 𝑣, 𝑃1 = 0,… , 𝑃𝑚 = 0
find: solution to 𝑃0 = 𝑣′, 𝑃1 = 0,… , 𝑃𝑚 = 0

maximize 𝑃0 over 𝑃1 = 0,… , 𝑃𝑚 = 0optimization (e.g., MAX CUT)

claim: SOS reduces approximation in time 𝑛𝑂 𝑘 to “deg.-𝑘 combining”

subset 𝒳 of solutions to 
𝑃0 ≥ 𝑣, 𝑃1 = 0,… , 𝑃𝑚 = 0

single solution to 
𝑃0 ≥ 𝑣′, 𝑃1 = 0,… , 𝑃𝑚 = 0

represented by all degree-𝑘
moments of 𝒳, e.g., 𝔼𝒳𝑥1⋯𝑥𝑘

use only properties of moments / 
solutions with degree-𝑘 SOS proofs

“proof:” obstructions to degree-k SOS refutations indistinguishable 
from deg.-k moments with respect to deg.-𝑘 SOS arguments

pseudo-moments

[Barak-Kelner-S.’14]



dictionary learning (aka sparse coding)

A

data vectors

sparse vectors
example: dictionary 
for natural imageslinear transformation

“dictionary”

= ×

𝑦1 𝑦𝑇 𝑥1 𝑥𝑇

goal: given data vectors 𝑦1, … , 𝑦𝑇 , reconstruct 𝐴

application: machine learning (feature extraction)
neuroscience (model for visual cortex)

previous methods (local search): only very sparse vectors, up to 𝑛 non-zeros

sum-of-squares method: full sparsity range, up to constant fraction non-zeros
(quasipolynomial-time for 𝑜(1); polynomial-time for 𝑛−𝜀)

𝑎1 𝑎𝑚

𝑎1, … . , 𝑎𝑚 unknown unit vectors in isotropic position
𝑥1, … , 𝑥𝑡 are i.i.d. samples from unknown “nice” distr. over sparse vectors 

(only small correlations between coord’s)

[Olshausen-Fields’96]

[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon]

[Barak-Kelner-S.’14]



theorem:
suppose 𝑚 = 𝑂 𝑛 and correlations between coord’s small enough
then, 𝑂 log 𝑛 -SOS can recover set A∗ ≈ {±𝑎1, … , ±𝑎𝑚} in Hausdorff distance
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1. construct polynomial 𝑃0 𝑢 =
1

𝑇
 𝑡 𝑦𝑡 , 𝑢

4 from data vectors

can show:  global optima of 𝑃0 correspond to ±𝑎1, … , ±𝑎𝑚
(but no control over local optima of 𝑃0)

2. compute global optima of 𝑃0 …
in general: NP-hard problem (even approximately)

±𝑎1 ±𝑎2 … ±𝑎𝑛−1 ±𝑎𝑚

? ?

?

? ?
?

low-degree
SOS proof

approach:  use SOS method and degree-𝑂 log𝑚 combiner

works because every solution set
clustered around ≤ 𝑚 points

theorem:
suppose 𝑚 = 𝑂 𝑛 and correlations between coord’s small enough
then, 𝑂 log 𝑛 -SOS can recover set A∗ ≈ {±𝑎1, … , ±𝑎𝑚} in Hausdorff distance

(only small correlations between coord’s)



conclusions

low-degree combiner: general way to make proofs into algorithms

unsupervised learning: higher-degree SOS gives better guarantees 
for recovering hidden structures

polynomial optimization: often easy when global optima unique
(occurs naturally for recovery problems)

thank you!

UGC and SOS method: opportunity for unified approach to 
algorithm design for hard problems







planted sparse vector recovery

one 𝑘-sparse vector 
among 𝑑 random vectors

arbitrary / random basis
of span 𝑊 of these vectors

𝑎0 =
1

𝑘
(0, … , 0, ±1,… ,±1) ∈ ℝ𝑛

𝑎1 =
1

𝑛
(±1,… ,±1)

⋮

𝑎𝑑 =
1

𝑛
(±1,… ,±1)

𝑘 non-zeros

𝑦0 = ±1,… , ±1 ∈ ℝ𝑛

𝑦1 = ±1,… ,±1

𝑦𝑑 = ±1,… ,±1

⋮

goal: given 𝑦0, … , 𝑦𝑑 , recover vector 𝑎∗ ≈ ±𝑎0

idealized inference problem; subproblem for dictionary learning

[Demanet-Hand’13]



proxy for sparsity: if vector 𝑥 is 𝑘-sparse then 
𝑥 ∞

𝑥 1
≥

1

𝑘
and 

𝑥 4
4

𝑥 2
4 ≥

1

𝑘

[Spielman-Wang-Wright,
Demanet-Hand]

previous best algorithm

find vector 𝑥 ∈ 𝑊 with maximum ℓ∞/ℓ1 ratio
(exact using linear programming) 

recovers 𝑥 ≈ ±𝑎0 if and only if 
𝑘

𝑛
≪ 1/ 𝑑

idea: use ℓ4/ℓ2 ratio instead

good: better proxy for sparsity (𝑑 ≪ 𝑛); system of polynomial equations

bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)

𝑥 4
4 =

1

𝑘
, 𝑥 2

2 = 1, 𝑥 ∈ 𝑊

here: SOS works for this problem (exploit randomness in 𝑊)



claim: set 𝒳 concentrated around planted vector (up to sign)

ℓ4 triangle inequality

ℓ4/ℓ2 ratio bound for random subspaces for 𝑑 ≪ 𝑛

arguments used in analysis

combiner: sample Gaussian distr. 𝛾𝒳 with same deg.-2 moments as 𝒳

𝔼𝛾𝒳𝑥𝑥
⊤ = 𝔼𝒳𝑥𝑥

⊤ ≈ 𝑎0𝑎0
⊤
 random sample from 𝛾𝑋 is close to ±𝑎0

deg.-2 SOS proof that Cov 𝑋 ≽ 0

deg.-4 SOS proofs

combining problem: given 𝒳 ⊆ 𝑥 4
4 =

1

𝑘
, 𝑥 2

2 = 1, 𝑥 ∈ 𝑊 , find 𝑥∗ ≈ ±𝑎0

[Barak-Brandao-Harrow
-Kelner-S.-Zhou]

 get algorithm via SOS


