# Dictionary learning and tensor decomposition via the sum-of-squares method 

Boaz Barak MSR

Jonathan Kelner
MIT

David Steurer
Cornell

## results: overview

## sum-of-squares method (based on

 semidefinite programming) [Shor, Parrilo, Lasserre]efficient algorithm to solve polynomial optimization

running time $n^{O(\log \# \text { solutions) }}$
(quasi-poly time for poly \#solutions) also need short sum-of-squares certificate for this fact
\# bad local optima can be exponential $\rightarrow$ local-search algorithms fail
applications: unsupervised learning problems tend to have this property
identifiability: data uniquely determines parameters of model
our work: notion of constructive identifiability proofs that implies efficient inference algorithms
for all constants $\sigma \geq 1$ and $\varepsilon>0$, exist constants $d \geq 1$ and $\tau>0$ given tensor $T \in \mathbb{R}^{n^{d}}$ of the form $T=\sum_{i=1}^{m} a_{i}^{\otimes d}+Z$ with $\left\|a_{i}\right\|=1$ can recover set $\approx_{\varepsilon}\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\}$ in time $n^{O(\log n)}$, whenever $\left\|\sum_{i} a_{i} a_{i}^{\top}\right\|_{\text {spectral }} \leq \sigma$ and $\|Z\|_{\text {spectral }} \leq \tau$
comparison to previous algorithms [Jennrich'70, Bhaskara-Charikar-Moitra-Vijayaraghavan'13, Anandkumar-Ge-Hsu-Kakade'12]
 pros:
tolerate constant spectral error (before: inverse polynomial error) no restrictions on vectors (before: incoherence or similar) cons:
running time (but: techniques help for faster alg's [Hopkins-Schramm-Shi-S.'15+])
only constant accuracy (but: could combine with local search)
for all constants $\sigma \geq 1$ and $\varepsilon>0$, exist constants $d \geq 1$ and $\tau>0$ given tensor $T \in \mathbb{R}^{n^{d}}$ of the form $T=\sum_{i=1}^{m} a_{i}^{\otimes d}+Z$ with $\left\|a_{i}\right\|=1$ can recover set $\approx_{\varepsilon}\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\}$ in time $n^{O(\log n)}$, whenever $\left\|\sum_{i} a_{i} a_{i}^{\top}\right\|_{\text {spectral }} \leq \sigma$ and $\|Z\|_{\text {spectral }} \leq \tau$
connection to polynomial optimization
global optima of polynomial $\left\langle T, x^{\otimes d}\right\rangle=\sum_{i=1}^{m}\left\langle a_{i}, x\right\rangle^{d}+\left\langle Z, x^{\otimes d}\right\rangle$ over unit sphere $\approx_{\varepsilon}\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\}$
also: $\exists$ short sum-of-squares certificate for this fact
but: local behavior controlled by error $Z$
$\rightarrow$ local search algorithms fail
(also simultaneous diagonalization fails)
results: dictionary learning (aka sparse coding)
application: machine learning (feature extraction) neuroscience (model for visual cortex)

$a_{1}, \ldots, a_{m}$ unknown unit vectors in isotropic position
$x_{1}, \ldots, x_{t}$ are i.i.d. samples from unknown "nice" distr. over sparse vectors (only small correlations between coord's)
goal: given data vectors $y_{1}, \ldots, y_{T}$, reconstruct $A$
reduces to tensor decomposition with spectral error controlled by sparsity
[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon] previous methods (local search): only very sparse vectors, up to $\sqrt{n}$ non-zeros
results: dictionary learning (aka sparse coding)
application: machine learning (feature extraction) neuroscience (model for visual cortex)

sparse vectors
data vectors



example: dictionary for natural images [Olshausen-Fields’96]
$a_{1}, \ldots, a_{m}$ unknown unit vectors in isotropic position $x_{1}, \ldots, x_{t}$ are i.i.d. samples from unknown "nice" distr. over sparse vectors (only small correlations between coord's)
goal: given data vectors $y_{1}, \ldots, y_{T}$, reconstruct $A$
[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon] previous methods (local search): only very sparse vectors, up to $\sqrt{n}$ non-zeros sum-of-squares method: full sparsity range, up to constant fraction non-zeros (quasipolynomial-time for sparsity o(1); polynomial-time for $n^{-\varepsilon}$ )

## simplified problem

$a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ orthonormal, $Z \in \mathbb{R}^{n^{3}}$ with $\|Z\|_{\text {spectral }} \leq \varepsilon$
$\left\langle T, x^{\otimes 3}\right\rangle \approx_{\varepsilon}$ $\max _{i}\left\langle a_{i}, x\right\rangle$ given tensor $T=Z+\sum_{i} a_{i}^{\otimes 3}$, maximize polynomial $\left\langle T, x^{\otimes 3}\right\rangle$ over unit sphere $S^{n-1} \subseteq \mathbb{R}^{n}$

## deg-k sum-of-squares algorithm

computes "pseudo distribution $D: S^{n-1} \rightarrow \mathbb{R}^{\prime}$ in time $n^{O(k)}$
behaves like deg-k part of density of distribution
supported on solutions to $\mathcal{C}=\left\{\left\langle T, x^{\otimes 3}\right\rangle \geq 1-\varepsilon,\|x\|^{2}=1\right\}$
i.e., $D$ passes all tests derivable from $\mathcal{C}$ by deg- $k$ SOS proof system
concretely, $\int_{S^{n-1}} D \cdot\left[P^{2} \cdot\left(\left\langle T, x^{\otimes 3}\right\rangle-(1-\varepsilon)\right)+Q^{2}\right] \geq 0$ whenever $\operatorname{deg} P, \operatorname{deg} Q \leq k$

## want: rounding algorithm

given pseudo-distribution $D$, compute solution to constraints $\mathcal{C}$ approach:
first analyze algorithm when $D$ is deg- $d$ part of actual distribution

## simplified problem

$$
\begin{aligned}
& a_{1}, \ldots, a_{n} \in \mathbb{R}^{n} \text { orthonormal, } Z \in \mathbb{R}^{n^{3}} \text { with }\|Z\|_{\text {spectral }} \leq \varepsilon \\
& \text { given tensor } T=Z+\sum_{i} a_{i}^{\otimes 3} \text {, solve } \mathcal{C}=\left\{\left\langle T, x^{\otimes 3}\right\rangle \geq 1-\varepsilon,\|x\|^{2}=1\right\}
\end{aligned}
$$

assume: $D$ is deg-k part of density supported on solutions to $\mathcal{C}$
algorithm: (1) reweigh $D$ by $\langle w, x\rangle^{k}$ for $k \approx \log n$ and random unit vector $w$
(2) output top eigenvector of resulting covariance matrix


## analysis

property of Gaussian distribution: with probability $\geq 1 / n^{O(1)}$

$$
\left\langle w, a_{1}\right\rangle^{2} \geq 2 \cdot \max _{i>1}\left\langle w, a_{i}\right\rangle^{2}
$$

$\rightarrow$ increase probability mass on $a_{1}$ by factor $2^{k}$ relative to other spikes
$\rightarrow$ for $k=\log n$, almost all mass on $a_{1} \rightarrow$ can recover $a_{1}$ from covar. matrix
simplified problem
$a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ orthonormal, $Z \in \mathbb{R}^{n^{3}}$ with $\|Z\|_{\text {spectral }} \leq \varepsilon$
given tensor $T=Z+\sum_{i} a_{i}^{\otimes 3}$, solve $\mathcal{C}=\left\{\left\langle T, x^{\otimes 3}\right\rangle \geq 1-\varepsilon,\|x\|^{2}=1\right\}$
what does it mean to efficiently certify that $\mathcal{C}$ has only few solutions?
derive inequality $\sum_{i}\left\langle a_{i}, x\right\rangle^{k} \geq(1-2 \varepsilon)^{k}$ for $k=\log n$ from constraints $\mathcal{C}$ in deg- $k$ SOS proof system

$\left(\sum_{i} y_{i}^{k}\right)^{1 / k} \approx \max _{i} y_{i}$
derivation sketch
from $\left\{\begin{array}{c}\|x\|^{2}=1 \\ \left\langle T, x^{\otimes 3}\right\rangle \geq 1-\varepsilon\end{array}\right\} \quad$ derive $\quad \sum_{i}\left\langle a_{i}, x\right\rangle^{3} \geq 1-2 \varepsilon$
using $\left\|T-\sum_{i} a_{i}^{\otimes d}\right\|_{\text {spectral }} \leq \varepsilon$ (SOS captures eigenvalue bounds)
from $\left\{\begin{array}{c}\|x\|^{2}=1 \\ \sum_{i}\left\langle a_{i}, x\right\rangle^{3} \geq 1-2 \varepsilon\end{array}\right\} \quad$ derive $\quad \sum_{i}\left\langle a_{i}, x\right\rangle^{k} \geq(1-2 \varepsilon)^{k}$ for all $k \geq d$ using $\left(\sum_{i} y_{i}^{k}\right) \cdot\left(\sum_{i} y_{i}^{2}\right)^{k}-\left(\sum_{i} y_{i}^{3}\right)^{k}$ is sum of squares, choosing $y_{i}=\left\langle a_{i}, x\right\rangle$, and using $\sum_{i}\left\langle a_{i}, x\right\rangle^{2}=\|x\|^{2}$

## summary

polynomial optimization is easy if we can certify that there are only few good solutions
(derive constraint of form $\sum_{i}\left\langle a_{i}, x\right\rangle^{k}$ for $k>\log$ \#solutions)
open questions / subsequent work
sum of squares useful for other machine learning problems?
tensor prediction [Barak-Moitra]
overcomplete average-case 3-tensor decomposition [Ge-Ma]
can sum of squares lead to fast algorithms?
tensor principal component analysis [Hopkins-Shi-S.]
overcomplete average-case 3-tensor decomp. [Hopkins-Schramm-Shi-S.]
planted sparse vector [Hopkins-Schramm-Shi-S.]
Thank you!

