Lower bounds on the size of semidefinite relaxations

David Steurer
Cornell

James R. Lee
Washington

Prasad Raghavendra
Berkeley
unconditional computational lower bounds
for classical combinatorial optimization problems

- examples: MAX CUT, TRAVELING SALESMAN
in restricted but powerful model of computation
- generalizes best known algorithms
- all possible linear and semidefinite relaxations
- first super-polynomial lower bound in this model
general program goes back to [Yannakakis'88] for refuting flawed P=NP proofs
connection to optimization / convex geometry
settle open question about semidefinite lifts of polytopes and positive semidefinite rank

overview of results

proof strategy for lower bounds
optimal approximation algorithm in this model
achieves best possible approximation guarantees among all poly-time algorithms in this model
wide-range of problems: every constraint satisfaction problem
concrete algorithm: sum-of-squares (aka Lasserre) hierarchy

[Shor'87, Parrilo'00, Lasserre'00]

derive lower bounds for general model from known counterexamples (integrality gaps) for sum-of-squares algorithm
[Grigoriev, Schoenebeck, Tulsiani, Barak-Chan-Kothari]
mathematical programming relaxations:" powerful general approach for approximating NP-hard optimization problems
three flavors:

intriguing connection to hardness reductions (e.g., Unique Games Conjecture) plausibly optimal polynomial-time algorithms
mathematical programming relaxations: powerful general approach for approximating NP-hard optimization problems

Yannakakis's model motivated by flawed P=NP proofs [Yannakakis'88]
formalizes intuitive notion of LP relaxations for problem enough structure for unconditional lower bounds (indep. of P vs. NP)

Fiorini-Massar-Pokutta-Tiwary-de Wolf'12, Braun-Pokutta-S., Braverman-Moitra, Chan-Lee-Raghavendra-S., Rothvoß extends to SDP relaxations (but LP lower bound techniques break down) [Fiorini-Massar-Pokutta-Tiwary-de Wolf, Gouveia-Parrilo-Thomas]

testing computational complexity conjectures

approximation / PCP: UNIQUE GAMES, sliding scale conjecture average-case: RANDOM 3 SAT, PLANTED CLIQUE
find bipartition in given n-vertex graph G to cut as many edges as possible

maximize $f_{G}(x)=\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2} / 4$ over $x \in\{-1,1\}^{n}$ (hypercube)
equivalently: maximize $\sum_{i j \in E(G)}\left(1-X_{i j}\right) / 2$ over cut polytope $\operatorname{CuT}_{n}=$ convex hull of $\left\{x x^{\top} \mid x \in\{-1,1\}^{n}\right\}$
\#facets is exponential \rightarrow no small direct LP formulation

LP formulations of MAX CUT

 $x_{i}=-1$find bipartition in given n-vertex graph G to cut as many edges as possible maximize $f_{G}(x)=\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2} / 4$ over $x \in\{-1,1\}^{n}$ (hypercube)
equivalently: maximize $\sum_{i j \in E(G)}\left(1-X_{i j}\right) / 2$ over cut polytope $\operatorname{CUT}_{n}=$ convex hull of $\left\{x x^{\top} \mid x \in\{-1,1\}^{n}\right\}$
\#facets is exponential \rightarrow no small direct LP formulation

general size- n^{d} LP formulation of MAX CUT
[Yannakakis'88]
polytope $P \subseteq \mathbb{R}^{n^{d}}$ defined by $\leq n^{d}$ linear inequalities that projects to CUT $_{n}$
often exponential savings: ℓ_{1}-norm unit ball, Held-Karp TSP
relaxation, LP/SDP hierarchies
size lower bounds for LP formulations of MAX CUT? (implied by NP = P/poly)

example: poly-size LP formulation for ℓ_{1}-norm ball

$$
\begin{array}{cc}
\ell_{1} \text {-unit ball } & \text { project on } x \text { variables } \\
\left\{\begin{array}{c}
\sum_{i}\left|x_{i}\right| \leq 1 \\
x \in \mathbb{R}^{n}
\end{array}\right\} & \left\{\begin{array}{c}
-y \leq x \leq y \\
\sum_{i} y_{i} \leq 1 \\
x, y \in \mathbb{R}^{n}
\end{array}\right\}
\end{array}
$$

2^{n} linear inequalities
$2 n+1$ linear inequalities
exponential savings
general size- n^{d} LP formulation of MAX CUT
[Yannakakis'88]
polytope $P \subseteq \mathbb{R}^{n^{d}}$ defined by $\leq n^{d}$ linear inequalities that projects to CUT $_{n}$
often exponential savings: ℓ_{1}-norm unit ball, Held-Karp TSP relaxation, LP/SDP hierarchies
size lower bounds for LP formulations of MAX CUT? (implied by NP = P/poly)
general size- n^{d} LP formulation of MAX CUT polytope $P \subseteq \mathbb{R}^{n^{d}}$ defined by $\leq n^{d}$ linear inequalities that projects to CuT $_{n}$

size lower bounds for LP formulations of MAX CUT
exponential lower bound: $d \geq \widetilde{\Omega}(n)$ [Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]
approx. ratio $>1 / 2$ requires superpolynomial size [Chan-Lee-Raghavendra-S.'13]
but: best known MAX CUT algorithms based on semidefinite programming
general size- n^{d} SDP formulation of MAX CUT
$P \subseteq \mathbb{R n}^{d}$ defined $b=n^{d}$ linequalities that projects to CUT $_{n}$ -spectrahedron $P \subseteq \mathbb{R}^{n^{d} \times n^{d}}$ defined by intersectingsome affine linear subspace with psd cone

size lower bounds for \ddagger formulations of MAX CUT ? [Lee-Raghavendra-S.'15] exponential lower bound: $d \geq \Omega\left(n^{0.1}\right)$
approx. ratio >0.99 requires super polynomial size (match np-hardness for CSPs)
best approx. ratio by n^{d}-size SDP no better than $O(d)$-deg. sum-of-squares
\rightarrow sum-of-squares is optimal SDP approximation algorithm for CSPS
recall MAX CUT: maximize $f_{G}(x)=\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2} / 4$ over $x \in\{-1,1\}^{n}$

upper bound certificates

algorithm with approx. guarantee must certify upper bounds on objective function f_{G}
approx. ratio $\alpha \Rightarrow$ algorithm certifies $f_{G} \leq c$ for some $c \leq \operatorname{OPT}_{G} / \alpha$
can characterize LP/SDP algorithms by their certificates
certificates of deg-d sum-of-squares algorithm (n^{d}-size SDP example)
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ iff $f=\sum_{i} g_{i}^{2}$ with $\forall i$. $\operatorname{deg} g_{i} \leq d$
captures best known algorithms for wide range of problems
deg-1 sum-of-squares captures Goemans-Williamson max cut 0.878 -approx. for every graph $G, \mathrm{oPT}_{G}-0.878 \cdot f_{G}=\sum_{i} g_{i}^{2}$ with $\operatorname{deg} g_{i} \leq 1$
recall MAX CUT: maximize $f_{G}(x)=\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2} / 4$ over $x \in\{-1,1\}^{n}$
certificates of deg-d sum-of-squares algorithm (n^{d}-size SDP example)
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R} \operatorname{iff} f=\sum_{i} g_{i}^{2}$ with $\forall i$. $\operatorname{deg} g_{i} \leq d$
captures best known algorithms for wide range of problems
deg-1 sum-of-squares captures Goemans-Williamson max cut 0.878-approx. for every graph $G, \mathrm{oPT}_{G}-0.878 \cdot f_{G}=\sum_{i} g_{i}^{2}$ with $\operatorname{deg} g_{i} \leq 1$
recall MAX CUT: maximize $f_{G}(x)=\sum_{i j \in E(G)}\left(x_{i}-x_{j}\right)^{2} / 4$ over $x \in\{-1,1\}^{n}$

connection to Unique Games Conjecture

best candidate algorithm to refute UGC: $\operatorname{deg}-\widetilde{O}(1)$ sum of squares enough to show: $\exists d . \forall G . \mathrm{OPT}_{G}-0.879 \cdot f_{G}=\sum_{i} g_{i}^{2}$ with $\operatorname{deg} g_{i} \leq d$
does larger degree help?
yes: if $f \geq 0$, then $f=g^{2}$ for some function g with $\operatorname{deg} g \leq n$ (but 2^{n}-size SDP) (tight: $\left(1 / 2-\sum_{i} x_{i}\right)^{2}-1 / 4 \geq 0$ has no deg-o(n) s.o.s. certificate)
certificates of deg-d sum-of-squares algorithm (n^{d}-size SDP example)
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ iff $f=\sum_{i} g_{i}^{2}$ with $\forall i . \operatorname{deg} g_{i} \leq d$
captures best known algorithms for wide range of problems
deg-1 sum-of-squares captures Goemans-Williamson max cut 0.878-approx. for every graph $G, \mathrm{OPT}_{G}-0.878 \cdot f_{G}=\sum_{i} g_{i}^{2}$ with $\operatorname{deg} g_{i} \leq 1$

where are the vectors?

suppose: no deg- d sos certificate for $f_{G} \geq c$
\rightarrow separating hyperplane $D:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
$\sum_{x} D(x) \cdot g(x)^{2} \geq 0$ whenever $\operatorname{deg} g \leq d$ $\sum_{x} D(x) \cdot 1=1$ $\sum_{x} D(x) \cdot f_{G}(x)>c$
$\rightarrow M=\sum_{x} D(x) \cdot x x^{\top}$ is usual SDP solution (in particular $M \succcurlyeq 0$ and $M_{i i}=1$)
$\rightarrow \exists$ vectors $\left\{v_{i}\right\}$ with $M_{i j}=\left\langle v_{i}, v_{j}\right\rangle$
certificates of deg-d sum-of-squares algorithm (n^{d}-size SDP example)
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ iff $f=\sum_{i} g_{i}^{2}$ with $\forall i$. $\operatorname{deg} g_{i} \leq d$
captures best known algorithms for wide range of problems
deg-1 sum-of-squares captures Goemans-Williamson max cut 0.878 -approx. for every graph $G, \mathrm{OPT}_{G}-0.878 \cdot f_{G}=\sum_{i} g_{i}^{2}$ with $\operatorname{deg} g_{i} \leq 1$

where are the vectors?

suppose: no deg- d sos certificate for $f_{G} \geq c$
\rightarrow separating hyperplane $D:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ $\sum_{x} D(x) \cdot g(x)^{2} \geq 0$ whenever deg $g \leq d$
$\sum_{x} D(x) \cdot 1=1$ $\sum_{x} D(x) \cdot f_{G}(x)>c$
$\rightarrow M=\sum_{x} D(x) \cdot x x^{\top}$ is usual SDP solution (in particular $M \succcurlyeq 0$ and $M_{i i}=1$)
$\rightarrow \exists$ vectors $\left\{v_{i}\right\}$ with $M_{i j}=\left\langle v_{i}, v_{j}\right\rangle$
D behaves like probability distribution over MAX CUT solutions with expected value >c \rightarrow pseudo-distribution: useful way to think about LP/SDP relaxations in general
certificates of deg-d sum-of-squares algorithm (n^{d}-size SDP example)
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ iff $f=\sum_{i} g_{i}^{2}$ with $\forall i$. $\operatorname{deg} g_{i} \leq d$
captures best known algorithms for wide range of problems
deg-1 sum-of-squares captures Goemans-Williamson max cut 0.878 -approx. for every graph $G, \mathrm{OPT}_{G}-0.878 \cdot f_{G}=\sum_{i} g_{i}^{2}$ with $\operatorname{deg} g_{i} \leq 1$
certificates of deg-d sum-of-squares SDP algorithm
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ iff $f=\sum_{i} g_{i}^{2}$ with $\forall i$. $\operatorname{deg} g_{i} \leq d$
certificates of general \boldsymbol{n}^{d}-size SDP algorithm
characterized by psd-matrix valued function $Q:\{ \pm 1\}^{n} \rightarrow \mathbb{R}^{n^{d} \times n^{d}}$
certify $f \geq 0$ iff $\exists P \succcurlyeq 0 . \forall x \in\{ \pm 1\}^{n} . f(x)=\operatorname{Tr} P Q(\mathrm{x})=\|\sqrt{P} \sqrt{Q(x)}\|_{F}^{2}$
example: deg-d sum-of-squares SDP algorithm, $Q(x)=x^{\otimes d}\left(x^{\otimes d}\right)^{\top}$
general SDP \boldsymbol{Q} captured by deg-d sum-of-squares if $\operatorname{deg} \sqrt{Q(x)} \leq d$
certificates of deg-d sum-of-squares SDP algorithm
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ iff $f=\sum_{i} g_{i}^{2}$ with $\forall i . \operatorname{deg} g_{i} \leq d$

certificates of general \boldsymbol{n}^{d}-size SDP algorithm

characterized by psd-matrix valued function $Q:\{ \pm 1\}^{n} \rightarrow \mathbb{R}^{n^{d} \times n^{d}}$
certify $f \geq 0$ iff $\exists P \succcurlyeq 0 . \forall x \in\{ \pm 1\}^{n} . f(x)=\operatorname{Tr} P Q(\mathrm{x})=\|\sqrt{P} \sqrt{Q(x)}\|_{F}^{2}$
example: deg-d sum-of-squares SDP algorithm, $Q(x)=x^{\otimes d}\left(x^{\otimes d}\right)^{\top}$
general SDP \mathbf{Q} captured by deg-d sum-of-squares if $\operatorname{deg} \sqrt{Q(x)} \leq d$
where does \boldsymbol{Q} come from? general spectrahedron: $\mathrm{S}=\left\{z \in \mathbb{R}^{n^{d}} \mid \sum_{i} z_{i} A_{i} \succcurlyeq B\right\}$ SDP relax. for max cut: \exists cost functions $\left\{y_{G}\right\}$ and feasible solutions $\left\{z_{x}\right\} \subseteq S$ with $\left\langle y_{G}, z_{x}\right\rangle=f_{G}(x)$ (obj. value of cut x in graph G)
choose Q with $Q(x)=B-\sum_{i} z_{x, i} A_{i}$ (slack of constraint at $z_{x} \in S$)
duality: $\max _{z \in S}\left\langle y_{G}, z\right\rangle \leq c$ iff $\exists P \geqslant 0 . \mathrm{c}-\left\langle y_{G}, z\right\rangle=\operatorname{Tr} P \cdot\left(B-\sum_{i} z_{i} A_{i}\right)$

$$
\rightarrow c-f_{G}(x)=\operatorname{Tr} P \cdot Q(x) \text { for all } x
$$

certificates of deg-d sum-of-squares SDP algorithm
certify $f \geq 0$ for function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ iff $f=\sum_{i} g_{i}^{2}$ with $\forall i$. $\operatorname{deg} g_{i} \leq d$

certificates of general \boldsymbol{n}^{d}-size SDP algorithm

characterized by psd-matrix valued function $Q:\{ \pm 1\}^{n} \rightarrow \mathbb{R}^{n^{d} \times n^{d}}$
certify $f \geq 0$ iff $\exists P \succcurlyeq 0 . \forall x \in\{ \pm 1\}^{n} . f(x)=\operatorname{Tr} P Q(\mathrm{x})=\|\sqrt{P} \sqrt{Q(x)}\|_{F}^{2}$
example: deg-d sum-of-squares SDP algorithm, $Q(x)=x^{\otimes d}\left(x^{\otimes d}\right)^{\top}$
general SDP \boldsymbol{Q} captured by deg-d sum-of-squares if $\operatorname{deg} \sqrt{Q(x)} \leq d$

-low-degree

can simulate general n^{d}-size SDP algorithm by sum-of-squares $\forall n^{d}$-size SDP algorithm Q.
\forall low-deg matrix-valued function $F . \quad\langle F, Q\rangle \approx\left\langle F, Q^{\prime}\right\rangle$ \exists low-deg SDP algorithm $Q^{\prime} . \operatorname{deg} \sqrt{Q^{\prime}(x)} \approx \log n^{d}$ and $Q Q^{\prime}$
[Lee-Raghavendra-S.'15]

general phenomenon

in order to approximate an object with respect to a family of tests, the approximator need not be more complex than the tests

technical challenge

naïve application allows us to bound $\operatorname{deg} Q^{\prime}(x)$ but need to bound $\operatorname{deg} \sqrt{Q^{\prime}(x)}$ in general: $\boldsymbol{d e g} \sqrt{Q^{\prime}} \gg \boldsymbol{\operatorname { d e g }} \boldsymbol{Q}^{\prime}$ (at the heart of sum-of-squares counterexamples)
example: deg-d sum-of-squares SDP algorithm, $Q(x)=x^{\otimes d}\left(x^{\otimes d}\right)^{\top}$
general SDP \boldsymbol{Q} captured by deg-d sum-of-squares if $\operatorname{deg} \sqrt{Q(x)} \leq d$

-low-degree

can simulate general n^{d}-size SDP algorithm by sum-of-squares $\forall n^{d}$-size SDP algorithm Q.
\forall low-deg matrix-valued function F.

$$
\langle F, Q\rangle \approx\left\langle F, Q^{\prime}\right\rangle
$$

\exists low-deg SDP algorithm $Q^{\prime} . \operatorname{deg} \sqrt{Q^{\prime}(x)} \approx \log n^{d}$ and Q^{\prime}
[Lee-Raghavendra-S.'15]
can simulate general n^{d}-size SDP algorithm by sum-of-squares $\forall n^{d}$-size SDP algorithm Q.
\forall low-deg matrix-valued function $F . \quad\langle F, Q\rangle \approx\left\langle F, Q^{\prime}\right\rangle$
\exists low-deg SDP algorithm $Q^{\prime} . \operatorname{deg} \sqrt{Q^{\prime}(x)} \approx \log n^{d}$ and Q^{\prime}
approach: learn "simplest" SDP algorithm Q^{\prime} that satisfies $\langle F, Q\rangle \approx\left\langle F, Q^{\prime}\right\rangle$
measure of simplicity: quantum entropy (classical entropy of eigenvalues of $\{Q(x)\}$)
closed-form solution: $Q^{\prime}(x)=e^{t \cdot F(x)}$ where $t=$ entropy-defect $(Q) \leq \log n^{d}$
\rightarrow matrix multiplicative weights method!
simple square root: $\sqrt{Q^{\prime}(x)}=e^{t \cdot F(x) / 2} \approx \sum_{k=0}^{t} \frac{1}{k!}(t \cdot F(x) / 2)^{k}$

$$
\rightarrow \text { degree } \leq \operatorname{deg} F \cdot t
$$

can simulate general small SDP alg. by low-degree SDP alg. interpret poly-size SDP algorithm as quantum state with high entropy learn simplest SDP / quantum state via matrix multiplicative weights (maximum entropy)

open questions

approximation beyond CSP and relatives
rule out 0.999-approximation for TRAVELING SALEMAN by poly-size LP/SDP
strong quantitative lower bounds for approximation
rule out 0.999-approximation for MAX CUT by $2^{n^{\Omega(1)}}$-size LP/SDP latest news: solved by Raghavendra-Meka-Kothari !
stronger quantitative lower bounds for SDP
rule out $\mathbf{2}^{\mathbf{n}^{0.999}}$-size SDP for (exact) MAX CUT Thank you!

