Lower bounds on the size of semidefinite relaxations

David Steurer Cornell

James R. Lee *Washington* Prasad Raghavendra Berkeley

Institute for Advanced Study, November 2015

unconditional computational lower bounds

for classical combinatorial optimization problems

• *examples:* MAX CUT, TRAVELING SALESMAN

in restricted but powerful model of computation

- o generalizes best known algorithms
- o all possible linear and *semidefinite relaxations*
- o first super-polynomial lower bound in this model

general program goes back to [Yannakakis'88] for refuting flawed P=NP proofs

connection to optimization / convex geometry

settle open question about *semidefinite lifts* of polytopes and *positive semidefinite rank*

[see survey Fazwi, Gouveia, Parrilo, Robinson, Thomas]

overview of results

proof strategy for lower bounds

optimal approximation algorithm in this model

achieves best possible approximation guarantees among all poly-time algorithms in this model

wide-range of problems: every constraint satisfaction problem

concrete algorithm:

sum-of-squares (aka Lasserre) hierarchy

[Shor'87, Parrilo'00, Lasserre'00]

derive lower bounds for general model from known *counterexamples (integrality gaps) for sum-of-squares algorithm*

[Grigoriev, Schoenebeck, Tulsiani, Barak-Chan-Kothari]

mathematical programming relaxations: powerful general approach for approximating NP-hard optimization problems

intriguing connection to hardness reductions (e.g., Unique Games Conjecture)

plausibly optimal polynomial-time algorithms

mathematical programming relaxations: powerful general approach for approximating NP-hard optimization problems

Yannakakis's modelmotivated by flawed P=NP proofs [Yannakakis'88]

formalizes *intuitive notion of LP relaxations* for problem

enough structure for *unconditional lower bounds* (indep. of P vs. NP)

Fiorini-Massar-Pokutta-Tiwary-de Wolf'12, Braun-Pokutta-S., Braverman-Moitra, Chan-Lee-Raghavendra-S., Rothvoß

extends to SDP relaxations (but LP lower bound techniques break down) [Fiorini-Massar-Pokutta-Tiwary-de Wolf, Gouveia-Parrilo-Thomas]

testing computational complexity conjectures *approximation / PCP:* UNIQUE GAMES, sliding scale conjecture *average-case:* RANDOM 3 SAT, PLANTED CLIQUE

equivalently: maximize $\sum_{ij \in E(G)} (1 - X_{ij})/2$ over cut polytope

 $CUT_n = convex hull of \{xx^\top \mid x \in \{-1,1\}^n\}$

#facets is exponential \rightarrow no small direct LP formulation

general size-n^d LP formulation of MAX CUT [Yannakakis'88] polytope $P \subseteq \mathbb{R}^{n^d}$ defined by $\leq n^d$ linear inequalities that projects to CUT_n

often exponential savings: ℓ_1 -norm unit ball, Held-Karp TSP relaxation, LP/SDP hierarchies

size lower bounds for LP formulations of MAX CUT? (implied by NP ≠ P/poly)

general size-n^d LP formulation of MAX CUT [Yannakakis'88] polytope $P \subseteq \mathbb{R}^{n^d}$ defined by $\leq n^d$ linear inequalities that projects to CUT_n

often exponential savings: ℓ_1 -norm unit ball, Held-Karp TSP relaxation, LP/SDP hierarchies

size lower bounds for LP formulations of MAX CUT? (implied by NP ≠ P/poly)

size lower bounds for LP formulations of MAX CUT

exponential lower bound: $d \geq \widetilde{\Omega}(n)$ [Fiorini-Massar-Pokutta-Tiwary-de Wolf'12]

approx. ratio > 1/2 requires superpolynomial size [Chan-Lee-Raghavendra-S.'13]

but: best known мах сит algorithms based on semidefinite programming

general size- n^{d} - H^{2} formulation of MAX CUT -polytope $P \subseteq \mathbb{R}^{n^d}$ defined by $\leq n^d$ linear inequalities that projects to CUT_n -spectrahedron $P \subseteq \mathbb{R}^{n^d \times n^d}$ defined by intersectingsome affine linear subspace with psd cone CUT_n (artistic freedom) size lower bounds for *LP* formulations of MAX CUT ? [Lee-Raghavendra-S.'15] exponential lower bound: $d \ge \Omega(n^{0.1})$ approx. ratio > 0.99 requires super polynomial size (match NP-hardness for CSPS) best approx. ratio by n^d -size SDP no better than O(d)-deg. sum-of-squares \rightarrow sum-of-squares is optimal SDP approximation algorithm for CSPs

recall MAX cut: maximize $f_G(x) = \sum_{ij \in E(G)} (x_i - x_j)^2 / 4$ over $x \in \{-1,1\}^n$

upper bound certificates

algorithm with approx. guarantee must *certify upper bounds* on objective function f_G

approx. ratio $\alpha \Rightarrow$ algorithm certifies $f_G \leq c$ for some $c \leq OPT_G/\alpha$

can characterize LP/SDP algorithms by their certificates

certificates of deg-d sum-of-squares algorithm (n^d-size SDP example)

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

captures best known algorithms for wide range of problems

recall MAX CUT: maximize $f_G(x) = \sum_{ij \in E(G)} (x_i - x_j)^2 / 4$ over $x \in \{-1, 1\}^n$

certificates of deg-d sum-of-squares algorithm (n^d-size SDP example)

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

equal as f'ns on hypercube

captures best known algorithms for wide range of problems

connection to Unique Games Conjecture

best candidate algorithm to refute UGC: deg- $\tilde{O}(1)$ sum of squares *enough to show:* $\exists d$. $\forall G$. $OPT_G - 0.879 \cdot f_G = \sum_i g_i^2$ with deg $g_i \leq d$

does larger degree help?

yes: if $f \ge 0$, then $f = g^2$ for some function g with deg $g \le n$ (but 2^n -size SDP) (tight: $(\frac{1}{2} - \sum_i x_i)^2 - \frac{1}{4} \ge 0$ has no deg-o(n) s.o.s. certificate)

certificates of deg-d sum-of-squares algorithm (n^d-size SDP example)

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

captures best known algorithms for wide range of problems

certificates of deg-d sum-of-squares algorithm (n^d-size SDP example)

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

equal as f'ns on hypercube

captures best known algorithms for wide range of problems

where are the vectors?

suppose: no deg-d sos certificate for $f_G \ge c$ \rightarrow separating hyperplane $D: \{\pm 1\}^n \rightarrow \mathbb{R}$ $\sum_x D(x) \cdot g(x)^2 \ge 0$ whenever deg $g \le d$

- $\sum_{x} D(x) \cdot 1 = 1$ $\sum_{x} D(x) \cdot f_G(x) > c$
- → $M = \sum_{x} D(x) \cdot xx^{\mathsf{T}}$ is usual SDP solution (in particular $M \ge 0$ and $M_{ii} = 1$)
- \rightarrow \exists vectors $\{v_i\}$ with $M_{ij} = \langle v_i, v_j \rangle$

D behaves like probability distribution over MAX CUT solutions with expected value > c → pseudo-distribution: useful way to think about LP/SDP relaxations in general

 $\left\{\sum_{i} g_{i}^{2} \mid \deg g_{i} \leq d\right\}$

certificates of deg-d sum-of-squares algorithm (n^d-size SDP example)

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

 $f_G - c'_i$

equal as f'ns on hypercube

captures best known algorithms for wide range of problems

certificates of deg-d sum-of-squares SDP algorithm

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

certificates of general n^d -size SDP algorithm

characterized by psd-matrix valued function $Q: \{\pm 1\}^n \to \mathbb{R}^{n^d \times n^d}$

certify $f \ge 0$ iff $\exists P \ge 0$. $\forall x \in \{\pm 1\}^n$. $f(x) = \operatorname{Tr} PQ(x) = \left\| \sqrt{P} \sqrt{Q(x)} \right\|_{F}^{2}$

example: deg-d sum-of-squares SDP algorithm, $Q(x) = x^{\otimes d} (x^{\otimes d})^{\top}$

general SDP Q captured by deg-d sum-of-squares if $\deg \sqrt{Q(x)} \le d$

certificates of deg-d sum-of-squares SDP algorithm

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

certificates of general n^d -size SDP algorithm

characterized by psd-matrix valued function $Q: \{\pm 1\}^n \to \mathbb{R}^{n^d \times n^d}$

certify $f \ge 0$ iff $\exists P \ge 0$. $\forall x \in \{\pm 1\}^n$. $f(x) = \operatorname{Tr} PQ(x) = \left\| \sqrt{P} \sqrt{Q(x)} \right\|_{F}^{2}$

example: deg-d sum-of-squares SDP algorithm, $Q(x) = x^{\otimes d} (x^{\otimes d})^{\top}$

general SDP Q captured by deg-d sum-of-squares if $\deg \sqrt{Q(x)} \le d$

where does Q come from? general spectrahedron: $S = \{z \in \mathbb{R}^{n^d} | \sum_i z_i A_i \ge B\}$ SDP relax. for MAX CUT: \exists cost functions $\{y_G\}$ and feasible solutions $\{z_x\} \subseteq S$ with $\langle y_G, z_x \rangle = f_G(x)$ (obj. value of cut x in graph G) choose Q with $Q(x) = B - \sum_i z_{x,i} A_i$ (slack of constraint at $z_x \in S$) duality: $\max_{z \in S} \langle y_G, z \rangle \le c$ iff $\exists P \ge 0$. $c - \langle y_G, z \rangle = \text{Tr } P \cdot (B - \sum_i z_i A_i)$ $\Rightarrow c - f_G(x) = \text{Tr } P \cdot Q(x)$ for all x certificates of deg-d sum-of-squares SDP algorithm

certify $f \ge 0$ for function $f: \{\pm 1\}^n \to \mathbb{R}$ iff $f = \sum_i g_i^2$ with $\forall i. \deg g_i \le d$

certificates of general n^d-size SDP algorithm

characterized by psd-matrix valued function $Q: \{\pm 1\}^n \to \mathbb{R}^{n^d \times n^d}$

certify $f \ge 0$ iff $\exists P \ge 0$. $\forall x \in \{\pm 1\}^n$. $f(x) = \operatorname{Tr} PQ(x) = \left\| \sqrt{P} \sqrt{Q(x)} \right\|_{F}^2$

example: deg-d sum-of-squares SDP algorithm, $Q(x) = x^{\otimes d} (x^{\otimes d})^{\top}$

general SDP Q captured by deg-d sum-of-squares if $\deg \sqrt{Q(x)} \le d$

low-degree $can simulate general n^d - size SDP algorithm by \frac{deg - \theta(d)}{deg - \theta(d)} sum - of - squares$ $\forall n^d - size SDP algorithm Q.$ $\forall low-deg matrix-valued function F.$ $\langle F, Q \rangle \approx \langle F, Q' \rangle$ $\exists low-deg SDP algorithm Q'. deg \sqrt{Q'(x)} \approx \log n^d and \frac{Q}{Q} \approx Q'$

general phenomenon

in order to approximate an object with respect to a family of tests, **the approximator need not be more complex than the tests**

technical challenge

naïve application allows us to bound deg Q'(x) but need to bound deg $\sqrt{Q'(x)}$ in general: deg $\sqrt{Q'} \gg \text{deg }Q'$ (at the heart of sum-of-squares counterexamples)

example: deg-d sum-of-squares SDP algorithm, $Q(x) = x^{\otimes d} (x^{\otimes d})^{\top}$

general SDP Q captured by deg-d sum-of-squares if $\deg \sqrt{Q(x)} \le d$

low-degree $can simulate general n^d-size SDP algorithm by \frac{deg-O(d)}{deg-O(d)} sum-of-squares$ $\forall n^d\text{-size SDP algorithm } Q.$ $\forall low-deg matrix-valued function F.$ $\langle F, Q \rangle \approx \langle F, Q' \rangle$ $\exists \text{ low-deg SDP algorithm } Q'. \quad \deg \sqrt{Q'(x)} \approx \log n^d \text{ and } \frac{Q \approx Q'}{Q'(x)}$

low-degree $can simulate general n^d-size SDP algorithm by \frac{deg-O(d)}{deg-O(d)} sum-of-squares$ $\forall n^d\text{-size SDP algorithm } Q.$ $\forall low-deg \text{ matrix-valued function } F.$ $\langle F, Q \rangle \approx \langle F, Q' \rangle$ $\exists \text{ low-deg SDP algorithm } Q'. \quad \deg \sqrt{Q'(x)} \approx \log n^d \text{ and } \frac{Q}{Q} \approx Q'$

approach: learn "*simplest*" SDP algorithm Q' that satisfies $\langle F, Q \rangle \approx \langle F, Q' \rangle$

measure of simplicity: quantum entropy (classical entropy of eigenvalues of $\{Q(x)\}$)

closed-form solution: $Q'(x) = e^{t \cdot F(x)}$ where $t = \text{entropy-defect}(Q) \le \log n^d$

matrix multiplicative weights method!

simple square root: $\sqrt{Q'(x)} = e^{t \cdot F(x)/2} \approx \sum_{k=0}^{t} \frac{1}{k!} (t \cdot F(x)/2)^k$

 \rightarrow degree \leq deg $F \cdot t$

summary

can simulate general small SDP alg. by low-degree SDP alg.

interpret poly-size SDP algorithm as quantum state with high entropy

learn simplest SDP / quantum state via matrix
multiplicative weights (maximum entropy)

open questions

approximation beyond CSP and relatives

rule out 0.999-approximation for TRAVELING SALEMAN by poly-size LP/SDP

strong quantitative lower bounds for approximation

rule out 0.999-approximation for MAX CUT by $2^{n^{\Omega(1)}}$ -size LP/SDP *latest news:* solved by Raghavendra-Meka-Kothari!

stronger quantitative lower bounds for SDP

rule out $2^{n^{0.999}}$ -size SDP for (exact) MAX CUT **Thank you!**