Summer school on semidefinite optimization

Approximation & Complexity

David Steurer

Cornell University

Part 1

September 6, 2012

Overview

Part 1 Unique Games Conjecture & Basic SDP

Part 2 SDP Hierarchies: Algorithms

Part 3 SDP Hierarchies: Limits

variables x_1, \ldots, x_n over finite alphabet Σ

list of predicates/constraints

Max 3Sat

variables $x_1, ..., x_n$ over finite alphabet $\Sigma = \{$ true, false $\}$ list of predicates/constraints

$$P_{1}(x) = x_{1} \lor x_{2} \lor \overline{x_{4}}$$

$$P_{m}(x) = \overline{x_{9}} \lor x_{42} \lor \overline{x_{7}}$$

Max Cut

variables $x_1, ..., x_n$ over finite alphabet $\Sigma = \mathbb{F}_2$ list of predicates/constraints $P_1(x) = \{x_1 + x_2 = 1\}$

 $P_m(x) = \{x_{13} + x_5 = 1\}$

UNIQUE GAMES(k)

.

.

variables $x_1, ..., x_n$ over finite alphabet $\Sigma = \mathbb{F}_k$ list of predicates/constraints

 $P_1(x) = \{x_1 + x_2 = 4\}$

value of one variable *uniquely* determines value of other variable

 $P_m(x) = \{x_{13} + x_5 = 9\}$

Optimization & Complexity

inherent difficulty, required computational resources

Goal: understand complexity of optimization problems

What are good algorithms?

What are hard instances?

Optimization & Complexity

Goal: understand complexity of optimization problems

require prohibitive resources (assuming P≠NP)

1970s Most discrete optimization problems are NP-hard [Cook, Karp, Levin] (including MAX 3SAT, MAX CUT, and UNIQUE GAMES)

So we can't hope to prove anything and have to resort to heuristics?

No!

Do not (blindly) trust impossibility results!

Optimization is not all or nothing! What about approximate solutions?

(Many classical algorithms for convex optimization are fundamentally approximation algorithms)

Goal

understand trade-off between complexity and approximation

Approximation

Goal

understand trade-off between complexity and approximation

How to measure approximation?

Approximation

Goal

understand trade-off between complexity and approximation

poly-time approximation algorithms:

non-trivial approximations for many problems, e.g., 0.878-approx for MAX CUT [Goemans-Williamson]

NP-hardness of approximation

as hard as solving it exactly!

for many problems, some approximation is NP-hard e.g., 0.999-approx for MAX CUT [PCP Theorem]

For very few problems, upper and lower bounds match!

Complexity vs Approximation Trade-off

Complexity vs Approximation Trade-off

Most other problems

Unique Games Conjecture (UGC)

For every $\varepsilon > 0$, there exists k,

[Khot'02]

constraints: $x_i - x_j = c \mod k$

 $(1 - \varepsilon, \varepsilon)$ -approximation for UNIQUE GAMES(k) is NP-hard

Implications of UGC

[Khot-Regev'03, Khot-Kindler-Mossel-O'Donnell'04, Mossel-O'Donnell-Oleszkiewicz'05, Raghavendra'08]

For every CSP, the *Basic SDP relaxation* has optimal integrality gap (\rightarrow higher-degree sum-of-squares relaxation have same gap)

Is the conjecture true?

Is the conjecture true?

subexponential-time algorithm[Arora-Barak-S.'10,
Barak-Raghavendra-S.'11] $(1 - \varepsilon, \varepsilon)$ -approximation for UG in time $\exp\left(n^{\varepsilon^{1/3}}\right)$ contrast: all known hardness results for CSPs imply $2^{\Omega(n)}$ -hardnesspart of framework for rounding SDP hierarchies

lower bounds for certain SDP hierarchies

[Barak-Gopalan-Håstad-Meka-Raghavendra-S.'11]

subexp.-time essentially optimal within the rounding framework

hard instances based on new kind graphs (with extremal spectral properties)

sum-of-squares relaxations

[Barak-Brandão-Harrow-Kelner-S.-Zhou'12]

"all known" instances of UG are solved in O(1)-degree sos relaxation (including instances that are hard for other SDP hierarchies) *Generic Approximation Algorithm for CSPs* [Raghavendra-S.'09]

For any CSP X,

OPT vs SDP

approximation for X = *integrality gap* of Basic SDP for X ALG vs OPT

based on rounding optimal solutions to Basic SDP relaxation

new perspective on previous rounding algorithms, like GW

no explicit approximation guarantee

polynomial-time but huge constants (depending on desired accuracy)

Basic SDP Relaxation for

Constraint Satisfaction Problems

variables $x_1, ..., x_n$ over finite alphabet Σ list of predicates/constraints first two moments are consistent and positive semidefinite

local distributions

Goal: maximize expected number of satisfied predicates

Approximating CSPs using Folding

"*Efficient*" whenever folding leaves only O(1) distinct variables

Challenge: ensure \Im_{folded} has a good solution

Approximating CSPs using Folding

Theorem can fold every CSP instance efficiently to $2^{\text{poly}(1/\varepsilon)}$ variables

 $sdp(\mathfrak{I}_{folded}) \ge sdp(\mathfrak{I}) - \varepsilon \rightarrow optimal rounding scheme$

How to fold using SDP solutions

How to fold using SDP solutions

found solution for SDP(\mathfrak{T}_{folded}) with value $\geq sdp(\mathfrak{T}) - 2\varepsilon$

But: some constraints violated, on average by $\leq 2\varepsilon$

Robustness property of Basic SDP relaxation

can repair violations at proportional cost for objective value

 $\Rightarrow \operatorname{sdp}(\mathfrak{I}_{folded}) \ge \operatorname{sdp}(\mathfrak{I}) - 4\varepsilon$

Summer school on semidefinite optimization

Approximation & Complexity

David Steurer

Cornell University

Part 2

September 7, 2012

Overview

Part 1 Unique Games Conjecture & Basic SDP

Part 2 SDP Hierarchies: Algorithms

Part 3 SDP Hierarchies: Limits

Subexponential Algorithm for Unique Games UG(ε) in time exp $\left(n^{\varepsilon^{1/3}}\right)$ via level- $n^{\varepsilon^{1/3}}$ SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games) [Barak-Raghavendra-S.'11, Guruswami-Sinop'11]

Potentially applies to wide range of "graph problems" *Examples:* MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP

Some more successes (polynomial time algorithms)

Approximation scheme for general MAX 2-CSP[Barak-Raghavendra-S.'11]on constraint graphs with O(1) significant eigenvalues

Better 3-COLORING approximation for some graph families[Arora-Ge'11]Better approximation for MAX BISECTION (general graphs)[Raghavendra-Tan'12][Austrin-Benabbas-Georgiou'12]

Subexponential Algorithm for Unique Games UG(ε) in time exp $\left(n^{\varepsilon^{1/3}}\right)$ via level- $n^{\varepsilon^{1/3}}$ SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games) [Barak-Raghavendra-S.'11, Guruswami-Sinop'11]

Potentially applies to wide range of "graph problems" *Examples:* MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP

Key concept: global correlation

Interlude: Pairwise Correlation

Two jointly distributed random variables X and Y

Correlation measures dependence between X and Y

Does the distribution of X change if we condition Y?

Examples:

(Statistical) distance between $\{X, Y\}$ and $\{X\}\{Y\}$ Covariance $\mathbf{E} XY - (\mathbf{E} X)(\mathbf{E} Y)$ (if X and Y are real-valued) Mutual Information I(X, Y) = H(X) - H(X|Y)

entropy lost due to conditioning

random variables X_1, \ldots, X_n over \mathbb{Z}_k Sampling $\Pr(X_i - X_i = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_i = c$ Rounding problem degree- ℓ moments of a distribution over assignments with expected value $\geq 1 - \varepsilon$ Given UG instance + level- ℓ SDP solution with value $\geq 1 - \epsilon$ ($\ell = n^{O(\epsilon^{1/3})}$) Sample distribution over assignments with expected value $\geq \varepsilon$ similar (?)

More convenient to think about actual distributions instead of SDP solutions

But: proof *s*hould only "use" linear equalities satisfied by these moments and *certain* linear inequalities, namely non-negativity of squares

(Can formalize this restriction as proof system)

Sampling by conditioning

Pick an index *j*

Sample assignment *a* for index *j* from its marginal distribution $\{X_j\}$

Condition distribution on this assignment, $X'_i \coloneqq \{X_i \mid X_j = a\}$

If we condition *n* times, we correctly sample the underlying distribution

Issue: after conditioning step, know only degree $\ell - 1$ moments (instead of degree ℓ)

Hope: need to condition only a small number of times; then do something else

How can conditioning help?

How can conditioning help?

Allows us to assume: distribution has low global correlation

$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \le O_k(1) \cdot \frac{1}{\ell}$$

typical pair of variables almost independent

Claim: general cases reduces to case of *low global correlation*

Proof:

Idea: significant global correlation \rightarrow conditioning decreases entropy Potential function $\Phi = \mathbf{E}_i H(X_i)$

Can always find index *j* such that for $X'_i \coloneqq \{X_i | X_j\}$

 $\Phi - \Phi' \geq \mathbf{E}_i H(X_i) - \mathbf{E}_i H(X_i | X_j) = \mathbf{E}_i I(X_i, X_j) \geq \mathbf{E}_{i,j} I(X_i, X_j)$

Potential can decrease $\leq \ell/2$ times by more than $O_k(1/\ell)$

How can conditioning help?

Allows us to assume: distribution has *low global correlation*

$$\mathbf{E}_{i,j}\mathbf{I}(X_i, X_j) \le O_k(1) \cdot \frac{1}{\ell}$$

typical pair of variables almost pairwise independent

How can low global correlation help?

For some problems, this condition alone gives improvement over BASIC SDP

Example: MAX BISECTION [Raghavendra-Tan'12, Austrin-Benabbas-Georgiou'12]

hyperplane rounding gives near-bisection if global correlation is low

$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

For Unique Games

random variables $X_1, ..., X_n$ over \mathbb{Z}_k $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:

$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

For Unique Games

random variables X_1, \dots, X_n over \mathbb{Z}_k

 $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$

Only

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:

Show: no other cases are possible! (informal)

Idea: round components independently & recurse on them

How many edges ignored in total? (between different components)

We chose $\ell = n^{\beta}$ for $\beta \gg \varepsilon$

→ each level of recursion decrease component size by factor $\ge n^{\beta}$

- \rightarrow at most $1/\beta$ levels of recursion
- → total fraction of ignored edges $\leq \varepsilon/\beta \ll 1$

→ $2^{n^{\beta}}$ -time algorithm for UG(ε)

2) many small independent components:

$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

For Unique Games

random variables $X_1, ..., X_n$ over \mathbb{Z}_k $\Pr(X_i - X_i = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_i = c$

Only

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:

Suppose: random variables $X_1, ..., X_n$ over \mathbb{Z}_k with uniform marginals $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$ global correlation $\le 1/n^{2\beta}$

Then: $\exists S \subseteq [n]$. $|S| \leq n^{1-\beta}$ & all constraints touching S stay inside of S except for an $O(\sqrt{\epsilon/\beta})$ fraction (in constraint graph, S has low expansion)

Proof: Define
$$\operatorname{Corr}(X_i, X_j) = \max_c \Pr(X_i - X_j = c)$$

Correlation Propagation For random walk $i \sim j_1 \sim \cdots \sim j_t$ of length t in constraint graph $Corr(X_i, X_{j_t}) \ge (1 - \varepsilon)^t$

$$\operatorname{Corr}(X_i, X_{j_t}) \gtrsim \Pr(X_i - X_{j_1} = c_1) \cdots \Pr(X_i - X_{j_t} = c_t)$$

proof uses non-negativity of squares (sum-of-squares proof)
→ works also for SDP hierarchy

Suppose: random variables $X_1, ..., X_n$ over \mathbb{Z}_k with uniform marginals $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$ global correlation $\le 1/n^{2\beta}$

Then: $\exists S \subseteq [n]$. $|S| \leq n^{1-\beta}$ & all constraints touching S stay inside of S except for an $O(\sqrt{\epsilon/\beta})$ fraction (in constraint graph, S has low expansion)

Proof: Define
$$\operatorname{Corr}(X_i, X_j) = \max_c \Pr(X_i - X_j = c)$$

Correlation Propagation $t = \frac{\beta}{\varepsilon} \cdot \log n$ For random walk $i \sim j_1 \sim \cdots \sim j_t$ of length t in constraint graph $\operatorname{Corr}(X_i, X_{j_t}) \ge (1 - \varepsilon)^t \ge 1/n^{\beta}$ low global correlation

On the other hand, $\operatorname{Corr}(X_i, X_j) \leq 1/n^{2\beta}$ for typical j

- \rightarrow random walk from *i* doesn't mix in *t*-steps (actually far from mixing)
- \rightarrow exist small set *S* around *i* with low expansion

Suppose: random variables $X_1, ..., X_n$ over \mathbb{Z}_k with uniform marginals $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$ global correlation $\le 1/n^{2\beta} - 1/\ell$

Then: constraint graph has ℓ eigenvalues $\geq 1 - \epsilon$

Proof: a graph has ℓ eigenvalues $\geq \lambda \iff$ \exists vectors v_1, \dots, v_n (local: typical edge) $\mathbf{E}_{i \sim j} \langle v_i, v_j \rangle \geq \lambda$ (global: typical pair) $\mathbf{E}_{p,q} \langle v_p, v_q \rangle^2 \leq 1/\ell$ $\mathbf{E}_i ||v_i||^2 = 1$

→ For graphs with < ℓ such eigenvalues, algorithm runs in time n^{ℓ}

Thanks!

Summer school on semidefinite optimization

Approximation & Complexity

David Steurer

Cornell University

Part 3

September 7, 2012

Overview

Part 1 Unique Games Conjecture & Basic SDP

Part 2 SDP Hierarchies: Algorithms

Part 3 SDP Hierarchies: Limits

Approximation limits of s.o.s. methods

independent of P vs NP question

suggests random instances are hard

evidence that NP-hard problem take exp. time

Approximation limits of s.o.s. methods

In terms of polynomials:

edges \gg # vertices

random 3-uniform hypergraph *H*, random sign vector $\sigma \in \{\pm 1\}^H$

degree-3 polynomial $P = \sum_{e \in H} \sigma_e \cdot X^e$

Then, w.h.p.,

Chernoff bound over σ

```
(1) P \le 0.01 over \{\pm 1\}^n
```

(2) all s.o.s. certificate for $P \leq 0.99$ over $\{\pm 1\}^n$ have degree $\Omega(n)$

(2') no degree-o(n) s.o.s. refutation of the system $\{\sigma_e \cdot X^e = 1 \mid e \in H\} \cup \{X_i^2 = 1 \mid i \in V\}$

Interlude: Bounded-width Gaussian Elimination

system of polynomials over $\{\pm 1\}^n$

system of affine linear forms over \mathbb{F}_2^n

$$X_{1}X_{2}X_{3} = 1 \qquad \longleftrightarrow \qquad \begin{array}{c} x_{1} + x_{2} + x_{3} = 0 \\ \vdots \\ \vdots \\ -X_{2}X_{6}X_{8} = 1 \end{array} \qquad \longleftrightarrow \qquad \begin{array}{c} x_{1} + x_{2} + x_{3} = 0 \\ \vdots \\ \vdots \\ 1 + x_{2} + x_{6} + x_{8} = 0 \end{array}$$

width-d Gaussian refutation

derivation of 1 = 0 by adding equations of *width* $\leq d$

variables in equation

Approximation limits of s.o.s. methods

Part 1random 3-uniform signed hypergraph (H, σ) \rightarrow corresponding system has elimination width $\Omega(n)$

Part 2 For systems we consider,

width-d Gaussian refutation

- \leftrightarrow degree-*d* Nullstellensatz refutation
- \leftrightarrow degree-*d* Positivstellensatz refutation

Random hypergraph system \rightarrow no width- $\Omega(n)$ Gaussian refutation

bipartite graph

vertex sets with |S| < n/100 $\rightarrow \Omega(|S|)$ unique neighbors

 aX^{α} is product of edge terms $S \rightarrow aX^{\alpha}$ has width $\geq \Gamma_{\text{unique}}(S)$

every refutation contains term aX^{α} product of $\approx n/100$ edges terms

No width-10*d* Gaussian refutation \rightarrow no degree-*d* Positivstellensatz refutation

How would degree-d s.o.s. refutation look like?

 \exists degree-*d* multipliers Q_e

1 + S. O. S. =
$$\sum_{e} Q_{e} \cdot (\sigma_{e} X^{e} - 1)$$
 over $\{\pm 1\}^{n}$

How to construct M? → Gaussian elimination

To rule out refutation:

exhibit linear form *M* on polynomials over $\{\pm 1\}^n$

M(1) = 1 $M(S. 0. S) \ge 0 \qquad \forall S. 0. S$ $M(Q \cdot (\sigma_e X^e - 1)) = 0 \qquad \forall e, \text{ degree-} d Q$

No width-10*d* Gaussian refutation \rightarrow no degree-*d* Positivstellensatz refutation

Let \mathcal{E} be set of aX^{α} such that $aX^{\alpha} = 1$ derived by width-10*d* elimination

Relation: $aX^{\alpha} \sim bX^{\beta}$ if $aX^{\alpha} = E \cdot bX^{\beta}$ over $\{\pm 1\}^n$ for some $E \in \mathcal{E}$

Claim: equivalence relation on degree-*d* terms

symmetry uses $X_i^2 = 1$ transitivity uses width > 2*d*

Define:

$$M(X^{\alpha}) = \begin{cases} 1 & \text{if } X^{\alpha} \sim 1 \\ -1 & \text{if } X^{\alpha} \sim -1 \\ 0 & \text{otherwise} \end{cases}$$

No width-10*d* Gaussian refutation \rightarrow no degree-*d* Positivstellensatz refutation

Let \mathcal{E} be set of aX^{α} such that $aX^{\alpha} = 1$ derived by width-10*d* elimination

Relation: $aX^{\alpha} \sim bX^{\beta}$ if $aX^{\alpha} = E \cdot bX^{\beta}$ over $\{\pm 1\}^n$ for some $E \in \mathcal{E}$

No width-10*d* Gaussian refutation \rightarrow no degree-*d* Positivstellensatz refutation

Let \mathcal{E} be set of aX^{α} such that $aX^{\alpha} = 1$ derived by width-10*d* elimination

Relation: $aX^{\alpha} \sim bX^{\beta}$ if $aX^{\alpha} = E \cdot bX^{\beta}$ over $\{\pm 1\}^n$ for some $E \in \mathcal{E}$

$$M(X^{\alpha}) = \begin{cases} 1 & \text{if } X^{\alpha} \sim 1 \\ -1 & \text{if } X^{\alpha} \sim -1 \\ 0 & \text{otherwise} \end{cases} \quad \begin{array}{c} v_{1} & v_{2} & v_{r} \\ v_{1} & c_{2}^{+} & c_{r}^{+} \\ C_{1}^{+} & c_{2}^{+} & c_{r}^{+} \\ c_{1}^{-} & c_{2}^{-} & c_{r}^{-} \\ c_{1}^{-} & c_{1}^{-} & c_{2}^{-} \\ c_{1}^{-} & c_{2}^{-} & c_{r}^{-} \\ c_{1}^{-} & c_{1}^{-} & c_{1}^{-} \\ c_{1}^{-} & c_{1}^{-} & c_{1}$$