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Constraint Satisfaction Problems

variables �ଵ, … , �� over finite alphabet Σ
list of predicates/constraints

௠ܲ �
ଵܲ �

.

.

.

local: only depend on �ሺͳሻ variables

only predicates of certain types

Goal: satisfy as many predicates as possible



Constraint Satisfaction Problems

variables �ଵ, … , �� over finite alphabet Σ
list of predicates/constraints

௠ܲ �
ଵܲ �

.

.

.

Goal: satisfy as many predicates as possible

MAX 3SAT = {true, false}
= �ଵ ∨ �ଶ ∨ �ସ
= �9 ∨ �ସଶ ∨ �7



Constraint Satisfaction Problems

variables �ଵ, … , �� over finite alphabet Σ
list of predicates/constraints

௠ܲ �
ଵܲ �

.

.

.

Goal: satisfy as many predicates as possible

MAX CUT = �ଶ
= �ଵ + �ଶ = ͳ
= �ଵଷ + �ହ = ͳ



Constraint Satisfaction Problems

variables �ଵ, … , �� over finite alphabet Σ
list of predicates/constraints

௠ܲ �
ଵܲ �

.

.

.

Goal: satisfy as many predicates as possible

UNIQUE GAMES(k) = �୩

= �ଵଷ + �ହ = 9
= �ଵ + �ଶ = 4

value of one variable uniquely 

determines value of other variable



Optimization & Complexity

Goal: understand complexity of optimization problems

inherent difficulty, required 

computational resources

What are good algorithms?

lower 

bounds

upper 

bounds

What are hard instances?



Optimization & Complexity

Goal: understand complexity of optimization problems

1970s

require prohibitive resources 

(assuming P≠NP)

Most discrete optimization problems are NP-hard [Cook, Karp, Levin]

(including MAX 3SAT, MAX CUT, and UNIQUE GAMES)

So we can’t hope to prove anything 
and have to resort to heuristics?

No!

Do not (blindly) trust impossibility results!



Optimization is not all or nothing! 

What about approximate solutions?

(Many classical algorithms for convex optimization

are fundamentally approximation algorithms)

Goal
understand trade-off between 

complexity and approximation



Approximation

Goal
understand trade-off between 

complexity and approximation

How to measure approximation?α-approximatingALG ൒ � ⋅ OPT
(c,s)-approximating

if OPT ൒ �, then ALG ൒ �
easy to state, but sometimes too coarse

finest measure



Approximation

poly-time approximation algorithms:

non-trivial approximations for many problems, 

e.g., 0.878-approx for MAX CUT [Goemans-Williamson]

NP-hardness of approximation

Goal
understand trade-off between 

complexity and approximation

for many problems, some approximation is NP-hard

e.g., 0.999-approx for MAX CUT [PCP Theorem]

as hard as solving it exactly!

For very few problems, upper and lower bounds match!



[…,(astad’ͻ͹,
Moshkovitz-Raz’Ͳ8]

approximation

guarantee

no guarantee exact

complexity

�� ଵ
ʹΩ �

MAX 3SAT

Complexity vs Approximation Trade-off 

7/8



approximation

guarantee

no guarantee exact

complexity

�� ଵ
ʹΩ �

Complexity vs Approximation Trade-off 

Most other problems

What hard instances do we not know of?

What algorithms are we missing?

?



Unique Games Conjecture (UGC) [Khot’Ͳʹ]
For every � > Ͳ, there exists k,ͳ − �, � -approximation for UNIQUE GAMES(k) is NP-hard

constraints: �௜ − �௝ = � mod k

Implications of UGC

For every CSP, the Basic SDP relaxation has optimal integrality gap

( higher-degree sum-of-squares relaxation have same gap)

Is the conjecture true?

[Khot-Regev’Ͳ͵, Khot-Kindler-Mossel-O’Donnell’ͲͶ, 
Mossel-O’Donnell-Oleszkiewicz’Ͳͷ, Raghavendra’Ͳ8]



lower bounds for certain SDP hierarchies

Is the conjecture true?

subexponential-time algorithm

part of framework for rounding SDP hierarchies

ͳ − �, � -approximation for UG in time exp ��1/3
contrast: all known hardness results for CSPs imply ʹΩ � -hardness

subexp.-time essentially optimal within the rounding framework

hard instances based on new kind graphs (with extremal spectral properties)

sum-of-squares relaxationsǲall knownǳ instances of UG are solved in � ͳ -degree sos relaxation

(including instances that are hard for other SDP hierarchies)

[Barak-Gopalan-Håstad-

Meka-Raghavendra-S.’ͳͳ]

[Arora-Barak-S.’ͳͲ, 
Barak-Raghavendra-S.’ͳͳ]

[Barak-Brandão-Harrow-

Kelner-S.-Zhou’ͳʹ]



Generic Approximation Algorithm for CSPs

approximation for X  =  integrality gap of Basic SDP for X

For any CSP X,

[Raghavendra-S.’Ͳͻ]

polynomial-time but huge constants (depending on desired accuracy)

based on rounding optimal solutions to Basic SDP relaxation 

new perspective on previous rounding algorithms, like GW

no explicit approximation guarantee

ALG vs OPT

OPT vs SDP



Constraint Satisfaction Problems

variables �ଵ, … , �� over finite alphabet Σ
list of predicates/constraints

�௠
�ଵ
.

.

.

Goal: maximize expected number of satisfied predicates 

Basic SDP Relaxation for

= �ଵ ∨ �ଶ ∨ �ସ
= �9 ∨ �ସଶ ∨ �7

local distributions

௠ܲ �
ଵܲ �

.

.

.

first two moments 

are consistent and 

positive semidefinite



CSP Instance ℑ
CSP Instance ℑ୤୭୪ୢୣୢ

Folding identification

of variables

optimal solution forℑ୤୭୪ୢୣୢ

approximate solution 

for ℑ
Unfolding of

the assignment

Brute Force

Challenge: ensure ℑ୤୭୪ୢୣୢ has a good solution

approximation 

algorithm

preserves value

of assignment

ǲEfficientǳ whenever folding leaves only OȋͳȌ distinct variables
enumerate all 

assignments

Approximating CSPs using Folding



CSP Instance ℑ
CSP Instance ℑ୤୭୪ୢୣୢ

Folding identification

of variables

optimal solution forℑ୤୭୪ୢୣୢ

approximate solution 

for ℑ
Unfolding of

the assignment

Brute Force

approximation 

algorithm

preserves value

of assignment

enumerate all 

assignments

Approximating CSPs using Folding

can fold every CSP instance efficiently to ʹ୮୭୪y ଵ/� variablessdp ℑ୤୭୪ୢୣୢ ൒ sdp ℑ − �  optimal rounding scheme

Theorem



CSP Instance ℑ CSP Instance ℑ୤୭୪ୢୣୢ
optimal solution

for Basic-SDP(ℑ)

solve SDP

Dimension 

Reduction

Project on random݀-dimensional

subspace

solution for SDP(ℑ)
average violation < �

Discretize

Move vectors to 

closest point 

on �-net

(size < ʹଵ/� )

solution for SDP(ℑ)
average violation < ʹ�

ℝ�
ℝௗ

identify variables

with same vectors

Folding guided by SDP solution

Folding

How to fold using SDP solutions



CSP Instance ℑ CSP Instance ℑ୤୭୪ୢୣୢFolding guided by SDP solution

How to fold using SDP solutions

found solution for SDP(ℑ୤୭୪ୢୣୢ) with value ൒ sdp ℑ − ʹ�
But: some constraints violated, on average by ൑ ʹ�
Robustness property of Basic SDP relaxation

can repair violations at proportional cost for objective value

 sdp ℑ௙௢௟ௗ௘ௗ ൒ sdp ℑ − 4�



Summer school on semidefinite optimization

Approximation & Complexity

Part 2

David Steurer

Cornell University

September 7, 2012



Overview

Part 1 Unique Games Conjecture & Basic SDP

Part 2 SDP Hierarchies: Algorithms

Part 3 SDP Hierarchies: Limits



General framework for rounding SDP hierarchies (not restricted to Unique Games)

[Barak-Raghavendra-S.’ͳͳ, Guruswami-Sinop’ͳͳ]Potentially applies to wide range of  ǲgraph problemsǳ
Examples: MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP

Some more successes    (polynomial time algorithms)

Approximation scheme for general MAX 2-CSP

on constraint graphs with �ሺͳሻ significant eigenvalues

Better 3-COLORING approximation for some graph families

Better approximation for MAX BISECTION (general graphs)

Subexponential Algorithm for Unique GamesUGሺ�ሻ in time exp �� Τ1 3
via level-�� Τ1 3

SDP relaxation

[Arora-Ge’ͳͳ]
[Raghavendra-Tan’ͳʹ]

[Barak-Raghavendra-S.’ͳͳ]

[Austrin-Benabbas-Georgiou’ͳʹ]



Subexponential Algorithm for Unique GamesUGሺ�ሻ in time exp �� Τ1 3
via level-�� Τ1 3

SDP relaxation

Key concept: global correlation

General framework for rounding SDP hierarchies (not restricted to Unique Games)

[Barak-Raghavendra-S.’ͳͳ, Guruswami-Sinop’ͳͳ]Potentially applies to wide range of  ǲgraph problemsǳ
Examples: MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP



Interlude: Pairwise Correlation

Correlation measures dependence between ܺ and ܻ
Examples:

Mutual Information I ܺ, ܻ = ܪ ܺ − � ሺܺ|ܻሻCovarianceܪ ܻܺ − ሺ� ܺሻሺ� ܻሻ (if ܺ and ܻ are real-valued)

(Statistical) distance between {ܺ, ܻ} and {ܺ}{ܻ}
Does the distribution of ࢄ change if we condition ࢅ?

Two jointly distributed random variables ܺ and ܻ

entropy lost due to conditioning



Rounding problem

Given

Sample

distribution over assignments with expected value ൒ �
+   level-ℓ SDP solution with value ൒ ͳ − �UG instance (ℓ = �� �1/3 )

Sampling

degree-ℓmoments of a distribution over 

assignments with expected value ൒ ͳ − �

similar (?)

More convenient to think about actual distributions 

instead of SDP solutions

But: proof should only ǲuseǳ linear equalities satisfied by these moments
and certain linear inequalities, namely non-negativity of squares

(Can formalize this restriction as proof system)

random variables ଵܺ, … , ܺ� over ℤ௞Pr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �



Sampling by conditioning

Pick an index ݆
Sample assignment � for index ݆ from its marginal distribution ௝ܺ
Condition distribution on this assignment,  ௜ܺ′ ≔ ௜ܺ ௝ܺ = �

Hope: need to condition only a small number of times; then do something else

How can conditioning help?

Issue: after conditioning step, know only degree ℓ − ͳ moments   (instead of degree ℓ)

If we condition � times, we correctly sample the underlying distribution



How can conditioning help?

Allows us to assume: distribution has low global correlation

Claim: general cases reduces to case of low global correlation

typical pair of variables 

almost independent

Proof: 

Idea: significant global correlation  conditioning decreases entropy

�௜,௝I ௜ܺ , ௝ܺ ൑ �௞ ͳ ⋅ ൗͳ ℓ

Potential function Φ = �௜ܪ ௜ܺ
Φ−Φ′ ൒ �௜ ܪ ௜ܺ − �௜ ܪ ௜ܺ ௝ܺ = �௜ ܫ ௜ܺ, ௝ܺ ൒ �௜,௝ ܫ ௜ܺ , ௝ܺ

Can always find index ݆ such that for ௜ܺ′ ≔ ௜ܺ ௝ܺ
Potential can decrease ൑ ℓ/ʹ times by more than �௞ ͳ/ℓ



How can low global correlation help?

Allows us to assume: distribution has low global correlation

typical pair of variables 

almost pairwise independent

�௜,௝I ௜ܺ , ௝ܺ ൑ �௞ ͳ ⋅ ൗͳ ℓ
How can conditioning help?



For some problems, this condition alone gives improvement over BASIC SDP

Example: MAX BISECTION [Raghavendra-Tan’ͳʹ, Austrin-Benabbas-Georgiou’ͳʹ]
hyperplane rounding gives near-bisection if global correlation is low

How can low global correlation help? �௜,௝I ௜ܺ , ௝ܺ ൑ ൗͳ ℓ



How can low global correlation help? �௜,௝I ௜ܺ , ௝ܺ ൑ ൗͳ ℓ
For Unique Games

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components: 

all variables have uniform marginal distribution & ∃ partition:

random variables ଵܺ, … , ܺ� over ℤ௞Pr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �

...ܺ௣ ܺ௤I ܺ௣, ܺ௤ = Ͳ  inter-component constraint cannot be typical

 ൑ � fraction of constraints are inter-component

ℓ equal-sized 

components



How can low global correlation help? �௜,௝I ௜ܺ , ௝ܺ ൑ ൗͳ ℓ
For Unique Games

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components: 

all variables have uniform marginal distribution & ∃ partition:

random variables ଵܺ, … , ܺ� over ℤ௞Pr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �

...

Show: no other cases

are possible! (informal)

Only

I ܺ௣, ܺ௤ = Ͳ  inter-component constraint cannot be typical

 ൑ � fraction of constraints are inter-component

ℓ equal-sized 

components



How can low global correlation help? �௜,௝I ௜ܺ , ௝ܺ ൑ ൗͳ ℓ
For Unique Games

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components: 

all variables have uniform marginal distribution & ∃ partition:

random variables ଵܺ, … , ܺ� over ℤ௞Pr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �

...

Only

 easy to ǲsampleǳ
ℓ equal-sized 

components

Idea: round components independently & recurse on them

 ʹ��-time algorithm for UGሺ�ሻ

How many edges ignored in total?  (between different components)

We chose ℓ = �� for � ب �
 each level of recursion decrease component size by factor ൒ ��
 at most ͳ/� levels of recursion 

 total fraction of ignored edges ൑ �/� ا ͳ



How can low global correlation help? �௜,௝I ௜ܺ , ௝ܺ ൑ ൗͳ ℓ
For Unique Games

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components: 

all variables have uniform marginal distribution & ∃ partition:

random variables ଵܺ, … , ܺ� over ℤ௞Pr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �

...

Only

ℓ equal-sized 

components



global correlation ൑ ͳ/�ଶ�
Suppose:

Then: ∃ � ⊆ � . � ൑ �ଵ−� & all constraints touching � stay inside of �
except for an � �/� fraction

(in constraint graph, S has low expansion)

Proof:

For random walk ݅ ∼ ݆ଵ ∼ ⋯ ∼ ݆� of length � in constraint graphCorrሺ ௜ܺ , ௝ܺ�ሻ ൒ ͳ − � �
Define Corr ௜ܺ, ௝ܺ = max� Pr ௜ܺ − ௝ܺ = �

proof uses non-negativity of squares (sum-of-squares proof) 

 works also for SDP hierarchy

Correlation Propagation

random variables ଵܺ, … , ܺ� over ℤ௞ with uniform marginalsPr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �

Corr ௜ܺ , ௝ܺ� ≳ Pr ௜ܺ − ௝ܺ1 = �ଵ ⋅⋅⋅ Pr ௜ܺ − ௝ܺ� = ��



global correlation ൑ ͳ/�ଶ�
Suppose:

Then: ∃ � ⊆ � . � ൑ �ଵ−� & all constraints touching � stay inside of �
except for an � �/� fraction

(in constraint graph, S has low expansion)

Proof:

For random walk ݅ ∼ ݆ଵ ∼ ⋯ ∼ ݆� of length � in constraint graphCorrሺ ௜ܺ , ௝ܺ�ሻ ൒ ͳ − � �
Define Corr ௜ܺ, ௝ܺ = max� Pr ௜ܺ − ௝ܺ = �
Correlation Propagation

random variables ଵܺ, … , ܺ� over ℤ௞ with uniform marginalsPr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �

� = ൗ� � ⋅ log �൒ ͳ/��
On the other hand, Corr ௜ܺ , ௝ܺ ൑ ͳ/�ଶ� for typical j

 random walk from ݅ doesn’t mix in �-steps (actually far from mixing)

 exist small set � around ݅ with low expansion

low global correlation



global correlation ൑ ͳ/�ଶ�
Suppose:

Then:

Proof:

random variables ଵܺ, … , ܺ� over ℤ௞ with uniform marginalsPr ௜ܺ − ௝ܺ = � ൒ ͳ − � for typical constraint �௜ − �௝ = �ͳ/ℓ
constraint graph has ℓ eigenvalues ൒ ͳ − �
a graph has ℓ eigenvalues ൒ � ⇔ ∃ vectors �ଵ, … , vn�௜∼௝ �௜ , �௝ ൒ ��௣,௤ �௣, �௤ ଶ ൑ ͳ/ℓ�௜ �௜ ଶ = ͳ

(local: typical edge)

(global: typical pair)

 For graphs with < ℓ such eigenvalues, algorithm runs in time nℓ
Thanks!
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Approximation limits of s.o.s. methods

For a random instance ℑ of MAX 3XOR, with high probability

(2) value of degree-Ͳ.Ͳͳ݊ s.o.s. relaxation for ℑ is at least Ͳ.99(1) value of ℑ is at most ͳ/ʹ + Ͳ.Ͳͳ
[Grigoriev’Ͳͳ,Schoenebeck’Ͳ8]predicates �௜ ⊕�௝ ⊕ ഥ�௝random assignment has 

value ½ in expectation

Corresponding NP-hardness result is known!

Why is this result interesting?

independent of P vs NP question

suggests random instances are hard

evidence that NP-hard problem take exp. time

# predicates ≫ # variables



Approximation limits of s.o.s. methods

random ͵-uniform hypergraph �, random sign vector � ∈ ±ͳ �
# edges ≫ # vertices

degree-͵ polynomial ܲ = σ�∈� �� ⋅ ��
Then, w.h.p.,

(1) ܲ ൑ Ͳ.Ͳͳ over ±ͳ �
(2) all s.o.s. certificate for  ܲ ൑ Ͳ.99 over ±ͳ � have degree Ωሺ݊ሻȋʹ’Ȍ no degree-݋ሺ݊ሻ s.o.s. refutation of the system �� ⋅ �� = ͳ ݁ ∈ � ∪ �௜ଶ = ͳ � ∈ �

Chernoff bound over �

In terms of polynomials:



Interlude: Bounded-width Gaussian Elimination

system of polynomials over ±ͳ � system of affine linear forms over �ଶ�
�ଵ�ଶ�ଷ = ͳ

−�ଶ�6�8 = ͳ
.

.

.

�ଵ + �ଶ + �ଷ = Ͳ
.

.

.ͳ + �ଶ + �6 + �8 = Ͳุ
width-݀ Gaussian refutation

derivation of ͳ = Ͳ by adding equations of width ൑ ݀
# variables in equation



Approximation limits of s.o.s. methods

random 3-uniform signed hypergraph ሺ�, �ሻPart 1

Part 2

 corresponding system has elimination width Ωሺ݊ሻ
For systems we consider,

width-݀ Gaussian refutationุ degree-݀ Nullstellensatz refutationุ degree-݀ Positivstellensatz refutation



Random hypergraph system ื no width-Ω ݊ Gaussian refutation

Want to show:

bipartite graph

�௜௝௞�௜௝௞ �௜�௝�௞

vertex sets with S < ݊/ͳͲͲ
 Ω |�| unique neighbors

ܽ�ఈ is product of edge terms �
 ܽ�ఈ has width ൒ Γuniqueሺ�ሻ

(edge) 

terms

every refutation contains term ܽ�ఈ
product of ≈ ݊/ͳͲͲ edges terms

variables



No width-ͳͲ݀ Gaussian refutation ื no degree-݀ Positivstellensatz refutation

How would degree-d s.o.s. refutation look like?

ͳ + S. O. S. = ෍� ܳ� ⋅ ሺ���� − ͳሻ over ±ͳ �
∃ degree-݀ multipliers ܳ�

Want to show:

To rule out refutation:

�ሺͳሻ = ͳ� S. O. S ൒ Ͳ� ܳ ⋅ ���� − ͳ = Ͳ ∀ S. O. S∀݁, degree-݀ Q
exhibit linear form � on polynomials over ±ͳ �

How to construct M?
 Gaussian elimination



No width-ͳͲ݀ Gaussian refutation ื no degree-݀ Positivstellensatz refutation

Want to show:

Let ℰ be set of ܽ�ఈ such that ܽ�ఈ = ͳ derived by width-ͳͲ݀ elimination

Relation: ܽ�ఈ~ܾ�ఉ if ܽ�ఈ = � ⋅ ܾ�ఉ over ±ͳ � for some � ∈ ℰ
Claim: equivalence relation on degree-݀ terms

symmetry uses �௜ଶ = ͳ
transitivity uses width > ʹ݀

� �ఈ = 1 if �ఈ~ ͳ
0 otherwise

−ͳ if �ఈ~− ͳDefine:



No width-ͳͲ݀ Gaussian refutation ื no degree-݀ Positivstellensatz refutation

Want to show:

Let ℰ be set of ܽ�ఈ such that ܽ�ఈ = ͳ derived by width-ͳͲ݀ elimination

Relation: ܽ�ఈ~ܾ�ఉ if ܽ�ఈ = � ⋅ ܾ�ఉ over ±ͳ � for some � ∈ ℰ
� �ఈ = 1 if �ఈ~ͳ

0 otherwise

−ͳ if �ఈ~− ͳ
�ሺͳሻ = ͳ
� ܳ ⋅ ���� − ͳ = Ͳ ∀݁, degree-݀ Q� S. O. S ൒ Ͳ ∀ S. O. S

We wanted:

?



No width-ͳͲ݀ Gaussian refutation ื no degree-݀ Positivstellensatz refutation

Want to show:

Let ℰ be set of ܽ�ఈ such that ܽ�ఈ = ͳ derived by width-ͳͲ݀ elimination

Relation: ܽ�ఈ~ܾ�ఉ if ܽ�ఈ = � ⋅ ܾ�ఉ over ±ͳ � for some � ∈ ℰ
� �ఈ = 1 if �ఈ~ͳ

0 otherwise

−ͳ if �ఈ~− ͳ
� S. O. S ൒ Ͳ

pair up equivalence classes

�ଶ+�ଶ− ��+��−�ଵ+�ଵ−
orthogonal unit vectors �ଵ, … , �� −�ଶ

�ଶ
−��
��

−�ଵ
�ଵ

Check: � �ఈ�ఉ = ఈ�ۃ , �ఉۄ � ≽ Ͳ


