Summer school on semidefinite optimization

Approximation \& Complexity

David Steurer

Cornell University

Part 1

Overview

Part $1 \quad$ Unique Games Conjecture \& Basic SDP

Part 2 SDP Hierarchies: Algorithms

Part 3 SDP Hierarchies: Limits

Constraint Satisfaction Problems

variables x_{1}, \ldots, x_{n} over finite alphabet Σ
list of predicates/constraints

Goal: satisfy as many predicates as possible

Constraint Satisfaction Problems

Max 3Sat

variables x_{1}, \ldots, x_{n} over finite alphabet $\Sigma=\{$ true, false $\}$
list of predicates/constraints

$$
P_{1}(x)=x_{1} \vee x_{2} \vee \overline{x_{4}}
$$

$$
P_{m}(x)=\overline{x_{9}} \vee x_{42} \vee \overline{x_{7}}
$$

Goal: satisfy as many predicates as possible

Constraint Satisfaction Problems

Max Cut

variables x_{1}, \ldots, x_{n} over finite alphabet $\Sigma=\mathbb{F}_{2}$
list of predicates/constraints

$$
P_{1}(x)=\left\{x_{1}+x_{2}=1\right\}
$$

$$
P_{m}(x)=\left\{x_{13}+x_{5}=1\right\}
$$

Goal: satisfy as many predicates as possible

Constraint Satisfaction Problems

Unique Games(k)

variables x_{1}, \ldots, x_{n} over finite alphabet $\Sigma=\mathbb{F}_{\mathrm{k}}$
list of predicates/constraints

$$
P_{1}(x)=\left\{x_{1}+x_{2}=4\right\}
$$

-
value of one variable uniquely determines value of other variable

$$
P_{m}(x)=\left\{x_{13}+x_{5}=9\right\}
$$

Goal: satisfy as many predicates as possible

Optimization \& Complexity

Goal: understand complexity of optimization problems

lower
 bounds

What are good algorithms?
What are hard instances?

Optimization \& Complexity

Goal: understand complexity of optimization problems

```
require prohibitive resources
    (assuming P}=\textrm{NP}\mathrm{ )
```

1970s Most discrete optimization problems are NP-hard [Cook, Karp, Levin] (including Max 3Sat, Max CuT, and Unique Games)

So we can't hope to prove anything and have to resort to heuristics?

No!

Do not (blindly) trust impossibility results!

Optimization is not all or nothing! What about approximate solutions?

(Many classical algorithms for convex optimization are fundamentally approximation algorithms)

Goal
understand trade-off between
complexity and approximation

Approximation

Goal
understand trade-off between complexity and approximation

How to measure approximation?

if $\mathrm{OPT} \geq c$, then ALG $\geq s$

Approximation

Goal
understand trade-off between complexity and approximation
poly-time approximation algorithms:
non-trivial approximations for many problems, e.g., 0.878 -approx for MAX CuT [Goemans-Williamson]

NP-hardness of approximation
as hard as solving it exactly!
for many problems, some approximation is NP-hard e.g., 0.999 -approx for MAX CUT [PCP Theorem]

For very few problems, upper and lower bounds match!

Complexity vs Approximation Trade-off

Max 3Sat

Complexity vs Approximation Trade-off

Most other problems

What algorithms are we missing?
What hard instances do we not know of?

Unique Games Conjecture (UGC)

[Khot'02]

For every $\varepsilon>0$, there exists k,

$$
\text { constraints: } x_{i}-x_{j}=c \bmod \mathrm{k}
$$

($1-\varepsilon, \varepsilon$)-approximation for UniQue Games(k) is NP-hard

Implications of UGC [Khot-Regev'03, Khot-Kindler-Mossel-O'Donnell'04, Mossel-O'Donnell-Oleszkiewicz'05, Raghavendra’08]

For every CSP, the Basic SDP relaxation has optimal integrality gap (\rightarrow higher-degree sum-of-squares relaxation have same gap)

Is the conjecture true?

Is the conjecture true?

subexponential-time algorithm
[Arora-Barak-S.'10,
Barak-Raghavendra-S.'11]
$(1-\varepsilon, \varepsilon)$-approximation for UG in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$
contrast: all known hardness results for CSPs imply $2^{\Omega(n)}$-hardness part of framework for rounding SDP hierarchies
lower bounds for certain SDP hierarchies
[Barak-Gopalan-Håstad-
Meka-Raghavendra-S.'11]
subexp.-time essentially optimal within the rounding framework
hard instances based on new kind graphs (with extremal spectral properties)
sum-of-squares relaxations
[Barak-Brandão-Harrow-
Kelner-S.-Zhou'12]
"all known" instances of UG are solved in $O(1)$-degree sos relaxation
(including instances that are hard for other SDP hierarchies)

Generic Approximation Algorithm for CSPs

For any CSP X,

OPT vs SDP

approximation for $\mathrm{X}=$ integrality gap of Basic SDP for X

```
ALG vs OPT
```

based on rounding optimal solutions to Basic SDP relaxation
new perspective on previous rounding algorithms, like GW
no explicit approximation guarantee
polynomial-time but huge constants (depending on desired accuracy)

Basic SDP Relaxation for

Constraint Satisfaction Problems

variables x_{1}, \ldots, x_{n} over finite alphabet Σ
list of predicates/constraints

$$
\begin{array}{cc}
P_{1}(x)=x_{1} \vee x_{2} \vee \overline{x_{4}} & D_{1} \\
\cdot & \cdot \\
\cdot & \\
\cdot & \cdot \\
P_{m}(x)=\overline{x_{9}} \vee x_{42} \vee \overline{x_{7}} & D_{m}
\end{array}
$$

Goal: maximize expected number of satisfied predicates

Approximating CSPs using Folding

"Efficient" whenever folding leaves only $\mathrm{O}(1)$ distinct variables
Challenge: ensure $\mathfrak{J}_{\text {folded }}$ has a good solution

Approximating CSPs using Folding

approximation

Unfolding of
the assignment $\begin{gathered}\text { preserves value } \\ \text { of assignment }\end{gathered}$

optimal solution for $\mathfrak{J}_{\text {folded }}$ assignments

Theorem can fold every CSP instance efficiently to $2^{\text {poly(} 1 / \varepsilon)}$ variables

$$
\operatorname{sdp}\left(\mathfrak{J}_{\text {folded }}\right) \geq \operatorname{sdp}(\mathfrak{I})-\varepsilon \quad \rightarrow \text { optimal rounding scheme }
$$

How to fold using SDP solutions

How to fold using SDP solutions

CSP Instance \mathfrak{J}

Folding guided by SDP solution
－ーーーーーーーーーーーーーーーーーーーーーーー

CSP Instance $\Im_{\text {folded }}$

found solution for $\operatorname{SDP}\left(\Im_{\text {folded }}\right)$ with value $\geq \operatorname{sdp}(\Im)-2 \varepsilon$
But：some constraints violated，on average by $\leq 2 \varepsilon$

Robustness property of Basic SDP relaxation
can repair violations at proportional cost for objective value
$\rightarrow \operatorname{sdp}\left(\widetilde{\Im}_{\text {folded }}\right) \geq \operatorname{sdp}(\mathfrak{J})-4 \varepsilon$

Summer school on semidefinite optimization

Approximation \& Complexity

David Steurer

Cornell University

Part 2

Overview

Part 1 Unique Games Conjecture \& Basic SDP

Part 2 SDP Hierarchies: Algorithms

Part 3 SDP Hierarchies: Limits

Subexponential Algorithm for Unique Games

$\mathrm{UG}(\varepsilon)$ in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$ via level- $n^{\varepsilon^{1 / 3}}$ SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games)
[Barak-Raghavendra-S.'11, Guruswami-Sinop'11]
Potentially applies to wide range of "graph problems"
Examples: Max Cut, Sparsest Cut, Coloring, Max 2-Csp

Some more successes (polynomial time algorithms)
Approximation scheme for general MAx 2-CSP
[Barak-Raghavendra-S.'11]
on constraint graphs with $O(1)$ significant eigenvalues
Better 3-Coloring approximation for some graph families
[Arora-Ge'11]
Better approximation for MAX BISECTION (general graphs) [Raghavendra-Tan'12]

Subexponential Algorithm for Unique Games

$\mathrm{UG}(\varepsilon)$ in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$ via level- $n^{\varepsilon^{1 / 3}}$ SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games)
[Barak-Raghavendra-S.'11, Guruswami-Sinop'11]
Potentially applies to wide range of "graph problems"
Examples: Max Cut, Sparsest Cut, Coloring, Max 2-Csp

Key concept: global correlation

Interlude: Pairwise Correlation

Two jointly distributed random variables X and Y
Correlation measures dependence between X and Y
Does the distribution of X change if we condition Y ?

Examples:
(Statistical) distance between $\{X, Y\}$ and $\{X\}\{Y\}$
Covariance $\mathbf{E} X Y-(\mathbf{E} X)(\mathbf{E} Y)$ (if X and Y are real-valued)
Mutual Information $\mathrm{I}(X, Y)=H(X)-H(X \mid Y)$
entropy lost due to conditioning

Sampling

Rounding problem

Given
random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k}

$$
\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon \text { for typical constraint } x_{i}-x_{j}=c
$$ assignments with expected value $\geq 1-\varepsilon$

UG instance + level ℓ SDP solution with value $\geq 1 \quad \varepsilon \quad\left(\ell=n^{O\left(\varepsilon^{1 / 3}\right)}\right)$

Sample

distribution over assignments with expected value $\geq \varepsilon$
similar (?)

More convenient to think about actual distributions instead of SDP solutions

But: proof should only "use" linear equalities satisfied by these moments and certain linear inequalities, namely non-negativity of squares
(Can formalize this restriction as proof system)

Sampling by conditioning

Pick an index j
Sample assignment a for index j from its marginal distribution $\left\{X_{j}\right\}$
Condition distribution on this assignment, $X_{i}^{\prime}:=\left\{X_{i} \mid X_{j}=a\right\}$

If we condition n times, we correctly sample the underlying distribution

Issue: after conditioning step, know only degree $\ell-1$ moments (instead of degree ℓ)

Hope: need to condition only a small number of times; then do something else

How can conditioning help?

How can conditioning help?

Allows us to assume: distribution has low global correlation

$$
\mathbf{E}_{i, j} \mathrm{I}\left(X_{i}, X_{j}\right) \leq 0_{k}(1) \cdot 1 / \ell
$$

typical pair of variables almost independent

Claim: general cases reduces to case of low global correlation

Proof:

Idea: significant global correlation \rightarrow conditioning decreases entropy
Potential function $\Phi=\mathbf{E}_{i} H\left(X_{i}\right)$
Can always find index j such that for $X_{i}^{\prime}:=\left\{X_{i} \mid X_{j}\right\}$

$$
\Phi-\Phi^{\prime} \geq \mathbf{E}_{i} H\left(X_{i}\right)-\mathbf{E}_{i} H\left(X_{i} \mid X_{j}\right)=\mathbf{E}_{i} I\left(X_{i}, X_{j}\right) \geq \mathbf{E}_{i, j} I\left(X_{i}, X_{j}\right)
$$

Potential can decrease $\leq \ell / 2$ times by more than $O_{k}(1 / \ell)$

How can conditioning help?

Allows us to assume: distribution has low global correlation

$$
\mathbf{E}_{i, j} \mathrm{I}\left(X_{i}, X_{j}\right) \leq O_{k}(1) \cdot 1 / \ell
$$

typical pair of variables almost pairwise independent

How can low global correlation help?

How can low global correlation help?

$$
\mathbf{E}_{i, j} \mathrm{I}\left(X_{i}, X_{j}\right) \leq 1 / \ell
$$

For some problems, this condition alone gives improvement over BASIC SdP
Example: Max Bisection
[Raghavendra-Tan'12, Austrin-Benabbas-Georgiou'12]
hyperplane rounding gives near-bisection if global correlation is low

For Unique Games
random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k}
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$

Extreme cases with low global correlation

1) no entropy: all variables are fixed
2) many small independent components:
all variables have uniform marginal distribution \& \exists partition:

How can low global correlation help?
 $\mathbf{E}_{i, j}\left(X_{i}, X_{j}\right) \leq 1 / \ell$

For Unique Games
random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k}
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
Only
Extreme cases with low global correlation

1) no entropy: all variables are fixed
2) many small independent components:

Show: no other cases are possible! (informal)
all variables have uniform marginal distribution \& \exists partition:

Idea: round components independently \& recurse on them
How many edges ignored in total? (between different components)
We chose $\ell=n^{\beta}$ for $\beta \gg \varepsilon$
\rightarrow each level of recursion decrease component size by factor $\geq n^{\beta}$
\rightarrow at most $1 / \beta$ levels of recursion
\rightarrow total fraction of ignored edges $\leq \varepsilon / \beta \ll 1$
$\rightarrow 2^{n^{\beta}}$-time algorithm for $\mathrm{UG}(\varepsilon)$
2) many small independent components:
all variables have uniform marginal distribution \& \exists partition:

For Unique Games
random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k}
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
Only
Extreme cases with low global correlation

1) no entropy: all variables are fixed
2) many small independent components:
all variables have uniform marginal distribution $\& \exists$ partition:

Suppose: random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k} with uniform marginals $\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
global correlation $\leq 1 / n^{2 \beta}$
Then: $\quad \exists S \subseteq[n] . \quad|S| \leq n^{1-\beta}$ \& all constraints touching S stay inside of S except for an $O(\sqrt{\varepsilon / \beta})$ fraction (in constraint graph, S has low expansion)

Proof: Define Corr $\left(X_{i}, X_{j}\right)=\max _{c} \operatorname{Pr}\left(X_{i}-X_{j}=c\right)$
Correlation Propagation
For random walk $i \sim j_{1} \sim \cdots \sim j_{t}$ of length t in constraint graph

$$
\operatorname{Corr}\left(X_{i}, X_{j_{t}}\right) \geq(1-\varepsilon)^{t}
$$

$$
\operatorname{Corr}\left(X_{i}, X_{j_{t}}\right) \gtrsim \operatorname{Pr}\left(X_{i}-X_{j_{1}}=c_{1}\right) \cdots \operatorname{Pr}\left(X_{i}-X_{j_{t}}=c_{t}\right)
$$

proof uses non-negativity of squares (sum-of-squares proof)
\rightarrow works also for SDP hierarchy

Suppose: random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k} with uniform marginals
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
global correlation $\leq 1 / n^{2 \beta}$
Then: $\quad \exists S \subseteq[n] . \quad|S| \leq n^{1-\beta} \&$ all constraints touching S stay inside of S except for an $O(\sqrt{\varepsilon / \beta})$ fraction (in constraint graph, S has low expansion)

Proof: Define $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\max _{c} \operatorname{Pr}\left(X_{i}-X_{j}=c\right)$
Correlation Propagation $\quad t=\beta / \varepsilon \cdot \log n$
For random walk $i \sim j_{1} \sim \cdots \sim j_{t}$ of length t in constraint graph

$$
\operatorname{Corr}\left(X_{i}, X_{j_{t}}\right) \geq(1-\varepsilon)^{t} \geq 1 / n^{\beta}
$$

On the other hand, $\operatorname{Corr}\left(X_{i}, X_{j}\right) \leq 1 / n^{2 \beta}$ for typical j
\rightarrow random walk from i doesn't mix in t-steps (actually far from mixing)
\rightarrow exist small set S around i with low expansion

Suppose: random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k} with uniform marginals $\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$ global correlation $\leq 1 / 2 \beta \quad 1 / \ell$

Then: constraint graph has ℓ eigenvalues $\geq 1-\varepsilon$

Proof: \quad a graph has ℓ eigenvalues $\geq \lambda \quad \Leftrightarrow \quad \exists$ vectors $v_{1}, \ldots, v_{\mathrm{n}}$

$$
\begin{aligned}
\text { (local: typical edge) } & \mathbf{E}_{i \sim j}\left\langle v_{i}, v_{j}\right\rangle \geq \lambda \\
\text { (global: typical pair) } & \mathbf{E}_{p, q}\left\langle v_{p}, v_{q}\right\rangle^{2} \leq 1 / \ell \\
& \mathbf{E}_{i}\left\|v_{i}\right\|^{2}=1
\end{aligned}
$$

\rightarrow For graphs with $<\ell$ such eigenvalues, algorithm runs in time n^{ℓ}

Thanks!

Summer school on semidefinite optimization

Approximation \& Complexity

David Steurer

Cornell University

Part 3

Overview

Part $1 \quad$ Unique Games Conjecture \& Basic SDP

Part 2 SDP Hierarchies: Algorithms

Part 3 SDP Hierarchies: Limits

Approximation limits of s.o.s. methods

random assignment has value $1 / 2$ in expectation

predicates $x_{i} \oplus x_{j} \oplus \overline{x_{j}}$

[Grigoriev'01, Schoenebeck'08]

For a random instance \mathfrak{I} of MAx 3XOR, with high probability
(1) value of \mathfrak{J} is at most $1 / 2+0.01$
(2) value of degree- 0.01 n s.o.s. relaxation for \mathfrak{J} is at least 0.99

Corresponding NP-hardness result is known!
\# predicates > \# variables
Why is this result interesting?
independent of P vs NP question
suggests random instances are hard
evidence that NP-hard problem take exp. time

Approximation limits of s.o.s. methods

In terms of polynomials:

\# edges >> \# vertices

random 3-uniform hypergraph H, random sign vector $\sigma \in\{ \pm 1\}^{H}$
degree-3 polynomial $P=\sum_{e \in H} \sigma_{e} \cdot X^{e}$
Then, w.h.p.,

Chernoff bound over σ

(1) $P \leq 0.01$ over $\{ \pm 1\}^{n}$
(2) all s.o.s. certificate for $P \leq 0.99$ over $\{ \pm 1\}^{n}$ have degree $\Omega(n)$
(2') no degree-o $o(n)$ s.o.s. refutation of the system

$$
\left\{\sigma_{e} \cdot X^{e}=1 \mid e \in H\right\} \cup\left\{X_{i}^{2}=1 \mid i \in V\right\}
$$

Interlude: Bounded-width Gaussian Elimination

system of polynomials over $\{ \pm 1\}^{n}$ system of affine linear forms over \mathbb{F}_{2}^{n}

$$
\begin{array}{ccc}
X_{1} X_{2} X_{3}=1 & \longleftrightarrow & x_{1}+x_{2}+x_{3}=0 \\
\cdot & \cdot \\
\cdot & \cdot \\
-X_{2} X_{6} X_{8}=1 & & 1+x_{2}+x_{6}+x_{8}=0
\end{array}
$$

width-d Gaussian refutation derivation of $1=0$ by adding equations of width $\leq d$ \# variables in equation

Approximation limits of s.o.s. methods

Part 1 random 3-uniform signed hypergraph (H, σ)
\rightarrow corresponding system has elimination width $\Omega(n)$

Part 2 For systems we consider, width- d Gaussian refutation
\leftrightarrow degree- d Nullstellensatz refutation
\leftrightarrow degree- d Positivstellensatz refutation

Want to show:
Random hypergraph system \rightarrow no width- $\Omega(n)$ Gaussian refutation
bipartite graph

(edge)
terms
vertex sets with $|S|<n / 100$
$\rightarrow \Omega(|S|)$ unique neighbors
$a X^{\alpha}$ is product of edge terms S $\rightarrow a X^{\alpha}$ has width $\geq \Gamma_{\text {unique }}(S)$
every refutation contains term $a X^{\alpha}$ product of $\approx n / 100$ edges terms

Want to show:
No width-10d Gaussian refutation \rightarrow no degree- d Positivstellensatz refutation

How would degree-d s.o.s. refutation look like?

\exists degree- d multipliers Q_{e}

$$
1+\text { S. O.S. }=\sum_{e} Q_{e} \cdot\left(\sigma_{e} X^{e}-1\right) \quad \text { over }\{ \pm 1\}^{n}
$$

To rule out refutation:
exhibit linear form M on polynomials over $\{ \pm 1\}^{n}$

$$
\begin{array}{ll}
M(1)=1 & \\
M(\text { S. O.S }) \geq 0 & \forall \text { S. O.S } \\
M\left(Q \cdot\left(\sigma_{e} X^{e}-1\right)\right)=0 & \forall e, \text { degree-d Q }
\end{array}
$$

Want to show:
No width-10d Gaussian refutation \longrightarrow no degree- d Positivstellensatz refutation

Let \mathcal{E} be set of $a X^{\alpha}$ such that $a X^{\alpha}=1$ derived by width-10d elimination
Relation: $a X^{\alpha} \sim b X^{\beta}$ if $a X^{\alpha}=E \cdot b X^{\beta}$ over $\{ \pm 1\}^{n}$ for some $E \in \mathcal{E}$
Claim: equivalence relation on degree- d terms

$$
\text { symmetry uses } X_{i}^{2}=1
$$

transitivity uses width $>2 d$
Define:

$$
M\left(X^{\alpha}\right)=\left\{\begin{aligned}
1 & \text { if } X^{\alpha} \sim 1 \\
-1 & \text { if } X^{\alpha} \sim-1 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Want to show:
No width-10d Gaussian refutation \longrightarrow no degree- d Positivstellensatz refutation

Let \mathcal{E} be set of $a X^{\alpha}$ such that $a X^{\alpha}=1$ derived by width- $10 d$ elimination

Relation: $a X^{\alpha} \sim b X^{\beta}$ if $a X^{\alpha}=E \cdot b X^{\beta}$ over $\{ \pm 1\}^{n}$ for some $E \in \mathcal{E}$

$$
M\left(X^{\alpha}\right)=\left\{\begin{aligned}
1 & \text { if } X^{\alpha} \sim 1 \\
-1 & \text { if } X^{\alpha} \sim-1 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

We wanted:

$$
\begin{array}{ll}
M(1)=1 & \\
M(\mathrm{~S} . \mathrm{O} . \mathrm{S}) \geq 0 & \forall \mathrm{S.O.S} \\
M\left(Q \cdot\left(\sigma_{e} X^{e}-1\right)\right)=0 & \forall e, \text { degree-d } \mathrm{Q}
\end{array}
$$

Want to show:
No width-10d Gaussian refutation \longrightarrow no degree- d Positivstellensatz refutation

Let \mathcal{E} be set of $a X^{\alpha}$ such that $a X^{\alpha}=1$ derived by width- $10 d$ elimination

Relation: $a X^{\alpha} \sim b X^{\beta}$ if $a X^{\alpha}=E \cdot b X^{\beta}$ over $\{ \pm 1\}^{n}$ for some $E \in \mathcal{E}$

$$
M\left(X^{\alpha}\right)=\left\{\begin{aligned}
1 & \text { if } X^{\alpha} \sim 1 \\
-1 & \text { if } X^{\alpha} \sim-1 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

$$
M(\text { S. O.S }) \geq 0
$$

pair up equivalence classes

v_{1}	v_{2}	v_{r}
\mathcal{C}_{1}^{+}	\mathcal{C}_{2}^{+}	\mathcal{C}_{r}^{+}
\mathcal{C}_{1}^{-}	\mathcal{C}_{2}^{-}	\mathcal{C}_{r}^{-}
$-v_{1}$	$-v_{2}$	$-v_{r}$

orthogonal unit vectors v_{1}, \ldots, v_{r}
Check: $M\left(X^{\alpha} X^{\beta}\right)=\left\langle v_{\alpha}, v_{\beta}\right\rangle$
$\rightarrow M \geqslant 0$

