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Semidefinite Programming Hierarchies 

Better approximations for combinatorial optimization problems? 

powerful algorithmic technique  

Unique Games Conjecture 

strong implications for hardness of approximation 

Is the conjecture true or false? 

Constraint Satisfaction Problems 

important class of optimization problems 

What instances are hard / easy? 

[Sherali-Adams’90, 
Lovász-Schrijver’91, 
Lasserre’01] 

[Khot’02,…] 

Example: MAX CUT [Goemans-Williamson’94]  

[e.g., works on dense 
 or pseudo-dense  
 instances] 



UNIQUE GAMES 

Input: list of constraints of form 𝑥𝑖 − 𝑥𝑗 = 𝑐 mod 𝑘 

Goal: satisfy as many constraints as possible 

𝑘  𝑘  

𝑥𝑗  𝑥𝑖  



UNIQUE GAMES 

Input: list of constraints of form 𝑥𝑖 − 𝑥𝑗 = 𝑐 mod 𝑘 

Goal: satisfy as many constraints as possible 

Input: UNIQUE GAMES instance with 𝑘 = log𝑛 (say) 

Goal:  Distinguish two cases 

YES:  more than 1 − 𝜀 of constraints satisfiable 

NO:    less than 𝜀 of constraints satisfiable 

Unique Games Conjecture (UGC)    [Khot’02] 

For every 𝜀 > 0, the following is NP-hard: 

UG(𝜀) 



Implications of UGC 

For many basic optimization problems,  
it is NP-hard to beat current algorithms  
(based on simple LP or SDP relaxations) 

Examples: 

VERTEX COVER [Khot-Regev’03],  
MAX CUT [Khot-Kindler-Mossel-O’Donnell’04,  

 Mossel-O’Donnell-Oleszkiewicz’05], 
every MAX CSP [Raghavendra’08], … 



Implications of UGC 

For many basic optimization problems,  
it is NP-hard to beat current algorithms  
(based on simple LP or SDP relaxations) 

Unique Games Barrier 

Example:  (𝛼GW+𝜀)-approximation for MAX CUT 
 at least as hard as UG(𝜀′) 

UNIQUE GAMES is common barrier for  
improving current algorithms of  

many basic problems 

𝛼GW = 0.878… 
Goemans–Williamson  

bound for MAX CUT 



Subexponential Algorithm for Unique Games 

Input: UNIQUE GAMES instance with alphabet size k 

 such that 1 − 𝜀 of constraints are satisfiable, 

Output: assignment satisfying 1 − 𝐶 𝜀   of constraints  

Time: exp 𝑘 𝑛1 𝐶
2 3   

UG(𝜀) in time exp 𝑛𝜀
1 3  

Time vs Approximation Trade-off 



Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀
1 3  

poly 𝑛  exp (𝑛) 

2-SAT 

MAX 3-SAT(7 8 ) 

MAX CUT(𝛼𝐺𝑊) 

3-SAT        (*) 

FACTORING 

exp (𝑛1 2 ) exp (𝑛1 3 ) exp 𝑛𝜀
1 3 

 

UG 𝜀  

MAX 3-SAT(7 8 + 𝜀) 

LABEL COVER(𝜀)  

[Moshkovitz-Raz’08 
+ Håstad’97] MAX CUT(𝛼GW + 𝜀)? 

(*) assuming Exponential Time Hypothesis [Impagliazzo-Paturi-Zane’01] 

( 3-SAT has no 2𝑜(𝑛) algorithm ) 

GRAPH ISOMORPHISM 

hard easy 



Analog of UGC with subconstant 𝜀 (say 𝜀 = 1 log log 𝑛 ) is false   (*) 

(contrast: subconstant hardness for LABEL COVER [Moshkovitz-Raz’08]) 

NP-hardness reduction for UG 𝜀  must have blow-up 𝑛1 𝜀
1 3   (*) 

 rules out certain classes of reductions for proving UGC 

(*) assuming 3-SAT does not have subexponential algorithms, exp 𝑛𝑜 1  

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀
1 3  

Consequences 



Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀
1 3  

[Sherali-Adams’90, 
Lovász-Schrijver’91,  
Lasserre’01] 

here: via semidefinite programming hierarchies 

general framework for rounding SDP hierarchies 

(especially for “pseudo-random” instances of 2-CSPs) 

constraint graph has few 
significant eigenvalues 



What we want: 

𝑋1, … , 𝑋𝑛  jointly distributed random variables over [𝑘]  

UNIQUE GAMES 

Input: list of constraints of form 𝑥𝑖 − 𝑥𝑗 = 𝑐 mod 𝑘 

Goal: satisfy as many constraints as possible 

Pr 𝑋𝑖 − 𝑋𝑗 ≡ 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 ≡ 𝑐 



𝑋𝑖𝑎 = indicator of {𝑋𝑖= 𝑎} 

Cov(𝑋𝑖𝑎, 𝑋𝑗𝑏 ∣ 𝑋𝑆 = 𝛼) p.s.d. for all 𝑆 with 𝑆 ≤ 𝑟-2 

same marginal for 𝑆 ∩ 𝑇 in distributions 𝑋𝑆 and 𝑋𝑇   

𝑟-local 

Goal: produce global random variables 𝑋’1, … , 𝑋’𝑛 

𝑋′𝑖, 𝑋′𝑗 ≈ 𝑋𝑖 , 𝑋𝑗  for most constraints 𝑥𝑖 − 𝑥𝑗 ≡ 𝑐 

Here:  iterative procedure for 𝑟 = 𝑛𝑂 𝜀
1/3

 [Arora-Barak-S.’10 
+ Barak-Raghavendra-S.’11] 

𝑋1, … , 𝑋𝑛  jointly distributed random variables over [𝑘]  

Pr 𝑋𝑖 − 𝑋𝑗 ≡ 𝑐 ≥ 1 − 𝜀 for typical constraint 𝑥𝑖 − 𝑥𝑗 ≡ 𝑐 

distributions 𝑋𝑆 over 𝑘 𝑆 for all 𝑆 with 𝑆 ≤ 𝑟 

time 𝑛𝑂 𝑟  

consistency 

positive semidefiniteness  

𝑆 
𝑇 

𝑆 ∩ 𝑇 

𝑟-level SDP hierarchy: 
What we want: 



Components of iterative procedure 

Rounding 

Conditioning 

sample variables independently according to their marginals 

pick a vertex j and sample 𝑋𝑗  

condition 𝑋1, … , 𝑋𝑛 on sample for 𝑋𝑗  

Partitioning 

find vertex subset 𝑆 

break dependence between 𝑋𝑆 and 𝑋𝑉∖𝑆 

general framework 
for rounding  

SDP hierarchies 



Rounding Conditioning Partitioning 

Corr 𝑋𝑖, 𝑋𝑗 = 0     ⇔     𝑋𝑖  and X𝑗  independent 

Corr 𝑋𝑖, 𝑋𝑗 = 1     ⇔     𝑋𝑖  fixed after fixing X𝑗  

Corr 𝑋𝑖, 𝑋𝑗  measures how much the distribution of 𝑋𝑖  

changes when conditioned on 𝑋𝑗  

Examples: 

(Pairwise) Correlation 



Important fact: 

can approximate Corr(𝑋𝑖 , 𝑋𝑗) by Gram matrix  

of unit vectors (tensoring trick) 

Corr(𝑋𝑖, 𝑋𝑗) 

(Pairwise) Correlation 

max
𝑐
 Cov 𝑋𝑖𝑎, 𝑋𝑗 𝑎+𝑐
𝑎

 

 𝑉𝑎𝑟 𝑋𝑖𝑎 − 𝑉𝑎𝑟 𝑋𝑖𝑎 𝑋𝑗)

𝑎

 

decrease in variance when conditioning on 𝑋𝑗  

statistical distance between {𝑋𝑖 , 𝑋𝑗} and 𝑋𝑖 {𝑋𝑗} 

Rounding Conditioning Partitioning 

similar to mutual information 
 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌  



Rounding Conditioning Partitioning 



sample variables independently according to their marginals 

If Corr 𝑋𝑖, 𝑋𝑗 < 1 − 𝑂(𝜀) then independent sampling 

satisfies constraint with probability Ω(𝜀) 

Rounding fails    ⇒ 𝐄𝑖∼𝑗Corr 𝑋𝑖, 𝑋𝑗 > 1 − 𝑂(𝜀) 

Local Correlation 
(over edges of constraint graph) 

Rounding Conditioning Partitioning 

Corr(𝑋𝑖, 𝑋𝑗) ≈ statistical distance between  

independent and correlated sampling 



pick a vertex 𝑗 and sample 𝑋𝑗  

condition 𝑋1, … , 𝑋𝑛 on sample for 𝑋𝑗  

computationally expensive 

(level 𝑟  →  level 𝑟 − 1) 

condition on vertex 𝑗 only if 𝐄𝑖Corr 𝑋𝑖, 𝑋𝑗 > 𝑛
−𝛽 

⇒ can condition at most 𝑛𝛽  times on such vertices 

Conditioning fails       ⇒        𝐄𝑖,𝑗Corr 𝑋𝑖 , 𝑋𝑗 < 𝑛
−𝛽 

  

Global Correlation 
(over random vertex pairs) 

Rounding Conditioning Partitioning 

Issue:  

Idea: 

Corr 𝑋𝑖, 𝑋𝑗  measures decrease in 

 variance when conditioning on 𝑋𝑗  



find vertex subset 𝑆 

break dependence between 𝑋𝑆 and 𝑋𝑉∖𝑆 

destroys correlation for constraints between 𝑆 and 𝑉 ∖ 𝑆 

𝑉 ∖ 𝑆 

𝑆 

Rounding Conditioning Partitioning 

Issue: 

Wanted: 

set 𝑆 with small expansion  
                & small cardinality 

in total: should break at most 1 2  of the constraints 



For endpoints of random path of length 𝑡 = Ω(𝛽 𝜀 ⋅ log 𝑛) 

𝐄𝑖 ∼𝑡𝑗Corr 𝑋𝑖, 𝑋𝑗 > 1 − 𝑂 𝜀
𝑡
≫ 𝑛−𝛽/2 

⇒ random walk stuck for 𝑡 steps on 𝑛−𝛽/2 fraction of vertices 

⇒ ∃ vertex set 𝑆 with 𝑆 < 𝑉 /𝑛𝛽/2 and expansion O 𝜀 𝛽  

A vertex is cut in ≤ 2/𝛽 partitioning steps ⇒ break only O 𝜀 𝛽3  edges 

Rounding Conditioning Partitioning 

𝑉 ∖ 𝑆 

𝑆 

fails only if local correlation high 

𝐄𝑖∼𝑗Corr 𝑋𝑖 , 𝑋𝑗 > 1 − 𝑂(𝜀) 

fails only if global correlation low 

𝐄𝑖,𝑗Corr 𝑋𝑖 , 𝑋𝑗 < 𝑛
−𝛽 

Correlation Propagation 

Corr 𝑋𝑖, 𝑋𝑗  is Gram 

matrix of unit vectors 

find vertex subset 𝑆 

break dependence between 𝑋𝑆 and 𝑋𝑉∖𝑆 

For endpoints of random path of length 𝑡 = Ω(𝛽 𝜀 ⋅ log 𝑛) 

𝐄𝑖 ∼𝑡𝑗Corr 𝑋𝑖, 𝑋𝑗 > 1 − 𝑂 𝜀
𝑡
≫ 𝑛−𝛽/2 



Can we avoid partitioning? 

Yes, for a large family of instances! 

𝐄𝑖∼𝑗Corr 𝑋𝑖 , 𝑋𝑗 > 𝜆 

𝐄𝑖,𝑗Corr 𝑋𝑖, 𝑋𝑗 < 1/𝑟 
⇒ 

constraint graph has 
at least 𝜀 ⋅ 𝑟 eigenvalues  
larger than 𝜆 − 𝜀 

Local vs Global Correlation and Higher Eigenvalues 

Rounding Conditioning Partitioning 



𝐄𝑖∼𝑗Corr 𝑋𝑖 , 𝑋𝑗 > 𝜆 

𝐄𝑖,𝑗Corr 𝑋𝑖, 𝑋𝑗 < 1/𝑟 
⇒ 

constraint graph has 
at least 𝜀 ⋅ 𝑟 eigenvalues  
larger than 𝜆 − 𝜀 

Local vs Global Correlation and Higher Eigenvalues 

Corollary 

𝑟th levels of hierarchy solves UG(𝜀) if constraint graph  
has at most 𝜀 ⋅ 𝑟 eigenvalues larger than 1 − 𝑂 𝜀  

[improves 
 Kolla’10] 

Rounding Conditioning Partitioning 

fails only if local correlation high 

𝐄𝑖∼𝑗Corr 𝑋𝑖 , 𝑋𝑗 > 1 − 𝑂(𝜀) 

fails only if global correlation low 

𝐄𝑖,𝑗Corr 𝑋𝑖 , 𝑋𝑗 < 1/𝑟 



𝐄𝑖∼𝑗Corr 𝑋𝑖 , 𝑋𝑗 > 𝜆 

𝐄𝑖,𝑗Corr 𝑋𝑖, 𝑋𝑗 < 1/𝑟 
⇒ 

constraint graph has 
at least 𝜀 ⋅ 𝑟 eigenvalues  
larger than 𝜆 − 𝜀 

Local vs Global Correlation and Higher Eigenvalues 

Approximation Scheme for MAX CUT 

𝑟th levels of hierarchy finds optimal cut up to O(𝜂) fraction of edges 
if graph has at most 𝜂 ⋅ 𝑟 eigenvalues larger than 𝜂 

Rounding Conditioning Partitioning 

fails only if local correlation high 

𝐄𝑖∼𝑗Corr 𝑋𝑖 , 𝑋𝑗 > 𝑂(𝜂) 

fails only if global correlation low 

𝐄𝑖,𝑗Corr 𝑋𝑖 , 𝑋𝑗 < 1/𝑟 

[improves works on (pseudo-)dense problems:  
Arora-Karger-Karpinski’95, Fernandez de la Vega’96, …] 

canonical SDP integrality gap instances have 
rapidly decaying eigenvalues ( 𝑟 = polylog(𝑛) ) 



For general 2-CSP: 

PTAS if constraint graph is random (degree ≫ alphabet) 

[Barak-Raghavendra-S.’11] 

Subsequent works: 

[Arora-Ge’11] 

better approximations for MAX-BISECTION 

Independent work: 

approximation schemes for quadratic integer programming  
with p.s.d. objective & few relevant eigenvalues 

More SDP-hierarchy algorithms 

[Guruswami-Sinop’11] 

better 3-COLORING approximation on some graph families 

[Raghavendra-Tan’11] 



Open Questions 

Example: 𝑓(𝜀)-approximation for SPARSEST CUT in time exp (𝑛𝜀)? 

SDP integral gap instances with poly(𝑛) large eigenvalues? 

Thank you! Questions? 

What else can be done in subexponential time? 

Towards settling the Unique Games Conjecture 

Better approximations for MAX CUT, VERTEX COVER on general instances? 

Recent progress: [Barak-Gopalan-Håstad-Meka-Raghavendra-S.’11] 

Also: gap remains for qpoly 𝑛  levels of an SDP hierarchy 

 ∃ gap instances with qpoly n = 2(log 𝑛)
Ω(1)

 large eigenvalues 


