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Semidefinite Programming Hierarchies [Sherali-Adams’qo,

_ _ _ Lovasz-Schrijver'gz,
powerful algorithmic technique Lasserre’o1]

Better approximations for combinatorial optimization problems?

Example: MAX CUT [Goemans-Williamson’g4]

Unique Games Conjecture [Khot'02,...]

strong implications for hardness of approximation

Is the conjecture true or false?

Constraint Satisfaction Problems [e.g., works on dense
or pseudo-dense
important class of optimization problems instances]

What instances are hard / easy?



Xi Xj
UNIQUE GAMES
Input:  list of constraints of form x; — x; = c mod k

Goal:  satisfy as many constraints as possible



UG(g) -

Input: list of constraints of form

Goal:  satisfy as many constraints as possible

Unique Games Conjecture (UGC) [Khot'02]

For every € > 0, the following is NP-hard:
Input:  UNIQUE GAMES instance with k = logn (say)
Goal:  Distinguish two cases
YES: morethan 1 — ¢ of constraints satisfiable

NO: lessthan € of constraints satisfiable



Implications of UGC

For many basic optimization problems,
it is NP-hard to beat current algorithms
(based on simple LP or SDP relaxations)

Examples:

VERTEX COVER [Khot-RegeVv'03],

MAX CUT [Khot-Kindler-Mossel-O’Donnell’og,
Mossel-O’Donnell-Oleszkiewicz'os],

every MAX CsP [Raghavendra’o8], ...



Implications of UGC

For many basic optimization problemes,
it is NP-hard to beat current algorithms
(based on simple LP or SDP relaxations)

Unique Games Barrier

Example: (agw+¢)-approximation for MAX Cut

at least as hard as UG(¢g")
aAgw = 0.878 ...

UNIQUE GAMES is common barrier for Goemans-Williamson

improving current algorithms of TRl S el
many basic problems




Subexponential Algorithm for Unique Games

UG(¢) intime exp (ngl/s)

Time vs Approximation Trade-off

Input: ~ UNIQUE GAMES instance with alphabet size k
such that 1 — € of constraints are satisfiable,

Output: assignment satisfying 1 — C+/€ of constraints
Time:  exp (k nl/cz/g)



Subexponential Algorithm for Unique Games

UG(¢) intime exp (ngl/s)

[Moshkovitz-Raz'o8

MAX CuT(agw + €)7

UG(¢) + Hastad'qg7]
MAX 3-SAT(7/g) - FACTORING MAX 3-SAT(7 /g + €)
MAX CUT(a ;) - LABEL COVER(¢)
- GRAPH ISOMORPHISM
2-SAT - 3-SAT (%)
|

poly(n) exp (ngl/g) exp(n'/3) exp(n'/?) exp(n)
easy hard

(*) assuming Exponential Time Hypothesis [Impagliazzo-Paturi-Zane'o1]
(3-SAT has no 2°(™ algorithm )



Subexponential Algorithm for Unique Games

UG(¢) intime exp (ngl/s)

Consequences

1/1/3

NP-hardness reduction for UG(e) must have blow-up n (*)

—> rules out certain classes of reductions for proving UGC

Analog of UGC with subconstant € (say € = 1/loglogn) is false (%)
(contrast: subconstant hardness for LABEL COVER [Moshkovitz-Raz'08])

(*) assuming 3-SAT does not have subexponential algorithmes, exp(no(l))



Subexponential Algorithm for Unique Games

UG(¢) intime exp (ngl/s)

here: via semidefinite programming hierarchies [Sherali-Adams’go,
Lovasz-Schrijver'as,
Lasserre’o1]

general framework for rounding SDP hierarchies

(especially for “pseudo-random” instances of 2-CSPs)

constraint graph has few
significant eigenvalues



UNIQUE GAMES

Input:  list of constraints of form x; — x; = ¢ mod k

Goal:  satisfy as many constraints as possible

What we want:
X, X, Jointly distributed random variables over | k]|

Pr(Xl- —Xj = c) >1—c¢ for typical constraintx; — x; = ¢



5 distributions X5 over [k]° forall S with |S| < r

T
SNT
same marginal for S N T in distributions X5 and X
X;, = indicator of {X;= a}
time n?" Cov(Xig, Xip | Xs = f i
ia» Xjp | Xg = a) p.s.d. forall S with [S]| < r-2
r-level SDP hierarchy:
—Woheat-weweant—
r-local
X1, Xp —fointly-distriboted random variables over [ k]
Pr(Xl- —Xj = C) >1—c¢ for typical constraintx; — x; = ¢

Goal: produce global random variables X', ..., X',

{X’i,X’j} ~ {Xl-,Xj} for most constraints x; — x; = ¢

Here: iterative procedure forr = n0(81/3) [Arora-Barak-S."10
+ Barak-Raghavendra-S."11]



Components of iterative procedure

Rounding

sample variables independently according to their marginals

Conditioning
pick a vertex j and sample X;

condition X3, ..., X;, on sample for Xj

Partitioning general framework
find vertex subset S for rounding
SDP hierarchies

break dependence between Xs and X\ ¢



Rounding Conditioning Partitioning

(Pairwise) Correlation

Corr(Xi,Xj) measures how much the distribution of X;
changes when conditioned on X;

Examples:

Corr(Xl, J) =0 < X;andX;independent
Corr(Xl, ])— 1 & X, fixed afterﬂxmgX



Rounding Conditioning Partitioning

statistical distance between {X;, X;} and {Xl-}{Xj}

~

max z |Cov(Xia, Xj(a+o))|

a

(Pairwise) Correlation <

Corr(X;, X;) decrease in variance when conditioning on X;

Z(Var(xia) _ Var(Xia |Xj))

similar to mutual information
I(X;Y) =HX)—H(X 1Y)

Important fact:

can approximate Corr(X;, X;) by Gram matrix
of unit vectors (tensoring trick)




Rounding Conditioning Partitioning




‘ Rounding \‘ Conditioning Partitioning

sample variables independently according to their marginals

Corr(X;, X;) = statistical distance between
independent and correlated sampling

If Corr(Xi,Xj) < 1 — 0(¢) then independent sampling
satisfies constraint with probability (1(¢)

Rounding fails = El-NjCorr(Xi,Xj) >1—0(¢)

T

Local Correlation
(over edges of constraint graph)




Rounding [ Conditioning\‘ Partitioning

pick a vertex j and sample X;

condition X, ..., X;, on sample for X;

Issue:
computationally expensive

(levelr = levelr — 1) Corr(Xl-,Xj) measures decrease in

variance when conditioning on X;
Idea:

condition on vertex j only if EiCorr(Xi,Xj) >nP
= can condition at most n” times on such vertices

Conditioning fails = Ei,jCorr(Xl-,Xj) <n B
_/\

Global Correlation
(over random vertex pairs)




Rounding Conditioning [ Partitioning |

find vertex subset S

break dependence between X5 and X\ ¢

Issue:
destroys correlation for constraints between Sand V' \ S

in total: should break at most 1/, of the constraints

Wanted:

set S with small expansion
& small cardinality

N\, v

S

Z
=




Rounding Conditioning [ Partitioning |

fails only if local correlation high fails only if global correlation low
E;-;Corr(X;, X;) >1—0(e) E; jCorr(X;, X;) <n™#
' V'\S
find vertex subset S \ Wy \
break dependence between X5 and X\ ¢ S =

Correlation Propagation

For endpoints of random path of length t = Q(B/g -logn)

E; ., ;Corr(X; X;) > (1-— 0(5)) > n~P/? Corr(X;, X;) is Gram
matrix of unit vectors

= random walk stuck for t steps on n=#/? fraction of vertices
= 3 vertex set S with |S| < |V|/nP/? and expansion O(w/e/ﬁ)

A vertexis cutin < 2/ partitioning steps = break only O(w/e/ﬁ3) edges
|




Rounding Conditioning Partitioning

Can we avoid partitioning?

Yes, for a large family of instances!

Local vs Global Correlation and Higher Eigenvalues

EiNjCOI'I'(Xi,Xj) > A

Ei'jCOIT(Xi,Xj) < 1/7"

=

constraint graph has
at least ¢ -  eigenvalues
largerthan A — ¢




Rounding Conditioning Partitioning

fails only if local correlation high fails only if global correlation low
E;-;Corr(X;,X;) >1—0(¢) E; Corr(X;, X;) < 1/r

Local vs Global Correlation and Higher Eigenvalues

EiNjCorr(Xi,Xj) > A constraint graph has
—  atleaste - reigenvalues
E; jCorr(X;, X;) < 1/r largerthan 1 — ¢
Corollary
rthlevels of hierarchy solves UG(¢) if constraint graph [improves

has at most ¢ - r eigenvalues larger than 1 — 0(¢) Kolla"10]



Rounding Conditioning Partitioning

fails only if local correlation high fails only if global correlation low
El~]Corr(Xl, ]) > 0(n) Ei,jCorr(Xi,Xj) <1/r

Local vs Global Correlation and Higher Eigenvalues

E;-;Corr(X;,X;) > 2 constraint graph has
—  atleaste - reigenvalues
E; jCorr(X;, X;) < 1/r largerthan 1 — ¢

[improves works on (pseudo-)dense problems:

Appl’OXImCltIOf) Schemefor Max Cut Arora-Karger-Karpinski‘gs, Fernandez de laVega‘g, ...]

rth levels of hierarchy finds optimal cut up to O(7) fraction of edges
if graph has at most 77 - r eigenvalues larger than 7

canonical SDP integrality gap instances have
rapidly decaying eigenvalues (7 = polylog(n) )



More SDP-hierarchy algorithms

For general 2-CspP: [Barak-Raghavendra-S."11]

PTAS if constraint graph is random (degree >> alphabet)

Subsequent works:

better 3-COLORING approximation on some graph families [Arora-Ge'11]

better approximations for MAX-BISECTION [Raghavendra-Tan'11]

Independent work: [Guruswami-Sinop’11]

approximation schemes for quadratic integer programming
with p.s.d. objective & few relevant eigenvalues



Open Questions

What else can be done in subexponential time?

Better approximations for MAX CUT, VERTEX COVER on general instances?

Example: f (¢)-approximation for SPARSEST CUT in time exp(n®)?

Towards settling the Unique Games Conjecture

SDP integral gap instances with poly(n) large eigenvalues?

Recent progress: [Barak-Gopalan-Hastad-Meka-Raghavendra-S."11]

).Q(l

3 gap instances with gpoly(n) = 208" ) large eigenvalues

Also: gap remains for qpoly(n) levels of an SDP hierarchy

Thank you! Questions?



