Semidefinite Programming Hierarchies and the Unique Games Conjecture

David Steurer
MSR New England

based on joint works with

Sanjeev Arora	Boaz Barak	Prasad Raghavendra
Princeton University	MSR New England	Georgia Tech

Semidefinite Programming Hierarchies
powerful algorithmic technique
Better approximations for combinatorial optimization problems?

```
Example: MAX CUT [Goemans-Williamson'94]
```

Unique Games Conjecture
strong implications for hardness of approximation Is the conjecture true or false?

Constraint Satisfaction Problems
important class of optimization problems
[e.g., works on dense
or pseudo-dense
instances]

What instances are hard / easy?

Unioue Games

Input: list of constraints of form $x_{i}-x_{j}=c \bmod k$
Goal: satisfy as many constraints as possible

Unique Games

Input: list of constraints of form $x_{i}-x_{j}=c \bmod k$
Goal: satisfy as many constraints as possible

Unique Games Conjecture (UGC) [Khot'oz]
For every $\varepsilon>0$, the following is NP-hard:
$\operatorname{UG}(\varepsilon)\left\{\begin{array}{cc}\text { Input: } & \text { UniQue Games instance with } k=\log n \text { (say) } \\ \text { Goal: } & \text { Distinguish two cases } \\ & \text { YES: more than } 1-\varepsilon \text { of constraints satisfiable } \\ & \text { NO: less than } \varepsilon \text { of constraints satisfiable }\end{array}\right.$

Implications of UGC

For many basic optimization problems, it is NP-hard to beat current algorithms (based on simple LP or SDP relaxations)

Examples:
Vertex Cover [Khot-Regev'03], MAX CUT [Khot-Kindler-Mossel-O’Donnell'04,

Mossel-O'Donnell-Oleszkiewicz'05],
every MAX CsP [Raghavendra'08], ...

Implications of UGC

For many basic optimization problems, it is NP-hard to beat current algorithms (based on simple LP or SDP relaxations)

Unique Games Barrier
Example: $\left(\alpha_{\mathrm{GW}}+\varepsilon\right)$-approximation for MAX CUT at least as hard as $\mathrm{UG}\left(\varepsilon^{\prime}\right)$

Unioue Games is common barrier for improving current algorithms of many basic problems

Subexponential Algorithm for Unique Games

 $\mathrm{UG}(\varepsilon)$ in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$Time vs Approximation Trade-off
Input: Unique Games instance with alphabet size k such that $1-\varepsilon$ of constraints are satisfiable, Output: assignment satisfying $1-C \sqrt{\varepsilon}$ of constraints
Time: $\exp \left(k n^{1 / C^{2 / 3}}\right)$

Subexponential Algorithm for Unique Games

 $\mathrm{UG}(\varepsilon)$ in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$
(*) assuming Exponential Time Hypothesis [Impagliazzo-Paturi-Zane'01] (3-SAT has no $2^{o(n)}$ algorithm)

Subexponential Algorithm for Unique Games

 $\mathrm{UG}(\varepsilon)$ in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$Consequences
NP-hardness reduction for $\operatorname{UG}(\varepsilon)$ must have blow-up $n^{1 / \varepsilon^{1 / 3}}$ (*)
\rightarrow rules out certain classes of reductions for proving UGC

Analog of UGC with subconstant ε (say $\varepsilon=1 / \log \log n$) is false (*) (contrast: subconstant hardness for LABEL Cover [Moshkovitz-Raz'08])
(*) assuming 3-SAT does not have subexponential algorithms, $\exp \left(n^{o(1)}\right)$

Subexponential Algorithm for Unique Games $\mathrm{UG}(\varepsilon)$ in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$

here: via semidefinite programming hierarchies [Sherali-Adams'9o, Lovász-Schrijver'g1, Lasserre'o1]

general framework for rounding SDP hierarchies

(especially for "pseudo-random" instances of 2-CSPs) constraint graph has few significant eigenvalues

Unique Games

Input: list of constraints of form $x_{i}-x_{j}=c \bmod k$
Goal: satisfy as many constraints as possible

What we want:

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \quad \text { jointly distributed random variables over }[k] \\
& \operatorname{Pr}\left(X_{i}-X_{j} \equiv c\right) \geq 1-\varepsilon \quad \text { for typical constraint } x_{i}-x_{j} \equiv c
\end{aligned}
$$

distributions X_{S} over $[k]^{S}$ for all S with $|S| \leq r$

same marginal for $S \cap T$ in distributions X_{S} and X_{T}
positive semidefiniteness $X_{i a}=$ indicator of $\left\{X_{i}=a\right\}$

$$
\operatorname{Cov}\left(X_{i a}, X_{j b} \mid X_{S}=\alpha\right) \text { p.s.d. for all } S \text { with }|S| \leq r-2
$$

r-level SDP hierarchy:

> What we want.

$$
r \text {-local }
$$

X_{1}, \ldots, X_{n} jointly random variables over $[k]$

$$
\operatorname{Pr}\left(X_{i}-X_{j} \equiv c\right) \geq 1-\varepsilon \quad \text { for typical constraint } x_{i}-x_{j} \equiv c
$$

Goal: produce global random variables $X^{\prime}{ }_{1}, \ldots, X_{n}^{\prime}$

$$
\left\{X_{i}^{\prime}, X_{j}^{\prime}\right\} \approx\left\{X_{i}, X_{j}\right\} \text { for most constraints } x_{i}-x_{j} \equiv c
$$

Here: iterative procedure for $r=n^{O\left(\varepsilon^{1 / 3}\right)}$ [Arora-Barak-S.'10 + Barak-Raghavendra-S.'11]

Components of iterative procedure

Rounding

sample variables independently according to their marginals

Conditioning

pick a vertex j and sample X_{j}
condition X_{1}, \ldots, X_{n} on sample for X_{j}

Partitioning

find vertex subset S
break dependence between X_{S} and $X_{V \backslash S}$
general framework for rounding SDP hierarchies
(Pairwise) Correlation
$\operatorname{Corr}\left(X_{i}, X_{j}\right)$ measures how much the distribution of X_{i} changes when conditioned on X_{j}

Examples:

$$
\begin{aligned}
& \operatorname{Corr}\left(X_{i}, X_{j}\right)=0 \quad \Leftrightarrow \quad X_{i} \text { and } X_{j} \text { independent } \\
& \operatorname{Corr}\left(X_{i}, X_{j}\right)=1 \quad \Leftrightarrow \quad X_{i} \text { fixed after fixing } X_{j}
\end{aligned}
$$

statistical distance between $\left\{X_{i}, X_{j}\right\}$ and $\left\{X_{i}\right\}\left\{X_{j}\right\}$

$$
\max _{c} \sum_{a}\left|\operatorname{Cov}\left(X_{i a}, X_{j(a+c)}\right)\right|
$$

decrease in variance when conditioning on X_{j}

$$
\sum_{a}\left(\operatorname{Var}\left(X_{i a}\right)-\operatorname{Var}\left(X_{i a} \mid X_{j}\right)\right)
$$

similar to mutual information

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Important fact:
can approximate $\operatorname{Corr}\left(X_{i}, X_{j}\right)$ by Gram matrix of unit vectors (tensoring trick)
sample variables independently according to their marginals
$\operatorname{Corr}\left(X_{i}, X_{j}\right) \approx$ statistical distance between independent and correlated sampling

If $\operatorname{Corr}\left(X_{i}, X_{j}\right)<1-O(\varepsilon)$ then independent sampling satisfies constraint with probability $\Omega(\varepsilon)$

Rounding fails $\Rightarrow \quad \mathbf{E}_{i \sim j} \operatorname{Corr}\left(X_{i}, X_{j}\right)>1-O(\varepsilon)$

Local Correlation
(over edges of constraint graph)
pick a vertex j and sample X_{j}
condition X_{1}, \ldots, X_{n} on sample for X_{j}
Issue:
computationally expensive
(level $r \rightarrow$ level $r-1$)
Idea:
$\operatorname{Corr}\left(X_{i}, X_{j}\right)$ measures decrease in variance when conditioning on X_{j}
condition on vertex j only if $\mathrm{E}_{i} \operatorname{Corr}\left(X_{i}, X_{j}\right)>n^{-\beta}$
\Rightarrow can condition at most n^{β} times on such vertices

Conditioning fails $\quad \Rightarrow \quad \mathbf{E}_{i, j} \operatorname{Corr}\left(X_{i}, X_{j}\right)<n^{-\beta}$

Global Correlation (over random vertex pairs)
find vertex subset S
break dependence between X_{S} and $X_{V \backslash S}$
Issue:
destroys correlation for constraints between S and $V \backslash S$ in total: should break at most $1 / 2$ of the constraints

Wanted:

set S with small expansion
\& small cardinality
fails only if global correlation low $\mathbf{E}_{i, j} \operatorname{Corr}\left(X_{i}, X_{j}\right)<n^{-\beta}$

fails only if local correlation high
 $\mathbf{E}_{i \sim j} \operatorname{Corr}\left(X_{i}, X_{j}\right)>1-O(\varepsilon)$

Can we avoid partitioning?

Yes, for a large family of instances!

Local vs Global Correlation and Higher Eigenvalues

$$
\begin{array}{ll}
\mathbf{E}_{i \sim j} \operatorname{Corr}\left(X_{i}, X_{j}\right)>\lambda \Rightarrow \begin{array}{l}
\text { constraint graph has } \\
\text { at least } \varepsilon \cdot r \text { eigenvalues } \\
\text { larger than } \lambda-\varepsilon
\end{array} \\
\mathbf{E}_{i, j} \operatorname{Corr}\left(X_{i}, X_{j}\right)<1 / r \Rightarrow
\end{array}
$$

fails only if local correlation high
$\mathbf{E}_{i \sim j} \operatorname{Corr}\left(X_{i}, X_{j}\right)>1-O(\varepsilon)$
fails only if global correlation low $\mathbf{E}_{i, j} \operatorname{Corr}\left(X_{i}, X_{j}\right)<1 / r$

Local vs Global Correlation and Higher Eigenvalues

$$
\begin{array}{ll}
\mathbf{E}_{i \sim j} \operatorname{Corr}\left(X_{i}, X_{j}\right)>\lambda \\
\mathbf{E}_{i, j} \operatorname{Corr}\left(X_{i}, X_{j}\right)<1 / r \Rightarrow \quad \begin{array}{l}
\text { constraint graph } \vdash \\
\text { at least } \varepsilon \cdot r \text { eigen } \\
\\
\text { larger than } \lambda-\varepsilon
\end{array}
\end{array}
$$

Corollary
$r^{\text {th }}$ levels of hierarchy solves $\operatorname{UG}(\varepsilon)$ if constraint graph has at most $\varepsilon \cdot r$ eigenvalues larger than $1-O(\varepsilon)$
[improves Kolla'10]
fails only if local correlation high

$$
\mathbf{E}_{i \sim j} \operatorname{Corr}\left(X_{i}, X_{j}\right)>O(\eta)
$$

fails only if global correlation low

$$
\mathbf{E}_{i, j} \operatorname{Corr}\left(X_{i}, X_{j}\right)<1 / r
$$

Local vs Global Correlation and Higher Eigenvalues

$$
\begin{aligned}
& \mathbf{E}_{i \sim j} \operatorname{Corr}\left(X_{i}, X_{j}\right)>\lambda \\
& \mathbf{E}_{i, j} \operatorname{Corr}\left(X_{i}, X_{j}\right)<1 / r \quad \Rightarrow \quad \begin{array}{l}
\text { constraint graph has } \\
\text { at least } \varepsilon \cdot r \text { eigenvalues } \\
\text { larger than } \lambda-\varepsilon
\end{array}
\end{aligned}
$$

Approximation Scheme for MAX CUt
[improves works on (pseudo-)dense problems: Arora-Karger-Karpinski'95, Fernandez de la Vega'96, ...] $r^{\text {th }}$ levels of hierarchy finds optimal cut up to $0(\eta)$ fraction of edges if graph has at most $\eta \cdot r$ eigenvalues larger than η

canonical SDP integrality gap instances have

 rapidly decaying eigenvalues ($r=\operatorname{polylog}(n)$)
More SDP-hierarchy algorithms

For general 2-Csp:
PTAS if constraint graph is random (degree >> alphabet)

Subsequent works:
better 3-CoLORING approximation on some graph families [Arora-Ge'11]
better approximations for MAX-BISECTION
[Raghavendra-Tan'11]

Independent work:
[Guruswami-Sinop'11]
approximation schemes for quadratic integer programming with p.s.d. objective \& few relevant eigenvalues

Open Questions

What else can be done in subexponential time?

Better approximations for MAX Cut, Vertex Cover on general instances?
Example: $f(\varepsilon)$-approximation for SPARSEST CUT in time $\exp \left(n^{\varepsilon}\right)$?
Towards settling the Unique Games Conjecture
SDP integral gap instances with poly (n) large eigenvalues?
Recent progress:
[Barak-Gopalan-Håstad-Meka-Raghavendra-S.'11]
\exists gap instances with qpoly $(\mathrm{n})=2^{(\log n)^{\Omega(1)}}$ large eigenvalues
Also: gap remains for qpoly (n) levels of an SDP hierarchy

Thank you! Questions?

