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goal: bound value(G®¥) in terms of value(G) and k



previous bounds
(long history, notoriety)
parallel repetition theorem [Raz’95, improved: Holenstein’07, Rao’08]
(for projection games)
value(G) < 1 — ¢ = value(G®*) < (1 - k2 1)k

(tight even for games with XOR constraints) [Raz'08]

main application: hardness amplification for LABEL COVER
1 vs § approximation is NP-hard (basis of inapproximability results)

What happens if value(G) = o(1) ..ork <1/g?



parallel repetition theorem [Raz’95, improved: Holenstein’07, Rao’08]
(for projection games)

value(G) <1—-¢ = value(G‘X’k) < (1-—¢€?2/2)F
our results

analytical framework to analyze parallel repetition

(contrast to previous information-theoretic approach)

new bounds

low value: value(G) < p = Value(G®k) < (2p)k/?

(for projection constraints)

few repetitions: value(G) <1—¢ = value(G®k) <(1- e)\m

(for projection constraints, k < 1/&2)



new bounds

low value: value(G) < p = Value(G‘X’k) < (2p)k/2

(for projection constraints)

few repetitions: value(G) <1 —¢& = value(G®*) < (1 - g)VE

(for projection constraints, k < 1/£2)

impIications 2"9(5) -time algorithm is optimal* for [Cygan-Kowalik-
approximation ratio (1 — &) Inn Wykurz'09]

optimal NP-hardness for SET COVER (and better NP-hardness for LABEL COVER)

(1 — €) Inn-approximation, via [Moshkovitz-Raz, Feige, Moshkovitz]

Raz’s parallel-repetition counterexample tight even for small k
some (G have value < 1 — ¢ but value(G®k) >1-—evk
(answers question of O’'Donnell)

* under standard complexity assumptions, NP € TIME (2"0(1))



proof overview

show game parameter relax(-) with
1. relax(G) = value(G) for all G (relaxation)
2. relax(G®*) = relax(G)* for all G, k (multiplicativity)
3.relax(G) < value(G) for all G (approximation)

proof of parallel-repetition bound

1. 2. 3.
value(G®¥) < relax(G®*) = relax(G)* < value(G)*



proof overview

show game parameter relax(-) with
1. relax(G) = value(G) for all G (relaxation)
2. relax(G®*) = relax(G)* for all G, k (multiplicativity)
3.relax(G) < value(G) for all G (approximation)

BASIC SDP satisfies 1 & 2 but not 3 [Feige-Lovasz’92] (no efficient param. can satisfy 3)

our parameter is the analog over cone of completely positive matrices
(instead of cone of p.s.d. matrices)

very similar to “Hellinger value” [Barak-Hardt-Haviv-Rao-Regev-S.08]



analytical setup

constraint graph
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analytical setup VX

label-extended graph G f:UXZ->R

U

g:VxZ->R 4

f:U XX - Risassignment Mypey:2 = 2 u
iff >0and ), f(u,a) =1
forallu e U

For assignment f,
linear operator G: RUXZ 5 RV*2 Gf (v, B) = prob. that random

= adjacency matrix of v-neighbor “demands” f

label-extended graph
Gf(v) ,8) = ]Eu: v<UuU Za; ﬁ:n‘v(_u(a) f(u; a)

success probability
for assignments f, g

bilinear form (Gf,9) =E, XpGf (v, B) - g(v, B)

value(G) = max(Gf, g) over assignments f, g
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analytical setup VX Yot
label-extended graph G — f:UXZ->R

g:VxZ->R 4
Myeqys 2 = X u
G: ]RUXZ N ]RVXZ H: RU’XZ’ - RV’XZ’
tensor product G ® H: RUXU'XIXZ' _, RVXV'XEXE’
= parallel repetition (G R ]—[)f(v, v, B,B")

= [ v<_u/ Z L=ty y(a) f(u' u,’ a, CZ’)

/
V <u r_ ’
B'=m,_,(a)



analytical setup IGfII5 = Ey X Gf (v, B)*

good proxy for value(G)
claim: value(G) </ max ||Gf|l,)< value(G) /2
assignment f
proof: value(G) = (Gf, g) < lIGflz - llgll
<1

IGfll, = (Gf,_G'z)l/2 < value(G)'/?
assignment for V (because G is projecting)

|74 U
squared game GTG:
sample v Myeqy! 2 = 2 .
/ u
sample two neighbors u, u’
[ ] e
WIN if collision v — o

Ty (fW) = Ty (FW)) Myeytd = X u



warm-up theorem

4 )

Suppose constraint graph is expanding (often wlog)

Then, value(G®*) > (1 — n)* implies value(G) > 1 — 0(n)

- J
two steps
J assignment f » 3 nonnegative f » 3 assignment f
|GOFf|| = (1 —m)* IGfI = (1 =mITfIl IGfll=1—n
relaxation & approximation

multiplicativity (rounding)

trivial game T
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J assignment f » 3 nonnegative f

|G®%f|| = (1 — )k IGFIl = (1 = IITFI
\

trivial game T UX2

ITfIl =1

for every assignment f

max _||[(T & H)f]|
assign. f

= max _||Hfl|

assign. f
for all games H

T does not help to win
in parallel repetition

(i G i - x

"

Ng

3 assignment f
IGfll=1—n
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3 assignment f
|6®*f|| = (1 —m)*

» 3 nonnegative f » 3 assignment f
Gl = (1 =mIITf IGfIl =1—n

J

Wiog: |[(T ® G®*1)f| < (1 —n)*?

Otherwise, can take k smaller

(using m}gx”(T ® G )f|| = m}gx”G@"_lf”)



é )
3 assignment f » 3 nonnegative f » 3 assignment f
|G®*f|| = (1 —n)* IGFIl = (@ =TS IGfll=1—n
\_ /
H =
!/ !/ !/ /
Wlog: ”(T R G®k—1)f” < (1- n)k—l H: RU XZ 5 RV %E
Have: ||(¢ @ H)fll = (1 —mII(T & H)f|
V'x ¥
GQQH What can we do?

T '\('G®1)(1®H3 U
;\Iijh,iln 1 vy f UXX
_ ‘/§T® N{U & H)

UXX
TQ®H
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3 assignment f » 3 nonnegative f » 3 assignment f
|G®*f|| = (1 —n)* IGFIl = (@ =TS IGfll=1—n
/
H =
!/ !/ !/ /
Wiog:  [|(T ® 6B )f|| < (1 —m)* H: RV - RV
Have: ||(¢ @ H)fll = (1 —mII(T & H)f|
V'x ¥
GQH
V X Z (G ® I) UI X ZI
norms \ (1 Q H)
within - h=>0 f UXZX
1 -7 V, XZ,
| i (U ® H)
UXZ TRI)

TQ®H



é )
3 assignment f » 3 nonnegative f » 3 assignment f
|G®*f|| = (1 —n)* IGFIl = (@ =TS IGfll=1—n
\_ /
H =
l_l_\
Wiog:  ||(T ® 6&*)f|| < (1 —m)* H: RV o RV

Have: ||[(G Q@ H)f|| = (1 —n)||(T ® H)||

V'x apply G to columns of h ¢

Vxz GRI) - -
norms | \ exists column h* = hvr’ g’ of h
within - h>o0 with
=g | e IGh* 1l = (1 = mIITh*|

] / \- Y,

Uz (T

apply T to columns of h



3 assignment f

lG®*fl| = (1 —m)* »

Explicitly:

Wilog:

(

\_

3 nonnegative f

IGfIl = (1 =mITfIl

"

3 assignment f
IGfll=1—n

~

J

||Tf||2 = E, Qe f(u, a))z

/M

:

f is “deterministic” (f (u, @) # 0 for at most one a per u)

Otherwise, write f as distribution over such functions
with fixed ||T - ||. Use convexity of f = ||G f]|.

(u,a) 2 4 0 0
(u,b) E 1 = 1/2 ‘ 0 + % H 4 4 % 0
(uc) 1 0 0 L 4



4 )
3 assignment f » 3 nonnegative f » 3 assignment f
|G®*f|| = (1 —n)* IGFIl = (@ =TS IGfll=1—n

\_ J
Wilog: f is “deterministic” (f (u, @) # 0 for at most one a per u)
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4 )
3 assignment f » 3 nonnegative f » 3 assignment f
|G®*f|| = (1 —n)* IGFIl = (@ =TS IGfll=1—n

\_ J
Wilog: f is “deterministic” (f (u, @) # 0 for at most one a per u)

11
Y\

can extract an
assignment

How good is
this assignment?




J assignment f
|6®*F| = (1 —m)*

i
Y

(

\_

/
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e

~N
3 nonnegative f » 3 assignment f
Gl = (1 =mIITF]] Gl =1 -n

J
— f Can. extract an
— U a assignment
=

expander! (squared
constraint graph)

Py u’{TL'(afu) =1’ (a,)}

\ vu J

(1= DIFIZ < NGFIPS By ot @0)f (') - Qo

(1 — n)-correlated with expander
= 0(n)-close to constant function!



4 )
3 assignment f » 3 nonnegative f » 3 assignment f

1G®XF]| = (1 — n)* IGFIl = (1 =TS IGFIl =1 -7
\_ J
. — f | Can. extract an
—4 ', assignment
y = < E M assignment has
— = ! value>1-0(n)
' § : _i' “u! ¢
expander! (squared Pveu{ﬂ(au) = n’(au,)}
constraint graph) veu! ,

(1= DI S NGFIPS Byorf (1 0 F (' @) - Qs

value of assignment!

(1 — n)-correlated with expander
=> 0(n)-close to constant function! (" E,_,/Q,,~/=1—0()



extensions
IGFI N (GRS
£l m€X||(Tu®I)f”

non-expanding constraint graphs corresponds to
operator norm for G & I

compare against family of trivial games T,
use Cheeger-style rounding to extract “partial assignments”

use correlated sampling to combine them

low-value regime (value(G) = 0(1))

use low-correlation version of Cheeger (like for d-to-1 games [S./10])

value(G) =1—¢ N value(G @ H)
few repetitions (value(G®*) > 0.9) value(H)=1-t-¢ <1- (t + %) ‘€

show: intermediate non-negative function is close to 0/1

careful rounding to exploit near-integrality



open questions

operator-theoretic viewpoint

applications for other PCP constructions?

combination with information-theoretic approach?

Thank you!
Question?



