On the Power of Semidefinite Programming Hierarchies

Prasad Raghavendra
Georgia Institute of Technology,
Atlanta, GA.

David Steurer
Microsoft Research New England
Cambridge, MA

Overview

- Background and Motivation
- Introduction to SDP Hierarchies (Lasserre SDP hierarchy)
- Rounding SDP hierarchies via Global Correlation.

BREAK

- Graph Spectrum and Small-Set Expansion.
- Sum of Squares Proofs.

Background and Motivation

Max-Cut Problem

Max-Cut

> Input: A graph G Find: A cut with maximum number of crossing edges

Semidefinite Program for MaxCut: [Goemans-Williamson 94]

Embed the graph on the
\mathbf{N} - dimensional unit ball,
Maximizing
$1 / 4$ (Average Squared Length of the edges)
[Khot-Kindler-Mossel-O'Donnell]
Under the Unique Games Conjecture,
Goemans-Williamson SDP yields the optimal approximation ratio for MaxCut.

Motivation

Unique Games Conjecture (UGC)

[Khot'02]

For every $\varepsilon>0$, the following is NP-hard:
Given: system of equations $x_{i}-x_{j}=c \bmod k \quad($ say $\mathrm{k}=\log n)$
Distinguish:
YES: at least $1-\varepsilon$ of equations satisfiable
NO:
at most ε of equations satisfiable

Assuming the Unique Games Conjecture,
A simple semidefinite program (Basic-SDP) yields the optimal approximation ratio for

Constraint Satisfaction Problems [Raghavendra 08][Austrin-Mossel]
MAX CUT [Khot-Kindler-Mossel-ODonnell][0donnell-Wu]
MAX 2SAT [Austrin07][Austrin08]
Metric Labeling Problems [Manokaran-Naor-Raghavendra-Schwartż 08]
Multiway Cut, 0-EXTENSION
Ordering CSPs [Charikar-Guruswami-Manokaran-Raghavendra-Hastad'08]
MAX Acycli Is the conjecture true?
Many many ways to disprove the conjecture!
Find a better algorithm for any one of these problems.
Kernel Clustering Problems [Khot-Naor 08,10]
Grothendieck Problems [Khot-Naor, Raghavendra-Steurer]

Question I:

Could some small LINEAR Program
give a better approximation for MaxCut or Vertex Cover thereby disproving the UGC?

Probably Not!

Question II:
[Charikar-Makarychev-Makarychev][Schoenebeck-Tulsiani]
GBuhdaseme, give a better approximation for MaxCut or Vertex Cover
 the trivial $1 / 2$ approximation!

We don't know.

Max Cut SDP:

Embedd the graph on the
\mathbf{N} - dimensional unit bafl,
Maximizing
$1 / 4$ (Average squared length of the edges)

In the integral solution, all the vectors v_{i} are $1,-1$. Thus they satisfy additional constraints
For example :

$$
\begin{aligned}
&\left(v_{i}-v_{j}\right)^{2}+\left(v_{j}-v_{k}\right)^{2} \geq\left(v_{i}-v_{k}\right)^{2} \\
& \text { (the triangle inequality) }
\end{aligned}
$$

Does adding triangle inequalities improve approximation ratio? (and thereby disprove UGC!)
[Arora-Rao-Vazirani 2002]
For Sparsest Cut,
SDP with triangle inequalities gives $O(\sqrt{\log n})$ approximation.

An O (1)-approximation would disprove the UGC!
[Goemans-Linial Conjecture 1997]
SDP with triangle inequalities would yield O (1)-approximation for SPARSEST CUT.
[Khot-Vishnoi 2005]
SDP with triangle inequalities DOES NOT give $\mathrm{O}(1)$ approximation for SpARSEST CUT

SDP with triangle inequalities DOES NOT beat the GoemansWilliamson 0.878 approximation for MAX CuT

Until 2009:

Adding a simple constraint on every 5 vectors could yield a better approximation for MaxCut, and disproves UGC!

Building on the work of [Khot-Vishnoi],

[Khot-Saket 2009][Raghavendra-Steurer 2009]

Adding all valid local constraints on at most $2^{(\log \log n)^{\wedge} 1 / 4}$ vectors to the simple SDP

DOES NOT improve the approximation ratio for MaxCut

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009]

As of Now:

Change $2^{(\log \log n)^{\wedge} 1 / 4}$ to $\exp \left(2^{(\operatorname{poly}(\log \log n))}\right)$ in the above result. A natural SDP of size $O\left(n^{16}\right)$ (the $8^{\text {th }}$ round of Lasserre hierarchy) could disprove the UGC.

Why play this game?

Connections between SDP hierarchies, Spectral Graph Theory and Graph Expansion.

New algorithms based on SDP hierarchies.
[Raghavendra-Tan]
Improved approximation for MaxBisection using SDP hierarchies
[Barak-Raghavendra-Steurer]
Algorithms for 2-CSPs on low-rank graphs.

New Gadgets for Hardness Reductions:
[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer]
A more efficient long code gadget.

Deeper understanding of the UGC - why it should be true if it is.

Introduction to SDP Hierarchies
 (Lasserre SDP hierarchy)

Revisiting MaxCut Semidefinite Program

Integer Program:
Domain: $x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in\{-1,1\}$
(x_{i} for vertex i)

Maximize:

$$
\frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
$$

(Number of Edges Cut)

Convex Extension of Integer Program:
 assignments $x \in\{-1,1\}^{n}$
Bad News: Size of the convex extension is too large (exponential in n)
Representing Mapizebability distribution μ over $\{-1,1\}^{n}$ requires exponentially

$$
E_{x \sim \mu} \frac{1}{1 / 4 x} \underset{(i, j) \in E}{\text { for eadry }} y_{x i \in\left\{x_{j}, \lambda\right\}^{n}}
$$

Domain: Probability distributions μ over
Moment Variables: assignments $x \in\{-1,1\}^{n}$

Maximize:

$$
E_{x \sim \mu} \frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
$$

$$
\text { Let } M_{i} \stackrel{\text { def }}{=} E_{x \sim \mu}\left[x_{i}\right]
$$

(Expected Number of Edges Cut under μ)

$$
\begin{aligned}
& M_{i i} \stackrel{\text { def }}{=} E_{x \sim \mu}\left[x_{i}^{2}\right] \\
& M_{i j} \stackrel{\text { def }}{=} E_{x \sim \mu}\left[x_{i} x_{j}\right]
\end{aligned}
$$

Ideat Instead of findingthe entire prob. distribution μ, just find its

$$
M_{i j k} \stackrel{\text { def }}{=} E_{x \sim \mu}\left[x_{i} x_{j} x_{k}\right]
$$ low degree moments

...

$$
\begin{aligned}
& \frac{1}{4} \sum_{(i, j) \in E}\left(E_{x \sim \mu} x_{i}^{2}+E_{x \sim \mu} x_{j}^{2}-2 E_{x \sim \mu} x_{i} x_{j}\right) \\
& =\frac{1}{4} \sum_{(i, j) \in E}\left(M_{i i}+M_{j j}-2 M_{i j}\right)
\end{aligned}
$$

...

$$
M_{S} \stackrel{\text { def }}{=} E_{x \sim \mu}\left[\prod_{i \in S} x_{i}\right]
$$

for a multiset $S \subseteq\{1, \ldots, n\},|S| \leq d$

Constraints on Moments

For each i, since $x_{i} \in\{-1,1\}$,

$$
\begin{aligned}
& x_{i}^{2}=1 \text { always so, } \\
& \qquad E_{x \sim \mu}\left[x_{i}^{2}\right]=1
\end{aligned}
$$

$x_{i}^{2} x_{j} x_{k}=x_{j} x_{k}$ always so,

$$
E_{x \sim \mu}\left[x_{i}^{2} x_{j} x_{k}\right]=x_{j} x_{k}
$$

Constraint:

More generally, for every multiset $S,|S| \leq d$

$$
M_{S}=M_{\text {odd }(S)} \text { where }
$$

$\operatorname{odd}(S)=$ set of elements in S that appear an odd number of times.

Constraint: For each i,

$$
M_{i i}=1
$$

For each i, j, k

$$
M_{\{i, i, j, k\}}=M_{j k}
$$

Constraint:

All valid moment equalities that hold for all distributions μ over $\{-1,1\}^{n}$

Constraints on Moments

d-round Lasserre SDP

 Hierarchy:Variables: All moments
$\left\{M_{S}\right\}$
up to degree d of the unknown distribution μ over assignments $\{-1,1\}^{n}$

Maximize:

$$
\begin{gathered}
\frac{1}{4} \sum_{(i, j) \in E}\left(M_{i i}+M_{j j}-2 M_{i j}\right) \\
=E_{x \sim \mu} \frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
\end{gathered}
$$

(Expected Number of Edges Cut under μ)

Constraint: For each i,

$$
M_{i i}=1
$$

Constraint:

Use $x_{i}^{2}=1$ always for all i,
and include ALL valid equalities for moments M_{S} that hold for all distributions over $\{-1,1\}^{n}$

Constraint:

$$
M_{\{1,1,2,2\}}-6 M_{\{1,2,3\}}+9 M_{33} \geq 0
$$

Constraint: For every real polynomial $p\left(x_{1}, x_{2}, . ., x_{n}\right)$ of degree at most $\frac{d}{2}$,

$$
p^{2} \circ M \geq 0
$$

(basically $E_{x \sim \mu} p^{2}(x) \geq 0$)

Degree d = 2
(Goemans-Williamson SDP)

Degree 2 SOS SDP Hierarchy:

Variables:

Moments $\left\{M_{i j} \mid i, j \in\{1, \ldots, n\}\right\}$
up to degree 2 of the unknown distribution μ over assignments $\{-1,1\}^{n}$

Maximize:

$$
\begin{gathered}
\frac{1}{4} \sum_{(i, j) \in E}\left(M_{i i}+M_{j j}-2 M_{i j}\right) \\
=E_{x \sim \mu} \frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
\end{gathered}
$$

(Expected Number of Edges Cut under μ)

Constraint: For each i,

$$
M_{i i}=1
$$

CGRYをtaint: For every real linear

$$
p^{2} \circ M \geq 0
$$

and include ALL valid equalities for
 distributions over $\{-1,1\}^{n}$

$$
\sum_{i, j} c_{i} c_{j} M_{i j} \geq 0
$$

Constraint: For every real
 degree at most $\frac{d}{2}$,

$$
p^{2} \circ M \geq 0
$$

(basically $E_{x \sim \mu} p^{2}(x) \geq 0$)

Goemans-Williamson SDP

Variables:
Moments $\left\{M_{i j} \mid i, j \in\{1, \ldots, n\}\right\}$
up to degree 2 of the unknown distribution μ over assignments $\{-1,1\}^{n}$

Maximize:

$$
\frac{1}{4} \sum_{(i, j) \in E}\left(M_{i i}+M_{j j}-2 M_{i j}\right)
$$

$=E_{x \sim \mu} \frac{1}{4} \Sigma_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}$
(Expected Number of Edges Cut under μ)
Arrange the variables in a matrix,

$$
M=\left[\begin{array}{ccc}
M_{11} & \cdots & M_{1 n} \\
\vdots & \ddots & \vdots \\
M_{n 1} & \cdots & M_{n n}
\end{array}\right]
$$

Constraint: For each i,

$$
M_{i i}=1
$$

"Diagonal entries of M are equal to 1 "

Constraint: For every real linear polynomial $p\left(x_{1}, x_{2}, . ., x_{n}\right)$,

$$
p^{2} \circ M \geq 0
$$

So for all $p(x)=\sum_{i} c_{i} x_{i}$ we have,

$$
\sum_{i, j} c_{i} c_{j} M_{i j} \geq 0
$$

(basically $E_{x \sim \mu} p^{2}(x) \geq 0$)
"Matrix M is positivesemidefinite'

Positive Semidefiniteness (where are the vectors?)

Constraint: For every real linear polynomial

$$
p\left(x_{1}, x_{2}, . ., x_{n}\right),=\sum_{i} c_{i} x_{i}
$$

we have,

$$
\sum_{i, j} c_{i} c_{j} M_{i j} \geq 0
$$

(basically $E_{x \sim \mu} p^{2}(x) \geq 0$)
For degree d-Lasserre SDP,
the moments are appropriately arranged to give a p.s.d. matrix.

Positive Semidefiniteness:
With $M=\left[\begin{array}{ccc}M_{11} & \cdots & M_{1 n} \\ \vdots & \ddots & \vdots \\ M_{n 1} & \cdots & M_{n n}\end{array}\right]$
For all real vectors $c \in \boldsymbol{R}^{\boldsymbol{n}}$, we have,

$$
\begin{aligned}
& c^{T} M c \geq 0 \\
& \mathbb{i}
\end{aligned}
$$

Cholesky Decomposition:
There exists vectors $\left\{v_{i}\right\}$ such that

$$
\left\langle v_{i}, v_{j}\right\rangle=\mathrm{M}_{\mathrm{ij}}
$$

Cheat Sheet: d-round Lasserre SDP

X_{1}	X	X_{3}	X		15	
1	-1	1	1		$\begin{array}{lllll}1 & 1 & -1 & 1 & 1\end{array}$	-
1	-1 -1	$\begin{aligned} & -1 \\ & -1 \end{aligned}$	-1		$\begin{array}{lllll}1 & 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 & 1\end{array}$	1
1	-1	1	1	1	$1 \begin{array}{lllll}1 & 1 & -1 & 1 & 1\end{array}$	-
$\begin{aligned} & 1 . \\ & \ldots \\ & 1 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 \\ & 1 \end{aligned}\right.$	1		1 1	$\left\lvert\, \begin{array}{llllll}1 & 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 & 1\end{array}\right.$	$\because 1$ -1

Fictitious Distribution over assignments

Local distribution $\underline{\mu}_{\underline{s}}$

For any subset S of $\leq d$ vertices,

A local distribution μ_{S} over $\{+1,-1\}$ assignments to the set S
 \rightarrow Specity every marginal on
 and an assignment α in $\{-1,1\}^{\mathrm{k}}$,

We can condition the SDP solution to the event that S is assigned α and get a d-k round SDP solution.

Rounding SDP Hierarchies

Subexponential Algorithm for Unique Games

$$
\mathrm{UG}(\varepsilon) \text { in time } \exp \left(n^{\varepsilon^{1 / 3}}\right) \text { via level- } n^{\varepsilon^{1 / 3}} \text { SDP relaxation }
$$

[Arora-Barak-S.'10, Barak-Raghavendra-S.'11]

Contrast

many NP-hard approximation problems require exponential time (assuming 3-Sat does)
[...,Moshkovitz-Raz]
often these lower bounds are known unconditionally for SDP hierarchies
[Schoenebeck, Tulsiani]
\rightarrow separation of UG from known NP-hard approximation problems

Subexponential Algorithm for Unique Games

$$
\mathrm{UG}(\varepsilon) \text { in time } \exp \left(n^{\varepsilon^{1 / 3}}\right) \text { via level }-n^{\varepsilon^{1 / 3}} \text { SDP relaxation }
$$

General framework for rounding SDP hierarchies (not restricted to Unique Games)
[Barak-Raghavendra-S.'11, Guruswami-Sinop'11]
Potentially applies to wide range of "graph problems"
Examples: Max Cut, Sparsest Cut, Coloring, Max 2-Csp

Some more successes (polynomial time algorithms)
Approximation scheme for general MAx 2-CSP
[Barak-Raghavendra-S.'11]
on constraint graphs with $O(1)$ significant eigenvalues
Better 3-Coloring approximation for some graph families
[Arora-Ge'11]
Better approximation for MAX BISECTION (general graphs) [Raghavendra-Tan'12]

Subexponential Algorithm for Unique Games

$\mathrm{UG}(\varepsilon)$ in time $\exp \left(n^{\varepsilon^{1 / 3}}\right)$ via level- $n^{\varepsilon^{1 / 3}}$ SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games)
[Barak-Raghavendra-S.'11, Guruswami-Sinop'11]
Potentially applies to wide range of "graph problems"
Examples: Max Cut, Sparsest Cut, Coloring, Max 2-Csp

Key concept: global correlation

Interlude: Pairwise Correlation

Two jointly distributed random variables X and Y
Correlation measures dependence between X and Y

Does the distribution of X change if we condition Y ?

Examples:
(Statistical) distance between $\{X, Y\}$ and $\{X\}\{Y\}$
Covariance $\mathbf{E} X Y-(\mathbf{E} X)(\mathbf{E} Y)$ (if X and Y are real-valued)
Mutual Information $\mathrm{I}(X, Y)=H(X)-H(X \mid Y)$
entropy lost due to conditioning

Sampling
 Rounding problem

Given
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
degree- ℓ moments of a distribution over assignments with expected value $\geq 1-\varepsilon$

UG instance + level ℓ SDP solution with value $\geq 1 \quad \varepsilon \quad\left(\ell=n^{O\left(\varepsilon^{1 / 3}\right)}\right)$

Sample

distribution over assignments with expected value $\geq \varepsilon$
similar (?)

More convenient to think about actual distributions instead of SDP solutions

But: proof should only "use" linear equalities satisfied by these moments and certain linear inequalities, namely non-negativity of squares
(Can formalize this restriction as proof system \rightarrow next talk)

Sampling by conditioning

Pick an index j
Sample assignment a for index j from its marginal distribution $\left\{X_{j}\right\}$
Condition distribution on this assignment, $X_{i}^{\prime}:=\left\{X_{i} \mid X_{j}=a\right\}$

If we condition n times, we correctly sample the underlying distribution

Issue: after conditioning step, know only degree $\ell-1$ moments (instead of degree ℓ)

Hope: need to condition only a small number of times; then do something else

How can conditioning help?

How can conditioning help?

Allows us to assume: distribution has low global correlation

$$
\mathbf{E}_{i, j} \mathrm{I}\left(X_{i}, X_{j}\right) \leq O_{k}(1) \cdot 1 / \ell
$$

Claim: general cases reduces to case of low global correlation

Proof:

Idea: significant global correlation \rightarrow conditioning decreases entropy
Potential function $\Phi=\mathbf{E}_{i} H\left(X_{i}\right)$
Can always find index j such that for $X_{i}^{\prime}:=\left\{X_{i} \mid X_{j}\right\}$

$$
\Phi-\Phi^{\prime} \geq \mathbf{E}_{i} H\left(X_{i}\right)-\mathbf{E}_{i} H\left(X_{i} \mid X_{j}\right)=\mathbf{E}_{i} I\left(X_{i}, X_{j}\right) \geq \mathbf{E}_{i, j} I\left(X_{i}, X_{j}\right)
$$

Potential can decrease $\leq \ell / 2$ times by more than $O_{k}(1 / \ell)$

How can conditioning help?

Allows us to assume: distribution has low global correlation

$$
\mathbf{E}_{i, j} \mathrm{I}\left(X_{i}, X_{j}\right) \leq O_{k}(1) \cdot 1 / \ell
$$

typical pair of variables almost pairwise independent

How can low global correlation help?

How can low global correlation help?

$$
\mathbf{E}_{i, j} \mathrm{I}\left(X_{i}, X_{j}\right) \leq 1 / \ell
$$

For some problems, this condition alone gives improvement over BASIC SdP
Example: Max Bisection
[Raghavendra-Tan'12, Austrin-Benabbas-Georgiou'12]
hyperplane rounding gives near-bisection if global correlation is low

For Unique Games
random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k}
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$

Extreme cases with low global correlation

1) no entropy: all variables are fixed
2) many small independent components:
all variables have uniform marginal distribution \& \exists partition:

How can low global correlation help?
 $\mathbf{E}_{i, j}\left(X_{i}, X_{j}\right) \leq 1 / \ell$

For Unique Games
random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k}
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
Only
Extreme cases with low global correlation

1) no entropy: all variables are fixed
2) many small independent components:

Show: no other cases are possible! (informal)
all variables have uniform marginal distribution \& \exists partition:

Idea: round components independently \& recurse on them
How many edges ignored in total? (between different components)
We chose $\ell=n^{\beta}$ for $\beta \gg \varepsilon$
\rightarrow each level of recursion decrease component size by factor $\geq n^{\beta}$
\rightarrow at most $1 / \beta$ levels of recursion
\rightarrow total fraction of ignored edges $\leq \varepsilon / \beta \ll 1$
$\rightarrow 2^{n^{\beta}}$-time algorithm for $\mathrm{UG}(\varepsilon)$
2) many small independent components:
all variables have uniform marginal distribution \& \exists partition:

For Unique Games
random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k}
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
Only
Extreme cases with low global correlation

1) no entropy: all variables are fixed
2) many small independent components:
all variables have uniform marginal distribution $\& \exists$ partition:

Suppose: random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k} with uniform marginals $\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
global correlation $\leq 1 / n^{2 \beta}$
Then: $\quad \exists S \subseteq[n] . \quad|S| \leq n^{1-\beta}$ \& all constraints touching S stay inside of S except for an $O(\sqrt{\varepsilon / \beta})$ fraction (in constraint graph, S has low expansion)

Proof: Define Corr $\left(X_{i}, X_{j}\right)=\max _{c} \operatorname{Pr}\left(X_{i}-X_{j}=c\right)$
Correlation Propagation
For random walk $i \sim j_{1} \sim \cdots \sim j_{t}$ of length t in constraint graph

$$
\operatorname{Corr}\left(X_{i}, X_{j_{t}}\right) \geq(1-\varepsilon)^{t}
$$

$$
\operatorname{Corr}\left(X_{i}, X_{j_{t}}\right) \gtrsim \operatorname{Pr}\left(X_{i}-X_{j_{1}}=c_{1}\right) \cdots \operatorname{Pr}\left(X_{i}-X_{j_{t}}=c_{t}\right)
$$

proof uses non-negativity of squares (sum-of-squares proof)
\rightarrow works also for SDP hierarchy

Suppose: random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k} with uniform marginals
$\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon$ for typical constraint $x_{i}-x_{j}=c$
global correlation $\leq 1 / n^{2 \beta}$
Then: $\quad \exists S \subseteq[n] . \quad|S| \leq n^{1-\beta}$ \& all constraints touching S stay inside of S except for an $O(\sqrt{\varepsilon / \beta})$ fraction (in constraint graph, S has low expansion)

Proof: Define $\operatorname{Corr}\left(X_{i}, X_{j}\right)=\max _{c} \operatorname{Pr}\left(X_{i}-X_{j}=c\right)$
Correlation Propagation $\quad t=\beta / \varepsilon \cdot \log n$
For random walk $i \sim j_{1} \sim \cdots \sim j_{t}$ of length t in constraint graph

$$
\operatorname{Corr}\left(X_{i}, X_{j_{t}}\right) \geq(1-\varepsilon)^{t} \geq 1 / n^{\beta}
$$

On the other hand, $\operatorname{Corr}\left(X_{i}, X_{j}\right) \leq 1 / n^{2 \beta}$ for typical j
\rightarrow random walk from i doesn't mix in t-steps (actually far from mixing)
\rightarrow exist small set S around i with low expansion

Suppose: random variables X_{1}, \ldots, X_{n} over \mathbb{Z}_{k} with uniform marginals

$$
\operatorname{Pr}\left(X_{i}-X_{j}=c\right) \geq 1-\varepsilon \text { for typical constraint } x_{i}-x_{j}=c
$$

global correlation $\leq 1 / 2 \beta \quad 1 / \ell$

Then: constraint graph has ℓ eigenvalues $\geq 1-\varepsilon$

Proof: \quad a graph has ℓ eigenvalues $\geq \lambda \quad \Leftrightarrow \quad \exists$ vectors $v_{1}, \ldots, v_{\mathrm{n}}$

$$
\begin{aligned}
\text { (local: typical edge) } & \mathbf{E}_{i \sim j}\left\langle v_{i}, v_{j}\right\rangle \geq \lambda \\
\text { (global: typical pair) } & \mathbf{E}_{p, q}\left\langle v_{p}, v_{q}\right\rangle^{2} \leq 1 / \ell \\
& \mathbf{E}_{i}\left\|v_{i}\right\|^{2}=1
\end{aligned}
$$

\rightarrow For graphs with $<\ell$ such eigenvalues, algorithm runs in time n^{ℓ}

$$
\mathrm{o}(\mathrm{n}) \quad \leq 0.1
$$

How large does ℓ have to be to guarantee a very small set with low expansion?
Improving $\ell=n^{\varepsilon}$ to $\ell=n^{o(1)}$ would refute Small-Set Expansion Hypothesis

On the Power of Semidefinite Programming Hierarchies

Prasad Raghavendra
Georgia Institute of Technology,
Atlanta, GA.

David Steurer
Microsoft Research New England
Cambridge, MA

Overview

- Background and Motivation
- Introduction to SDP Hierarchies (Lasserre SDP hierarchy)
- Rounding SDP hierarchies via Global Correlation.

BREAK

- Graph Spectrum and Small-Set Expansion.
- Sum of Squares Proofs.

Graph Spectrum

\&

Small-Set Expansion

A Question in Spectral Graph Theory

Let A be the normalized adjacency matrix of the d-regular graph G,

Def (Small Set Expander):
A has n eigenvalues $d_{1}=1$
A regular graph G is a δ-small set expander
if for every set $\mathrm{S} \subset V$,

$$
|\mathrm{S}| \leq \delta N \quad \Rightarrow \quad \text { expansion }(S) \geq \frac{1}{2}
$$

matrix A have?

A Question in Spectral Graph Theory

d-regular graph G

Def (Small Set Expander):

A regular graph G is a δ-small set expander if for every set $S \subset V$

$$
|S| \leq \delta N \quad \Rightarrow \quad \text { expansion }(S) \geq \frac{1}{2}
$$

Question:

If G is a δ-small set expander, How many eigenvalues larger than $1-\epsilon$ can the normalized adjancency matrix A have?

Intuitively,
How many sparse cuts can a graph G have without having a unbalanced sparse cut?

Cheeger's inequality:
every large eigenvalue $\quad \rightarrow \quad$ a sparse cut in G

$$
\left(\lambda_{i} \geq 1-\epsilon\right)
$$

(cut of sparsity $O(\sqrt{\epsilon})$)

Significance of the Question

Def (Small Set Expander):

A regular graph G is a δ-small set expander if for every set $\mathrm{S} \subset V$
$|S| \leq \delta N \quad \Rightarrow \quad \operatorname{expansion}(S) \geq \frac{1}{2}$

Question:

If G is a δ-small set expander, How many eigenvalues larger than $1-\epsilon$ can the normalized adjacency matrix A have?
threshold $\operatorname{rank}_{1-\epsilon}(G) \stackrel{\text { def }}{=} \#$ of eigenvalues of graph G that are $\geq 1-\epsilon$
[Barak-Raghavendra-Steurer][Guruswami-Sinop]
k-round Lasserre SDP solves $U G(\epsilon)$ on graphs with low threshold rank $\leq k$.

Graph G has small non-expanding sets,
\rightarrow
decompose G in to smaller pieces and solve each piece.

If UGC is true, there must be hard instances of Unique Games that
a) Have high threshold rank
b) Are Small-Set Expanders.

Significance of the Question

Def (Small Set Expander):
A regular graph G is a δ-small set expander if for every set $\mathrm{S} \subset V$
$|S| \leq \delta N \quad \Rightarrow \quad \operatorname{expansion}(S) \geq \frac{1}{2}$

Question:

If G is a δ-small set expander, How many eigenvalues larger than $1-\epsilon$ can the normalized adjacency matrix A have?
$R(\epsilon, \delta) \stackrel{\text { def }}{=}$ Answer to the above question (a function of N, ϵ, δ)
[Arora-Barak-Steurer 2010]
There is a $\mathrm{N}^{R(\epsilon, \delta)}$-time algorithm for Gap-Small-Set-Expansion problem - a problem closely related to UniQUE GAMES.

At the fime,
 problem

Short Code Graph

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer]

For all small constant δ,

There exists a graph (the Short Code Graph) that is a $\delta-$ small set expander with $\exp \left(\log ^{\beta} n\right)$ eigenvalues $\geq 1-\epsilon$.,i.e.,

$$
\text { threshold } \operatorname{rank}_{1-\epsilon}(G) \geq \exp \left(\log ^{\beta} N\right)
$$

for some β depending on ϵ.

$$
\left[\text { BGHMRS 11] } \exp \left(\log ^{\beta} N\right) \leq R(\epsilon, \delta) \leq N^{\epsilon}[\mathrm{ABS}]\right.
$$

- Led to new gadgets for hardness reductions (derandomized Majority is Stablest) and new SDP integrality gaps.
- An interesting mix of techniques from, Discrete Fourier analysis, Locally Testable Codes and Derandomization.

Overview

Long Code Graph

- Eigenvectors
- Small Set Expansion

Short Code Graph

The Long Code Graph aka Noisy Hypercube

Noise Graph: H_{ϵ}
Vertices: $\{-1,1\}^{n}$
Edges: Connect every pair of points in hypercube separated by a Hamming distance of ϵn

Eigenvectors are functions on $\{-1,1\}^{n}$
n dimensional hypercrabe : $\{-1,1\}^{\mathrm{n}}$

Dictator cuts: Cuts parallel to the Axis

$$
\text { (given by } F(x)=x_{i} \text {) }
$$

The dictator cuts yield n sparse cuts in graph H_{ϵ}

n dimensional hypercube

Sparsity of Dictator Cuts

Connect every pair of vertices in hypercube separated by Hamming distance of ϵn

Fraction of edges cut by first dictator

$$
\begin{gathered}
=\operatorname{Pr}_{\text {random edge }(x, y)}[(x, y) \text { is cut }] \\
=\operatorname{Pr}_{\text {random edge }(x, y)}\left[x_{1} \neq y_{1}\right] \\
=\epsilon
\end{gathered}
$$

Dictator cuts: n-eigenvectors with eigenvalues $1-\epsilon$ for graph H_{ϵ} (Number of vertices $\mathrm{N}=2^{n}$, so \#of eigenvalues $=\log N$)

Eigenfunctions for Noisy Hypercube Graph

Eigenfunctions for the Noisy hypercube graph are multilinear polynomials of fixed degree!
(Noisy hypercube is a Cayley graph on $Z_{2}{ }^{n}$, therefore its eigen functions are characters of the group)

Eigenfunction
$F_{1}(x)=x_{1}, F_{2}(x)=x_{2}, \ldots, F_{n}(x)=x_{n}$
$F_{12}(x)=x_{1} x_{2}, F_{23}(x)=x_{2} x_{3}, \ldots F_{n-1 n}(x)=x_{n-1} x_{n}$
\qquad

Degree d multilinear polynomials

Eigenvalue
$1-\epsilon$
$(1-\epsilon)^{2}$

Small-Set Expansion (SSE)

Given: \quad regular graph G with vertex set V, parameter $\delta>0$
Suppose $f=\mathbb{1}_{S}$ indicator function of a small non-expanding set.
S has δ-fraction of vertices $\rightarrow\|f\|^{2}{ }_{2}=E\left[f^{2}\right]=\delta$
Fraction of edges inside $S=\mathrm{E}_{\text {random edge }(\mathrm{x}, \mathrm{y})} \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$

$$
=\langle f, G f\rangle
$$

If expansion $(S) \leq 0.001$ then, at least a 0.999δ-fraction of edges are inside S. So,

$$
\langle f, G f\rangle \geq 0.999\|f\|_{2}^{2}
$$

(f is close to the span of eigenvectors of G with eigenvalue ≥ 0.99)

Conclusion:

Indicator function of a small non-expanding set $\mathrm{f}=\mathbb{1}_{S}$ is a

- sparse vector
- close to the span of the large eigenvectors of G

Hypercontractivity

Definition: (Hypercontractivity)

A subspace $S \in R^{N}$ is hypercontractive if for all $w \in S$

$$
\|w\|_{4} \leq C\|w\|_{2}
$$

Projector P_{S} in to the subspace S, also called hypercontractive.
(No-Sparse-Vectors)
Roughly, No sparse vectors in a hypercontractive subspace S
because,

$$
\mathrm{w} \text { is } \delta \text {-sparse " } \Leftrightarrow "\|w\|_{4} /\|w\|_{2}>1 / \delta^{1 / 4}
$$

Hypercontractivity implies Small-Set Expansion

$P_{1-\epsilon}=$ projector into span of eigenvectors of G with eigenvalue $\geq 1-\epsilon$
$P_{1-\epsilon}$ is hypercontractive
No sparse vector in span of top eigenvectors of G
No small non-expanding set in G. (G is a small set expander)

Hypercontractivity for Noisy Hypercube

Top eigenfunctions of noisy hypercube are low degree polynomials.
(Hypercontractivity of Low Degree Polynomials)
For a degree d multilinear polynomial f on $\{-1,1\}^{n}$,
$\|f\|_{4} \leq 9^{d}\|f\|_{2}$
(Noisy Hypercube is a Small-Set Expander)
For constant ϵ, the noisy hypercube is a small-set expander.
Moreover, the noisy hypercube has $N=2^{n}$ vertices and n
eigenvalues larger than $1-\epsilon$.

Short Code Graph

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009]
For all small constant δ,
There exists a graph (the Short Code Graph) that is a δ-small set expander with $\exp \left(\log ^{\beta} n\right)$ eigenvalues $\geq 1-\epsilon$., i.e.,

$$
\text { threshold } \operatorname{rank}_{1-\epsilon}(G) \geq \exp \left(\log ^{\beta} N\right)
$$

for some β depending on ϵ.

Short Code Graph

Noise Graph: H_{ϵ}

Vertices: $\{-1,1\}^{n}$
Edges: Connect every pair of points in hypercube separated by a Hamming distance of ϵn

Has n sparse cuts, but $N=2^{n}$ vertices -- too many vertices!

Idea:

Pick a subset of vertices of the long code graph, and their induced subgraph.

1. The dictator cuts still yield n-sparse cuts
2. The subgraph is a small-set expander!

If Choice: Reed Muller Codewords of large constant degree.

n dimensional hypercube

Sparsity of Dictator Cuts

Connect every pair of vertices in hypercube separated by Hamming distance of ϵn

Fraction of edges cut by first dictator

$$
\begin{gathered}
=\operatorname{Pr}_{\text {random edge }(x, y)}[(x, y) \text { is cut }] \\
=\operatorname{Pr}_{\text {random edge }(x, y)}\left[x_{1} \neq y_{1}\right] \\
=\epsilon
\end{gathered}
$$

Easy: Pretty much for any reasonable subset of vertices, dictators will be sparse cuts.

Preserving Small Set Expansion

Top eigenfunctions of noisy hypercube are low degree polynomials. $+$

(Hypercontractivity of Low Degree Polynomials)

For a degree d multilinear polynomial f on $\{-1,1\}^{n}$,
$\|f\|_{4} \leq 9^{d}\|f\|_{2}$
(Noisy Hypercube is a Small-Set Expander)
For constant ϵ, the noisy hypercube is a small-set expander.

Preserving Small Set Expansion

(Hypercontractivity of Low Degree Polynomials)

For a degree d multilinear polynomial f on $\{-1,1\}^{n}$,

$$
\|f\|_{4} \leq 9^{d}\|f\|_{2}
$$

For a degree d polynomial f,
By hypercontractivity over hypercube,

$$
E_{x \in\{-1,1\}^{n}}\left[f(x)^{4}\right] \leq 9^{4 d}\left(E_{x \in\{-1,1\}^{n}}[f(x)]\right)^{2}
$$

We picked a subset $S \subset\{-1,1\}^{n}$ and so we want,

$$
E_{x \in S}\left[f(x)^{4}\right] \leq 9^{4 d}\left(E_{x \in S}[f(x)]\right)^{2}
$$

f is degree d, so f^{4} and f^{2} are degree $\leq 4 d$.
If S is a 4 d -wise independent set then,

$$
\begin{aligned}
& E_{x \in S}\left[f(x)^{4}\right]=E_{x \in\{-1,1\}^{n}}\left[f(x)^{4}\right] \\
& \quad \leq 9^{4 d}\left(E_{x \in\left\{-1,11^{n}\right.}[f(x)]\right)^{2}=9^{4 d}\left(E_{x \in S}[f(x)]\right)^{2}
\end{aligned}
$$

Preserving Small Set Expansion

Top eigenfunctions of noisy hypercube are low degree polynomials.

We Want:
Only top eigenfunctions on the subgraph of noisy hypercube are also low degree polynomials.

Connected to local-testability of the dual of the underlying code S!
We appeal to local testability result of Reed-Muller codes
[Bhattacharya-Kopparty-Schoenebeck-Sudan-Zuckermann]

Applications of Short Code

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009]
`Majority is Stablest' theorem holds for the short code.
-- More efficient gadgets for hardness reductions.
-- Stronger integrality gaps for SDP relaxations.

[Kane-Meka]

A $2^{(\log \log n)^{1 / 3}}$ SDP gap with triangle inequalities for BALANCED SEPARATOR

Recap:

"How many large eigenvalues can a small set expander have?"
-- A graph construction led to better hardness gadgets and SDP integrality gaps.

On the Power of Sum-of-Squares Proof

SoS hierarchy is a natural candidate algorithm for refuting UGC

Should try to prove that this algorithm fails on some instances
Only candidate instances were based on long-code or short-code graph

Result:

Level-8 SoS relaxation refutes UG instances
based on long-code and short-code graphs

We don't know any instances on which this algorithm could potentially fail!

Result:

Level-8 SoS relaxation refutes UG instances based on long-code and short-code graphs

How to prove it? (rounding algorithm?)

Interpret dual as proof system
Show in this proof system that no assignments for these instances exist
We already know "regular" proof of this fact! (soundness proof)
Try to lift this proof to the proof system
qualitative difference to other hierarchies: basis independence

Sum-of-Squares Proof System (informal)

Axioms

$$
\begin{array}{cll}
P_{1}(z) \geq 0 & \text { derive } \\
\vdots \\
P_{m}(z) \geq 0 & & Q(z) \leq c
\end{array} \begin{aligned}
& \left(P_{1}, \ldots, P_{m}, Q\right. \\
& \text { bounded-degree } \\
& \text { polynomials })
\end{aligned}
$$

Rules
Polynomial operations
"Positivstellensatz" [Stengel’74]
$R(z)^{2} \geq 0$ for any polynomial R
Intermediate polynomials have bounded degree
(c.f. bounded-width resolution,
but basis independent)

Example

Axiom: $z^{2} \leq z \quad$ Derive: $z \leq 1$

$$
\begin{aligned}
1-z & =z-z^{2}+(1-z)^{2} \\
& \geq z-z^{2} \quad \text { (non-negativity of squares) } \\
& \geq 0 \quad \text { (axiom) }
\end{aligned}
$$

Components of soundness proof (for known UG instances)

Non-serious issues:
Cauchy-Schwarz / Hölder
Influence decoding

Serious issues:
Hypercontractivity
Invariance Principle

typically uses bump functions, but for UG, polynomials suffice

$\mathrm{G}=$ long-code graph $\operatorname{Cay}\left(\mathbb{F}_{2}^{m}, T\right)$ where $T=$ \{points with Hamming weight $\left.\varepsilon m\right\}$
$P=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda=0.1$
SoS proof of hypercontractivity:

$$
2^{O(1 / \varepsilon)}\|f\|_{2}^{4}-\|P f\|_{4}^{4} \text { is a sum of squares }
$$

$\mathrm{G}=$ long-code graph $\operatorname{Cay}\left(\mathbb{F}_{2}^{m}, T\right)$ where $T=$ \{points with Hamming weight $\left.\varepsilon m\right\}$
$P=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda=0.1$
SoS proof of hypercontractivity:

$$
\|P f\|_{4}^{4} \preccurlyeq 2^{O(1 / \varepsilon)}\|f\|_{2}^{4}
$$

For long-code graph, P projects into Fourier polynomials with degree $O(1 / \varepsilon)$
Stronger ind. Hyp.:

$$
\mathbf{E} f^{2} g^{2} \preccurlyeq 3^{d+e} \mathbf{E} f^{2} \cdot \mathbf{E} g^{2} \quad \begin{aligned}
& \text { where } \\
& \text { and }
\end{aligned} f \text { is a generic degree- } d \text { Fourier polynomial }
$$

$\mathrm{G}=$ long-code graph $\operatorname{Cay}\left(\mathbb{F}_{2}^{m}, T\right)$ where $T=$ \{points with Hamming weight $\left.\varepsilon m\right\}$
$P=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda=0.1$
SoS proof of hypercontractivity:

$$
\|P f\|_{4}^{4} \preccurlyeq 2^{O(1 / \varepsilon)}\|f\|_{2}^{4}
$$

For long-code graph, P projects into Fourier polynomials with degree $O(1 / \varepsilon)$
Stronger ind. Hyp.:

$$
\mathbf{E} f^{2} g^{2} \preccurlyeq 3^{d+e} \mathbf{E} f^{2} \cdot \mathbf{E} g^{2} \quad \begin{aligned}
& \text { where } f \text { is a generic degree- } d \text { Fourier polynomial } \\
& \text { and } g \text { is a generic degree-e Fourier polynomial }
\end{aligned}
$$

Write $f=f_{0}+x_{1} \cdot f_{1}$ and $g=g_{0}+x_{1} \cdot g_{1}$ (degrees of f_{1}, g_{1} smaller than d, e)

$$
\begin{array}{rlrl}
\mathbf{E} f^{2} g^{2} & =\mathbf{E} f_{0}^{2} g_{0}^{2}+\mathbf{E} f_{1}^{2} g_{0}^{2}+\mathbf{E} f_{0}^{2} g_{1}^{2}+\mathbf{E} f_{1}^{2} g_{1}^{2}+4 \mathbf{E} f_{0} f_{1} g_{0} g_{1} \\
& \preccurlyeq \quad \ldots \\
& \leqslant 3^{d+e}\left(\mathbf{E} f_{0}^{2}+\mathbf{E} f_{1}^{2}\right) \cdot\left(\mathbf{E} g_{0}^{2} g_{1}^{2}+\mathbf{E} g_{1}^{2}\right) & \text { (ind. hyp.) }
\end{array}
$$

Open Questions

Does 8 rounds of Lasserre hierarchy disprove UGC?

Can we make the short code, any shorter?
(applications to hardness gadgets)

Subexponential time algorithms for MaxCut or Vertex Cover (beating the current ratios)

Thanks!

