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Background and Motivation 



Max-Cut  
Max-Cut Problem 

 
Input: A graph G 

Find: A cut with maximum number of 

crossing edges 
 

Semidefinite Program for MaxCut: 
[Goemans-Williamson 94] 

 

Embed the graph on the  

     N - dimensional unit ball,   

 

Maximizing  

 

¼ (Average  Squared Length of the edges) 

Pick a random hyperplane, and output the cut 

it induces! 

-- a 0.878 approximation 

v1 

v2 

v3 

v4 

v5 

[Khot-Kindler-Mossel-O’Donnell] 

 

Under the Unique Games Conjecture,  

 Goemans-Williamson SDP yields the optimal approximation 

ratio for MaxCut. 



Motivation 

Unique Games Conjecture (UGC) 

Given: system of equations �� − � = ܿ mod ݇ 

For every � > Ͳ, the following is NP-hard: 

YES: at  least ͳ − � of equations satisfiable 

NO: at  most � of equations satisfiable 

(say k = log ݊) 

Distinguish: UGሺ�ሻ 

[Khot’Ͳʹ] 



Constraint Satisfaction Problems [Raghavendra`08][Austrin-Mossel] 

MAX CUT [Khot-Kindler-Mossel-ODonnell][Odonnell-Wu] 

MAX 2SAT [Austrin07][Austrin08] 

Ordering CSPs [Charikar-Guruswami-Manokaran-Raghavendra-Hastad`08] 

MAX ACYCLIC SUBGRAPH, BETWEENESS  

Grothendieck Problems [Khot-Naor, Raghavendra-Steurer] 

Metric Labeling Problems [Manokaran-Naor-Raghavendra-Schwartz`08] 

MULTIWAY CUT, 0-EXTENSION 

Kernel Clustering Problems [Khot-Naor`08,10] 

Strict Monotone CSPs [Kumar-Manokaran-Tulsiani-Vishnoi`10] 

VERTEX COVER [Khot-Regev], HYPERGRAPH VERTEX COVER 

Assuming the Unique Games Conjecture, 

 

A simple semidefinite program (Basic-SDP) yields the optimal 

approximation ratio for 

Is the conjecture true? 

Many many ways to disprove the conjecture!   

 Find a better algorithm for any one of these problems. 



Question I: 

 

Could some small LINEAR PROGRAM  
       give a better approximation for MaxCut or Vertex Cover 

  thereby disproving the UGC? 

Probably Not! 

[Charikar-Makarychev-Makarychev][Schoenebeck-Tulsiani] 

 

For MaxCut, for several classes of linear programs, 

 

 exponential sized linear programs are necessary to even beat 

the trivial ½ approximation! 

Question II: 

 

Could some small  SEMIDEFINITE PROGRAM  
       give a better approximation for MaxCut or Vertex Cover 

  thereby disproving the UGC? We don’t know. 



v1 

v2 

v3 

v4 

v5 

Max Cut  SDP: 

 

Embedd the graph on the  

    N - dimensional unit ball,   
 

Maximizing  
 

¼ (Average  squared length 

of the edges) 

In the integral solution,  all the vectors vi are 1,-1.  Thus they satisfy 

additional constraints 

For example :   (vi – vj)
2 + (vj – vk)2 ≥ (vi – vk)2 

       (the triangle inequality) 

The Simplest 

Relaxation for 

MaxCut 

Does adding triangle inequalities improve approximation ratio? 

(and thereby disprove UGC!) 



[Arora-Rao-Vazirani 2002] 

 

For SPARSEST CUT,   

 SDP with triangle inequalities gives Oሺ log ݊ሻ approximation. 

An � ͳ -approximation would disprove the UGC! 

[Goemans-Linial Conjecture 1997]  

SDP with triangle inequalities would yield � ͳ -approximation for SPARSEST CUT. 

[Khot-Vishnoi 2005] 

 

 SDP with triangle inequalities DOES NOT give Oሺͳሻ 

approximation for SPARSEST CUT 

 

 SDP with triangle inequalities DOES NOT beat the Goemans-

Williamson 0.878 approximation for MAX CUT 



Until 2009: 

 

    Adding a simple constraint on every 5 vectors 

 could yield a better approximation for MaxCut, and disproves UGC! 

Building on the work of [Khot-Vishnoi], 

[Khot-Saket 2009][Raghavendra-Steurer 2009] 

 

Adding all valid local constraints on at most ʹሺl୭g l୭g ሻ^ଵ/ସ  vectors to 

the simple SDP  

 DOES NOT improve the approximation ratio for MaxCut  

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009] 

 

Change ʹሺl୭g l୭g ሻ^ଵ/ସ  to exp ሺʹሺ୮୭lyሺl୭g l୭g ሻሻ ሻ in the above result. 
As of Now: 

 

A natural SDP of size �ሺ݊ଵ6ሻ  (the ͺ�ℎ round of Lasserre hierarchy) could 

disprove the UGC. 

[Barak-Brandao-Harrow-Kelner-Steurer-Zhou 2012]            (this conference) ͺ�ℎ round of Laserre hierarchy solves all known instances of Unique 

Games. 



Deeper understanding of the UGC – why it should be true if it is. 

Why play this game? 
 

Connections between SDP hierarchies,  Spectral Graph Theory and 

Graph Expansion. 

New algorithms based on SDP hierarchies. 

 

[Raghavendra-Tan]   

  Improved approximation for MaxBisection using SDP hierarchies 

 
[Barak-Raghavendra-Steurer]  

 Algorithms for 2-CSPs on low-rank graphs. 

New Gadgets for Hardness Reductions: 
[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer] 

  A more efficient long code gadget. 



Introduction to SDP Hierarchies 

(Lasserre SDP hierarchy) 



Revisiting MaxCut  

Semidefinite Program 

1 -1 

Integer Program: 

Domain:    �ଵ, �ଶ, �ଷ, … , �  ∈ −ͳ,ͳ  

  (��  for vertex i) 

 

Maximize:   ͳͶ  �� − � ଶ�, ∈�  

                       (Number of Edges Cut) 

Convex Extension of Integer Program: 
 

Domain:  Probability distributions ߤ over 

assignments � ∈ −ͳ,ͳ   

 

Maximize:   ��∼� ͳͶ  �� − � ଶ�, ∈�  

           (Expected Number of Edges Cut under ߤ) 

Bad News: Size of the convex extension  is too large (exponential in ݊) 

 

Representing a probability distribution ߤ over −ͳ,ͳ  requires exponentially 

many variables,   ߤ�  for each � ∈ −ͳ,ͳ  

Good News:   Convex program that exactly captures the MaxCut problem. 



Using Moments Convex Extension of Integer Program: 

 

Domain:  Probability distributions ߤ over 

assignments � ∈ −ͳ,ͳ   

Maximize:   ��∼� ͳͶ  �� − � ଶ�, ∈�  

        (Expected Number of Edges Cut under ߤ) 

Idea: Instead of finding the entire 

prob. distribution ߤ, just find its 

low degree moments 

Moment Variables: 

 

Let  ��  ≝ ��∼� ��  

 

        ��� ≝ ��∼� ��ଶ  

 

        �� ≝ ��∼� ���  

 

        �� ≝ ��∼� ����  

 … 

 … 

 …           �ௌ ≝ ��∼�  ���∈ௌ    

  for a multiset � ⊆ ͳ, . . , ݊ , S  ݀   

 

 = ଵସ  ��∼� �� − � ଶ�, ∈�  

 

 

=ଵସ  ��∼���ଶ + ��∼��ଶ − ʹ��∼�����, ∈�  

 

 

= 
ଵସ  ��� + � − ʹ���, ∈�  

 



Constraints on Moments 

For each �, since  �� ∈ −ͳ,ͳ , 
  ��ଶ = ͳ always so, ��∼� ��ଶ = ͳ 

Constraint: For each �,  
    ��� = ͳ 

��ଶ�� = ��   always so, ��∼� ��ଶ�� = �� 

For each �, ݆, ݇ �{�,�,,} = �  

Constraint: 

More generally, for every multiset �, �  ݀ 

 

 �ௌ = �ௗௗ ௌ  where  ݀݀ �  = set of elements in S that 

appear an odd number of times. 

Constraint: 

 

All valid moment equalities that 

hold for all distributions ߤ over −ͳ,ͳ  



Constraints on Moments 
Constraint: For each �,  
    ��� = ͳ 

Since          �ଵ�ଶ − ͵�ଷ ଶ  Ͳ, 
 ��∼� �ଵ�ଶ − ͵�ଷ ଶ  Ͳ 

 ��∼��ଵଶ�ଶଶ  − 6��∼��ଵ�ଶ�ଷ + 9��∼��ଷଶ  Ͳ   

Constraint: 

Use ��ଶ = ͳ always for all �, 
 

and include ALL valid equalities for 

moments �ௌ that hold for all 

distributions over −ͳ,ͳ  

Constraint: �{ଵ,ଵ,ଶ,ଶ} − 6� ଵ,ଶ,ଷ + 9�ଷଷ  Ͳ  
More generally, for every real polynomial  �ଵ, �ଶ, . . �  of degree at most 

ௗଶ  

 

ଶ�∽��            �  Ͳ  
 

Constraint: For every real 

polynomial ሺ�ଵ, �ଶ, . . , �ሻ  of 

degree at most  
ௗଶ ,  

ଶ  ∘ �  Ͳ 

       (basically ��∼�ଶ �  Ͳ) 

d-round Lasserre  SDP 

Hierarchy: 
 

Variables:  All moments  �ௌ  

 up to degree ݀ of the unknown 

distribution ߤ  over assignments −ͳ,ͳ 
  

Maximize: ͳͶ  ��� + � − ʹ���, ∈�  

   = ��∼� ͳͶ  �� − � ଶ�, ∈�  

        (Expected Number of Edges Cut under ߤ) 



Degree 2 SOS  SDP Hierarchy: 
 

Variables:  All moments  �ௌ  

 up to degree ݀ of the unknown 

distribution ߤ  over assignments −ͳ,ͳ  
  

Maximize: ͳͶ  ��� + � − ʹ���, ∈�  

   = ��∼� ͳͶ  �� − � ଶ�, ∈�  

        (Expected Number of Edges Cut under ߤ) 

Variables:   

Moments  �� �, ݆ ∈ {ͳ, … , ݊}}  

up to degree ʹ of the unknown 

distribution ߤ  over assignments −ͳ,ͳ   

Constraint: 

Use ��ଶ = ͳ always for all �, 
 

and include ALL valid equalities for 

moments �ௌ that hold for all 

distributions over −ͳ,ͳ  

Constraint: For every real linear 
polynomial ሺ�ଵ, �ଶ, . . , �ሻ,  
ଶ  ∘ �  Ͳ 

  

So for all  � =  ܿ��� �  we have, 

  ܿ� ܿ���,  Ͳ 

 

       (basically ��∼�ଶ �  Ͳ) 

Constraint: For each �,  
    ��� = ͳ 

Constraint: For every real 

polynomial ሺ�ଵ, �ଶ, . . , �ሻ  of 

degree at most  
ௗଶ ,  

ଶ  ∘ �  Ͳ 

       (basically ��∼�ଶ �  Ͳ) 

Degree d = 2 

(Goemans-Williamson SDP) 

  

  

  



Constraint: For every real linear 
polynomial ሺ�ଵ, �ଶ, . . , �ሻ,  
ଶ  ∘ �  Ͳ 

  

So for all  � =  ܿ��� �  we have,  ܿ� ܿ���,  Ͳ 

 

       (basically ��∼�ଶ �  Ͳ) 

Goemans-Williamson SDP 
 

Variables:  All moments  ௌܺ  

 up to degree ݀ of the unknown 

distribution ߤ  over assignments −ͳ,ͳ   
Maximize: ͳͶ  ��� + � − ʹ���, ∈�  

  = ��∼� ଵସ  �� − � ଶ�, ∈�  

 (Expected Number of Edges Cut under ߤ) 

Constraint: For each �,  
    ��� = ͳ 

Variables:   

Moments  �� �, ݆ ∈ {ͳ, … , ݊}}  

up to degree ʹ of the unknown 

distribution ߤ  over assignments −ͳ,ͳ   

Arrange the variables in a 

matrix, 

 � = �ଵଵ ⋯ �ଵڭ ⋱ ଵ�ڭ ⋯ �  

 

``Diagonal entries of � are 

equal to 1’’ 

``Matrix M is positive-

semidefinite’ 



Positive Semidefiniteness (where are the vectors?) 

Constraint: For every real linear 
polynomial    ሺ�ଵ, �ଶ, . . , �ሻ, =  ܿ��� �  

 we have,  ܿ� ܿ���,  Ͳ 

 

       (basically ��∼�ଶ �  Ͳ) 

⇔ 

Positive Semidefiniteness: 

With � = �ଵଵ ⋯ �ଵڭ ⋱ ଵ�ڭ ⋯ �  

 

For all real vectors ܿ ∈ �� ,  
we have, 

 ்ܿ�ܿ  Ͳ  ⇔
 

Cholesky Decomposition: 

 

There exists vectors {��}  such 

that  �� , � = M୧୨ 
For degree d-Lasserre SDP, 

 

 the moments are appropriately 

arranged to give a p.s.d. matrix. 
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-1 

-1 -1 

-1 
1 -1 

1   -1   1  -ͳ   ……………..        ͳ  ͳ   ͳ  -1  1   1   -    

1   -1   -1  -ͳ   ……………..        ͳ  ͳ   ͳ  -1  1   1   1   

1   -1   -1  -ͳ   ……………..        ͳ  ͳ   ͳ  -1  1   1   -    

1   -1   1  -ͳ   ……………..        ͳ  ͳ   ͳ  -1  1   1    - 

1 

  
1   1   1  -ͳ   ……………..        ͳ  ͳ   ͳ  -1  1   1   - 1   

1   1   1  -ͳ   ……………..        ͳ  ͳ   ͳ  -1  1   1   - 1   

-…………………………………………………………………… 

  

X1  X2  X3  X4   ……………..    X15 ………………….     

Local distribution μS 
 

For any subset S of  ݀ vertices, 

 

A local distribution μS over {+1,-1} 

assignments to the set S 

Conditioned SDP Solution 
 

For any subset S of ݇  ݀ vertices, 

and an assignment α in {-1,1}k , 

 

We can condition the SDP solution 

to the event that S is assigned α 

and get a d-k round SDP solution. 

Cheat Sheet: d-round Lasserre SDP 

All moments up to degree ݀ 

 Specify every marginal on 

up to ݀ variables. 

Fictitious Distribution over assignments 



Rounding SDP Hierarchies 



Contrast 

Subexponential Algorithm for Unique Games UGሺ�ሻ in time exp ݊�1 3  
via level-݊�1 3 

 SDP relaxation 

many NP-hard approximation problems require exponential time  

           (assuming 3-SAT does) 

often these lower bounds are known unconditionally for SDP hierarchies 

[Schoenebeck, Tulsiani] 

[Arora-Barak-S.’ͳͲ, Barak-Raghavendra-S.’ͳͳ] 

[…,Moshkovitz-Raz] 

 separation of UG from known NP-hard approximation problems 



General framework for rounding SDP hierarchies (not restricted to Unique Games) 

[Barak-Raghavendra-S.’ͳͳ, Guruswami-Sinop’ͳͳ] Potentially applies to wide range of  ǲgraph problemsǳ 

Examples: MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP 

Some more successes    (polynomial time algorithms) 

Approximation scheme for general MAX 2-CSP  

on constraint graphs with �ሺͳሻ significant eigenvalues 

Better 3-COLORING approximation for some graph families 

Better approximation for MAX BISECTION (general graphs) 

Subexponential Algorithm for Unique Games UGሺ�ሻ in time exp ݊�1 3  
via level-݊�1 3 

 SDP relaxation 

[Arora-Ge’ͳͳ] 

[Raghavendra-Tan’ͳʹ] 

[Barak-Raghavendra-S.’ͳͳ] 

[Austrin-Benabbas-Georgiou’ͳʹ] 



Subexponential Algorithm for Unique Games UGሺ�ሻ in time exp ݊�1 3  
via level-݊�1 3 

 SDP relaxation 

Key concept: global correlation 

General framework for rounding SDP hierarchies (not restricted to Unique Games) 

[Barak-Raghavendra-S.’ͳͳ, Guruswami-Sinop’ͳͳ] Potentially applies to wide range of  ǲgraph problemsǳ 

Examples: MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP 



Interlude: Pairwise Correlation 

Correlation measures dependence between ܺ and ܻ 

Examples: 

Mutual Information I ܺ, ܻ = ܪ ܺ −  ሺܺ|ܻሻܪ

Covariance � ܻܺ − ሺ� ܺሻሺ� ܻሻ   (if ܺ and ܻ are real-valued) 

(Statistical) distance between {ܺ, ܻ} and {ܺ}{ܻ} 

Does the distribution of ࢄ change if we condition ࢅ? 

Two jointly distributed random variables ܺ and ܻ 

entropy lost due to conditioning 



Rounding problem 

Given 

Sample 

distribution over assignments with expected value  � 

+   level-ℓ SDP solution with value  ͳ − � UG instance (ℓ = ݊� �1/3
) 

Sampling 

degree-ℓ moments of a distribution over  

assignments with expected value  ͳ − � 

similar (?) 

More convenient to think about actual distributions  

instead of SDP solutions 

But: proof should only ǲuseǳ linear equalities satisfied by these moments 

         and certain linear inequalities, namely non-negativity of squares 

(Can formalize this restriction as proof system  next talk) 

random variables ଵܺ, … , ܺ over ℤ  Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ 



Sampling by conditioning 

Pick an index ݆ 

Sample assignment � for index ݆ from its marginal distribution ܺ  

Condition distribution on this assignment,  �ܺ′ ≔ �ܺ ܺ = �  

Hope: need to condition only a small number of times; then do something else 

How can conditioning help? 

Issue: after conditioning step, know only degree ℓ − ͳ moments   (instead of degree ℓ) 

If we condition ݊ times, we correctly sample the underlying distribution 



How can conditioning help? 

Allows us to assume: distribution has low global correlation 

Claim: general cases reduces to case of low global correlation 

typical pair of variables  

almost pairwise independent 

Proof:  

Idea: significant global correlation  conditioning decreases entropy 

��,I �ܺ , ܺ  � ͳ ⋅ ͳ ℓ  

Potential function Φ = ܪ�� �ܺ  

Φ − Φ′  �� ܪ  �ܺ − �� ܪ  �ܺ ܺ = �� ܫ  �ܺ, ܺ  ��, ܫ �ܺ , ܺ  

Can always find index ݆ such that for �ܺ′ ≔ �ܺ ܺ  

Potential can decrease  ℓ/ʹ times by more than � ͳ/ℓ   



How can low global correlation help? 

Allows us to assume: distribution has low global correlation 

typical pair of variables  

almost pairwise independent 

��,I �ܺ , ܺ  � ͳ ⋅ ͳ ℓ  

How can conditioning help? 



For some problems, this condition alone gives improvement over BASIC SDP 

Example: MAX BISECTION [Raghavendra-Tan’ͳʹ, Austrin-Benabbas-Georgiou’ͳʹ] 

hyperplane rounding gives near-bisection if global correlation is low 

How can low global correlation help? ��,I �ܺ , ܺ  ͳ ℓ  



How can low global correlation help? ��,I �ܺ , ܺ  ͳ ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginal distribution & ∃ partition: 

random variables ଵܺ, … , ܺ over ℤ  Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ 

... ܺ ܺ I ܺ, ܺ = Ͳ 
 inter-component constraint cannot be typical 

  � fraction of constraints are inter-component 

ℓ equal-sized  

components 



How can low global correlation help? ��,I �ܺ , ܺ  ͳ ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginal distribution & ∃ partition: 

random variables ଵܺ, … , ܺ over ℤ  Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ 

... 

Show: no other cases 

are possible! (informal) 

Only 

I ܺ, ܺ = Ͳ 
 inter-component constraint cannot be typical 

  � fraction of constraints are inter-component 

ℓ equal-sized  

components 



How can low global correlation help? ��,I �ܺ , ܺ  ͳ ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginal distribution & ∃ partition: 

random variables ଵܺ, … , ܺ over ℤ  Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ 

... 

Only 

 easy to ǲsampleǳ 

ℓ equal-sized  

components 

Idea: round components independently & recurse on them 

 ʹ�
-time algorithm for UGሺ�ሻ 

How many edges ignored in total?  (between different components) 

We chose ℓ = ݊� for � ب �  

 each level of recursion decrease component size by factor  ݊� 

 at most ͳ/� levels of recursion  

 total fraction of ignored edges  �/� ا ͳ 



How can low global correlation help? ��,I �ܺ , ܺ  ͳ ℓ  

For Unique Games 

Extreme cases with low global correlation 

1) no entropy: all variables are fixed 

2) many small independent components:  

all variables have uniform marginal distribution & ∃ partition: 

random variables ଵܺ, … , ܺ over ℤ  Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ 

... 

Only 

ℓ equal-sized  

components 



global correlation  ͳ/݊ଶ� 

Suppose: 

Then: ∃ � ⊆ ݊ .  �  ݊ଵ−�  & all constraints touching � stay inside of �  

except for an � �/�  fraction 

(in constraint graph, S has low expansion) 

Proof: 

For random walk � ∼ ݆ଵ ∼ ⋯ ∼ ݆� of length � in constraint graph Corrሺ �ܺ , ܺ�ሻ  ͳ − � � 

Define Corr �ܺ, ܺ = max Pr �ܺ − ܺ = ܿ  

proof uses non-negativity of squares (sum-of-squares proof)  

 works also for SDP hierarchy 

Correlation Propagation 

random variables ଵܺ, … , ܺ over ℤ  with uniform marginals Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ 

Corr �ܺ , ܺ� ≳ Pr �ܺ − ܺ1 = ܿଵ ⋅⋅⋅ Pr �ܺ − ܺ� = ܿ�  



global correlation  ͳ/݊ଶ� 

Suppose: 

Then: ∃ � ⊆ ݊ .  �  ݊ଵ−�  & all constraints touching � stay inside of �  

except for an � �/�  fraction 

(in constraint graph, S has low expansion) 

Proof: 

For random walk � ∼ ݆ଵ ∼ ⋯ ∼ ݆� of length � in constraint graph Corrሺ �ܺ , ܺ�ሻ  ͳ − � � 

Define Corr �ܺ, ܺ = max Pr �ܺ − ܺ = ܿ  

Correlation Propagation 

random variables ଵܺ, … , ܺ over ℤ  with uniform marginals Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ 

� = � � ⋅ log ݊  ͳ/݊� 

On the other hand, Corr �ܺ , ܺ  ͳ/݊ଶ� for typical j 

 random walk from � doesn’t mix in �-steps (actually far from mixing) 

 exist small set � around � with low expansion 

low global correlation 



global correlation  ͳ/݊ଶ� 

Suppose: 

Then: 

Proof: 

random variables ଵܺ, … , ܺ over ℤ  with uniform marginals Pr �ܺ − ܺ = ܿ  ͳ − � for typical constraint �� − � = ܿ ͳ/ℓ 

constraint graph has ℓ eigenvalues  ͳ − � 

a graph has ℓ eigenvalues  � ⇔ ∃ vectors �ଵ, … , v୬  ��∼ �� , �  � �, �, � ଶ  ͳ/ℓ �� �� ଶ = ͳ 

(local: typical edge) 

(global: typical pair) 

How large does ℓ have to be to guarantee a very small set with low expansion ? 

 Ͳ.ͳ o(n) 

 For graphs with < ℓ such eigenvalues, algorithm runs in time nℓ 

Improving ℓ = ݊� to ℓ = ݊ሺଵሻ would refute Small-Set Expansion Hypothesis 

(closely related to UGC) 
Thanks! 
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Graph Spectrum 

& 

Small-Set Expansion 



Question:  If ܩ is a ߜ-small set expander, 

 how many eigenvalues larger than ͳ − � can the adjancency 

matrix � have? 

  =  ሺ�ሻ݊�ݏ݊��݁
 |�| ݀ � ݃݊���݈݁ ݏ݁݃݀݁ #

vertex set S 
A random neighbor of a random vertex in �  

is outside of � with probability ݁�݊�ݏ݊�ሺ�ሻ 

A Question in Spectral Graph Theory 

d-regular graph G 

Def (Small Set Expander):   

 A regular graph G is a δ-small set expander  

if for every set S ⊂ ܸ, 
             S  ݊�ݏ݊��݁                     ܰߜ �  ଵଶ 

Let � be the normalized adjacency matrix of the d-regular graph ܩ,  

      (all entries are Ͳ ݎ ଵௗ) � has ݊ eigenvalues �ଵ = ͳ  �ଶ  �ଷ  ⋯  �ே  
(say ߜ = ͳͲ−6) 



A Question in Spectral 

Graph Theory 

Def (Small Set Expander):   

 A regular graph G is a δ-small 

set expander if for every set S ⊂ ܸ    S  ݊�ݏ݊��݁                     ܰߜ �  ଵଶ 

Question:  

 If ܩ is a ߜ-small set expander, 

  How many eigenvalues larger than ͳ − � can the normalized adjancency 

matrix � have? 

Cheeger’s inequality: 
           every large eigenvalue               a sparse cut in ܩ   

  (��  ͳ − �)   (  cut of sparsity O �   ) 

d-regular graph G 

Intuitively, 

How many sparse cuts can a graph ܩ have without having a  

 unbalanced sparse cut? 



Def (Small Set Expander):   

 A regular graph G is a δ-small 

set expander if for every set S ⊂ ܸ    S  ݊�ݏ݊��݁                     ܰߜ �  ଵଶ 

Question:  

 If ܩ is a ߜ-small set expander, 

  How many eigenvalues larger than ͳ − � can the normalized adjacency 

matrix � have? 

Significance of the Question 

�ℎݏ݁ݎℎݎ ݈݀�݊݇ଵ−� ܩ ≝ # of eigenvalues of graph G that are   ͳ − � 

[Barak-Raghavendra-

Steurer][Guruswami-Sinop] 

 ݇-round Lasserre SDP solves ܷܩ �  on graphs with low 

threshold rank  ݇. 

Graph ܩ has small non-expanding sets,  

 

 

 

decompose ܩ in to smaller pieces and solve 

each piece. 

If UGC is true, there must be hard instances of Unique Games that 

 

a) Have high threshold rank  b) Are Small-Set Expanders. 



Def (Small Set Expander):   

 A regular graph G is a δ-small 

set expander if for every set S ⊂ ܸ    S  ݊�ݏ݊��݁                     ܰߜ �  ଵଶ 

Question:  

 If ܩ is a ߜ-small set expander, 

  How many eigenvalues larger than ͳ − � can the normalized adjacency 

matrix � have? ܴ �, ߜ ≝ Answer to the above question (a function of ܰ, �,  (ߜ

Significance of the Question 

[Arora-Barak-Steurer 2010] 

 

There is a Nோ �,ఋ  -time algorithm for GAP-SMALL-SET-EXPANSION problem – a problem closely related to UNIQUE GAMES. 

Gap Small Set Expansion Problem (GapSSE)ሺ�,  ሻߜ

Given a graph G and constants ߜ, � >  Ͳ, 

Is Фሺߜሻ  < �  OR Фሺߜሻ  >  ͳ − �? 

where Φ ߜ =minimum expansion of sets of size   ߜ

[Arora-Barak-Steurer 2010]    ܴ �, ߜ  ܰ�  

        A subexponential-time algorithm for GAP-SMALL-SET-EXPANSION 

problem 

At the time, 

Best known lower bound for ܴ �, ߜ = log ܰ    

       

 (GAP-SMALL-SET-EXPANSION problem could be solved in 

quasipolynomial time.) 



[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer] 

 

For all small constant ߜ, 
 

There exists a graph (the Short Code Graph) that is a ߜ −small set 

expander with exp ሺlog� ݊ሻ eigenvalues  ͳ − �. , �. ݁. , 
 �ℎݏ݁ݎℎݎ ݈݀�݊݇ଵ−� ܩ  exp ሺlog� ܰሻ 

for some � depending on �. 

Short Code Graph 

• Led to new gadgets for hardness reductions (derandomized 

Majority is Stablest) and new SDP integrality gaps. 

• An interesting mix of techniques from,  Discrete Fourier analysis, 

Locally Testable Codes and Derandomization. 

[BGHMRS 11] exp ሺlog� ܰሻ  ܴ �, ߜ  ܰ�  [ABS] 



 
Long Code Graph 

 

•  Eigenvectors 

 

• Small Set Expansion 

 

Short Code Graph 
 

 

 

Overview 



The Long Code Graph aka Noisy Hypercube 

Noise Graph: ܪ�  

 

Vertices:  −ͳ,ͳ  

 

Edges:  Connect every pair of 

points in hypercube  separated by 

a Hamming distance of �݊ 

n dimensional hypercube : {-1,1}n 

x 

y 

� and ݕ differ in �݊ coordinates. 

Dictator cuts:   Cuts parallel to the Axis  

(given by ܨሺ�ሻ  =  ��) 

 

The dictator cuts yield ݊ sparse cuts in graph ܪ�  

1 

1 1 

1 

-1 -1 

-1 

Eigenvectors are functions on  −ͳ,ͳ  



Sparsity of Dictator Cuts 

n dimensional hypercube 

Connect every pair of vertices 

in hypercube  separated by 

Hamming distance of �� 

= ݎ���ܿ�݀ �ݏݎ�݂ ݕܾ �ݑܿ ݏ݁݃݀݁ ݂ ݊��ܿ�ݎܨ Pr��ௗ ௗ� ሺ�,௬ሻ[ �, ݕ = [�ݑܿ ݏ�  Pr��ௗ ௗ� ሺ�,௬ሻ [�ଵ ≠ = [ଵݕ � 

Dictator cuts:  ݊-eigenvectors with eigenvalues ͳ − � for graph ܪ�  

         (Number of vertices N = ʹ,  so #of eigenvalues = log ܰ) 

1 

1 

1 

1 

-1 -1 

-1 



Eigenfunctions for Noisy 

Hypercube Graph 

Eigenfunction      Eigenvalue 

ଵܨ  � = �ଵ, ܨଶ � =  �ଶ,   … , ܨ � = �     ͳ − � 
ଵଶܨ  � = �ଵ�ଶ, ଶଷܨ  � =  �ଶ�ଷ,  … −ଵܨ � = �−ଵ �    ͳ − � ଶ 

 ……………………… 

 

Degree d multilinear polynomials      ͳ − � ௗ 

Eigenfunctions for the Noisy hypercube graph are  multilinear 

polynomials of fixed degree!   

 (Noisy hypercube is a Cayley graph on ܼଶ , therefore its eigen functions are 

characters of the group ) 



Suppose ݂ = �ௌ indicator function of a small non-expanding set. 

 

S has ߜ-fraction of vertices  ݂ ଶଶ =  � ݂ଶ =  ߜ

 

Fraction of edges inside � = Era୬ୢ୭୫ ୣୢgୣ ୶,y f x f y  

     = ݂, ݂ܩ  

 

If ݁�݊�ݏ݊� �  Ͳ.ͲͲͳ  then, at least a Ͳ.999ߜ-fraction of edges are inside �. 
So, 

   ݂, ݂ܩ  Ͳ.999 ݂ ଶଶ
 

 (f is close to the span of eigenvectors of G with eigenvalue  Ͳ.99) 

    

Small-Set Expansion (SSE) 

regular graph ܩ with vertex set ܸ, parameter ߜ > Ͳ Given: 

� 

Conclusion: 

Indicator function of a small non-expanding set f = �ௌ is a 

• sparse vector  

• close to the span of the large eigenvectors of G 



Hypercontractivity 

Definition: (Hypercontractivity) 

 A subspace � ∈ ܴே is hypercontractive if for all ݓ ∈ ݓ  � ସ   � ݓ ଶ   

Projector ௌܲ in to the subspace �, also called hypercontractive. 

Hypercontractivity implies Small-Set Expansion 
 ଵܲ−� =  projector into span of eigenvectors of ܩ with eigenvalue  ͳ − � 

 ଵܲ−� is hypercontractive  

 

 No sparse vector in span of top eigenvectors of G 

  

 No small non-expanding set in ܩ. (G is a small set expander) 

(No-Sparse-Vectors) 

 Roughly, No sparse vectors in a hypercontractive subspace � 

because, 

               w is ߜ-sparse ǲ⇔ǳ ݓ ସ/ ݓ ଶ > ͳ/ߜଵ/ସ 



Hypercontractivity for Noisy Hypercube 

Top eigenfunctions of noisy hypercube are  low degree polynomials. 

(Hypercontractivity of Low Degree Polynomials) 

For a degree ݀ multilinear polynomial ݂ on −ͳ,ͳ ,  

     ݂ ସ   9ௗ ݂ ଶ  

  

(Noisy Hypercube is a Small-Set Expander) 

For constant �, the noisy hypercube is a small-set expander.   

 Moreover, the noisy hypercube has ܰ = ʹ vertices and ݊ 

eigenvalues larger than ͳ − �.  



[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009] 

 

For all small constant ߜ, 
 

There exists a graph (the Short Code Graph) that is a ߜ −small set 

expander with exp ሺlog� ݊ሻ eigenvalues  ͳ − �. , �. ݁. , 
 �ℎݏ݁ݎℎݎ ݈݀�݊݇ଵ−� ܩ  exp ሺlog� ܰሻ 

 

for some � depending on �. 

Short Code Graph 



Noise Graph: ܪ� 

 

Vertices:  −ͳ,ͳ  

 

Edges:  Connect every pair of points 

in hypercube  separated by a 

Hamming distance of �݊ 

x 1 

-1 

Short Code Graph 

Has ݊ sparse cuts,  but ܰ = ʹ  vertices --  too many vertices! 

Idea:   

Pick a subset of vertices of the long code graph, and their induced 

subgraph. 

1.  The dictator cuts still yield ݊-sparse cuts  

2. The  subgraph is a small-set expander! 

If we reduce ܰ = ʹ  to ܰ = ݊ଵ then, the number of eigenvalues will be ܰ 11బబ Choice:     Reed Muller Codewords of large constant degree. 



Sparsity of Dictator Cuts 

n dimensional hypercube 

Connect every pair of vertices 

in hypercube  separated by 

Hamming distance of �� 

= ݎ���ܿ�݀ �ݏݎ�݂ ݕܾ �ݑܿ ݏ݁݃݀݁ ݂ ݊��ܿ�ݎܨ Pr��ௗ ௗ� ሺ�,௬ሻ[ �, ݕ = [�ݑܿ ݏ�  Pr��ௗ ௗ� ሺ�,௬ሻ [�ଵ ≠ = [ଵݕ � 

Easy:  Pretty much for any reasonable subset of vertices, dictators will 

be sparse cuts. 

1 

1 

1 

1 

-1 -1 

-1 



Preserving Small Set Expansion 

Top eigenfunctions of noisy hypercube are  low degree polynomials. 

(Hypercontractivity of Low Degree Polynomials) 

For a degree ݀ multilinear polynomial ݂ on −ͳ,ͳ ,  

     ݂ ସ   9ௗ ݂ ଶ  

(Noisy Hypercube is a Small-Set Expander) 

For constant �, the noisy hypercube is a small-set expander.   

+ 



Preserving Small Set Expansion 

(Hypercontractivity of Low Degree Polynomials) 

For a degree ݀ multilinear polynomial ݂ on −ͳ,ͳ ,  

     ݂ ସ   9ௗ ݂ ଶ  

For a degree ݀ polynomial ݂, 
 

By hypercontractivity over hypercube, 

  ��∈ −ଵ,ଵ � ݂ � ସ  9ସௗ ��∈ −ଵ,ଵ � ݂ � ଶ
 

 

We picked a subset � ⊂ −ͳ,ͳ  and so we want, 

 

  ��∈ௌ ݂ � ସ  9ସௗ ��∈ௌ ݂ � ଶ 

 ݂ is degree d, so ݂ସ and ݂ଶ are degree   Ͷ݀ . 
 

If S is a 4d-wise independent set then, 

 ��∈ௌ ݂ � ସ = ��∈ −ଵ,ଵ � ݂ � ସ   9ସௗ ��∈ −ଵ,ଵ � ݂ � ଶ =  9ସௗ ��∈ௌ ݂ � ଶ 

 



Preserving Small Set Expansion 

Top eigenfunctions of noisy hypercube are  low degree polynomials. 

We Want: 

 Only top eigenfunctions on the subgraph of noisy hypercube 

are also low degree polynomials. 

Connected to local-testability of the dual of the underlying code S! 

 

We appeal to local testability result of Reed-Muller codes 
[Bhattacharya-Kopparty-Schoenebeck-Sudan-Zuckermann] 



Applications of Short Code 

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009] 

 

 `Majority is Stablest’ theorem holds for the short code. 
 

 --  More efficient gadgets for hardness reductions. 

 

 -- Stronger integrality gaps for SDP relaxations. 

Recap: 

  

 ``How many large  eigenvalues can a small set expander have?’’ 
 

 -- A graph construction led to better hardness gadgets and SDP 

integrality gaps. 

[Kane-Meka] 

  A ʹ l୭g l୭g  1/3
 SDP gap with triangle  inequalities for BALANCED 

SEPARATOR  



On the Power of  

Sum-of-Squares Proof 



Level-8 SoS relaxation refutes UG instances  

based on long-code and short-code graphs 

Result: 

SoS hierarchy is a natural candidate algorithm for refuting UGC 

Should try to prove that this algorithm fails on some instances 

Only candidate instances were based on long-code or short-code graph 

We don’t know any instances on which  
this algorithm could potentially fail! 



Show in this proof system that no assignments for these instances exist 

How to prove it? (rounding algorithm?) 

Interpret dual as proof system 

Level-8 SoS relaxation refutes UG instances  

based on long-code and short-code graphs 

Result: 

qualitative difference to other hierarchies:  basis independence 

Try to lift this proof to the proof system 

We already know ǲregularǳ proof of this fact!  (soundness proof) 



Sum-of-Squares Proof System 

ଵܲ ݖ  Ͳ 

ܲ ݖ  Ͳ 

Axioms 

…
 

derive ܳ ݖ  ܿ 

(informal) 

Rules 

Polynomial operations ǲPositivstellensatzǳ [Stengel’74] ܴ ݖ ଶ  Ͳ for any polynomial ܴ 

Intermediate polynomials have bounded degree 

( ଵܲ, … , ܲ, ܳ  

bounded-degree  

polynomials) 

(c.f. bounded-width resolution, 

 but basis independent) 



ͳ − ݖ = ݖ − ଶݖ + ͳ − ݖ ଶ  ݖ −  ଶݖ

Axiom: ݖଶ  ݖ  :Derive ݖ  ͳ 

(non-negativity of squares)  Ͳ (axiom) 

Example 



Non-serious issues: 

Serious issues: 

Cauchy–Schwarz / Hölder 

Hypercontractivity 

Invariance Principle 

Influence decoding 

can use variant of inductive proof, 

works in Fourier basis 

typically uses bump functions,  

but for UG, polynomials suffice 

Components of soundness proof (for known UG instances) 



ܲ =  projector into span of eigenfunctions of ܩ with eigenvalue  � = Ͳ.ͳ 

G = long-code graph Cayሺ�ଶ, ܶሻ where ܶ = {points  with Hamming weight �݉} 

ʹ� ଵ/� ‖݂‖ଶସ − ‖݂ܲ‖ସସ is a sum of squares 

SoS proof of hypercontractivity: 



ܲ =  projector into span of eigenfunctions of ܩ with eigenvalue  � = Ͳ.ͳ 

G = long-code graph Cayሺ�ଶ, ܶሻ where ܶ = {points  with Hamming weight �݉} 

‖݂ܲ‖ସସ ≼ ʹ� ଵ/� ‖݂‖ଶସ 

For long-code graph, ܲ projects into Fourier polynomials with degree �ሺͳ/�ሻ 

Stronger ind. Hyp.:  

where   ݂ is a generic degree-݀ Fourier polynomial 

and        ݃ is a generic degree-݁ Fourier polynomial 
� ݂ଶ݃ଶ ≼ ͵ௗ+�݂ଶ ⋅ �݃ଶ 

difference is sum of squares 
SoS proof of hypercontractivity: 

�݂ଶ =   ݂ௌଶ ௌ, ௌ ≤ௗ  



ܲ =  projector into span of eigenfunctions of ܩ with eigenvalue  � = Ͳ.ͳ 

G = long-code graph Cayሺ�ଶ, ܶሻ where ܶ = {points  with Hamming weight �݉} 

‖݂ܲ‖ସସ ≼ ʹ� ଵ/� ‖݂‖ଶସ 

For long-code graph, ܲ projects into Fourier polynomials with degree �ሺͳ/�ሻ 

Stronger ind. Hyp.:  

where   ݂ is a generic degree-݀ Fourier polynomial 

and        ݃ is a generic degree-݁ Fourier polynomial 
� ݂ଶ݃ଶ ≼ ͵ௗ+�݂ଶ ⋅ �݃ଶ 

Write ݂ = ݂ + �ଵ ⋅ ଵ݂ and ݃ = ݃ + �ଵ ⋅ ݃ଵ (degrees of ଵ݂, ݃ଵ smaller than ݀, ݁) � ݂ଶ݃ଶ = � ݂ଶ݃ଶ + � ଵ݂ଶ݃ଶ + � ݂ଶ݃ଵଶ + � ଵ݂ଶ݃ଵଶ + Ͷ� ݂ ଵ݂݃݃ଵ ≼ …                 + ʹ� ݂ଶ݃ଵଶ + ʹ� ଵ݂ଶ݃ଶ ≼ ͵ௗ+ሺ� ݂ଶ + � ଵ݂ଶሻ ⋅ (�݃ଶ + �݃ଵଶሻ (ind. hyp.) 

SoS proof of hypercontractivity: 



Open Questions 

Does 8 rounds of Lasserre hierarchy disprove UGC? 

Can we make the short code, any shorter?   

(applications to hardness gadgets) 

Subexponential time algorithms for MaxCut or Vertex Cover 

(beating the current ratios) 

Thanks! 


