Approximate Constraint Satisfaction requires Large LP Relaxations

David Steurer Cornell

Siu On Chan MSR James R. Lee Washington Prasad Raghavendra Berkeley

TCS+ Seminar, December 2013

best-known (approximation) algorithms for many combinatorial optimization problems:

Max Cut, Traveling Salesman, Sparsest Cut, Steiner Tree, ...

common core = linear / semidefinite programming (LP/SDP)

$$\max \quad \frac{1}{|E|} \sum_{ij \in E} \mu_{ij}$$

s.t.
$$\mu_{ij} - \mu_{ik} - \mu_{kj} \le 0$$
$$\mu_{ij} + \mu_{ik} + \mu_{kj} \le 2$$
$$0 \le \mu_{ij} \le 1$$

LP / SDP relaxations

particular kind of *reduction* from hard problem to LP/SDP *running time:* polynomial in *size* of relaxation

what guarantees are possible for approximation and running time?

example: basic LP relaxation for Max Cut

Max Cut: Given a graph, find bipartition $x \in \{\pm 1\}^n$ that cuts as many edges as possible

maximize

subject to

$$\frac{1}{E|}\sum_{ij\in E}\mu_{ij}$$

 $\mu_{ij} - \mu_{ik} - \mu_{kj} \le 0$

 $\mu_{ij} + \mu_{ik} + \mu_{kj} \le 2$

intended solution

 $(\mu_x)_{ij} = \begin{cases} 1, & \text{if } x_i \neq x_j, \\ 0, & \text{otherwise.} \end{cases}$

integer linear program $-\mu_{ij} \in \{0,1\}$ $\mu_{ij} \in [0,1]$ (relax integrality constraint)

 $O(n^3)$ inequalities

depend only on instances size (but not instance itself)

approximation guarantee optimal value of instance VS. optimal value of LP relaxation

challenges

many possible relaxations for same problem small difference syntactically \rightarrow big difference for guarantees *goal:* identify "right" polynomial-size relaxation

hierarchies = systematic ways to generate relaxations
best-known: Sherali-Adams (LP), sum-of-squares/Lasserre (SDP); best possible?
goal: compare hierarchies and general LP relaxations

often: more complicated/larger relaxations \rightarrow better approximation $P \neq NP$ predicts limits of this approach; can we confirm them? *goal:* understand computational power of relaxations

Rule out that poly-size LP relaxations show P = NP?

hierarchies

great variety (sometimes different ways to apply same hierarchy) current champions: Sherali–Adams (LP) & sum-of-squares / Lasserre (SDP)

connections to proof complexity (Nullstellensatz and Positivstellensatz refutations)

lower bounds

[Mathieu–Fernandez de la Vega Charikar–Makarychev–Makarychev]

Sherali-Adams requires size $2^{n^{\Omega(1)}}$ to beat ratio $\frac{1}{2}$ for Max Cut [Grigoriev, Schoenebeck] sum-of-squares requires size $2^{\Omega(n)}$ to beat ratio $\frac{7}{8}$ for Max 3-Sat upper bounds

implicit: many algorithms (e.g., Max Cut and Sparsest Cut)

explicit: Coloring, Unique Games, Max Bisection

[Goemans-Williamson, Arora-Rao-Vazirani]

[Chlamtac, Arora-Barak-S., Barak-Raghavendra-S., Raghavendra-Tan]

lower bounds for general LP formulations (extended formulations)

characterization; symmetric formulations for TSP & matching [Yannakakis'88]

general, exact formulations for TSP & Clique

approximate formulations for Clique

[Fiorini–Massar–Pokutta –Tiwary–de Wolf'12]

[Braun–Fiorini–Pokutta–S.'12 Braverman–Moitra'13]

general, exact formulation for maximum matching

[Rothvoß'13]

geometric idea: complicated polytopes can be *projections* of simple polytopes

universality result for LP relaxations of Max CSPs

[this talk]

general polynomial-size LP relaxations are no more powerful than polynomial-size Sherali-Adams relaxations

also holds for almost quasi-polynomial size

concrete consequences

unconditional lower bound in powerful computational model

confirm non-trivial prediction of P≠NP: poly-size LP relaxations cannot achieve 0.99 approximation for Max Cut, Max 3-Sat, or Max 2-Sat (NP-hard approximations)

approximability and UGC: poly-size LP relaxation cannot refute Unique Games Conjecture (cannot improve current Max CSP approximations)

separation of LP relaxation and SDP relaxation: poly-size LP relaxations are strictly weaker than SDP relaxations for Max Cut and Max 2Sat universality result for LP relaxations of Max CSPs

[this talk]

general polynomial-size LP relaxations are no more powerful than polynomial-size Sherali-Adams relaxations

also holds for almost quasi-polynomial size

for concreteness: focus on Max Cut

notation: $\operatorname{cut}_G(x) = \operatorname{fraction}$ of edges that bipartition x cuts in GMax $\operatorname{Cut}_n = \operatorname{Max}$ Cut instances / graphs on n vertices

compare: general $n^{(1-\varepsilon)d}$ -size LP relaxation for Max Cut_n vs. n^d -size Sherali-Adams relaxations for Max Cut_n

general LP relaxation for Max Cut_n

example linearization

$$L_G(\mu) = \frac{1}{|E|} \sum_{ij \in E} \mu_{ij}$$
$$(\mu_x)_{ij} = \begin{cases} 1, & \text{if } x_i \neq x_j, \\ 0, & \text{otherwise.} \end{cases}$$

such that $L_G(\mu_x) = \operatorname{cut}_G(x)$

 $x \mapsto \mu_x \in \mathbb{R}^m$ such

linearization

 $P_n \subseteq \mathbb{R}^m$, at most *R* facets, $\{\mu_x\}_{x \in \{\pm 1\}^n} \subseteq P_n$

 $G \mapsto L_G: \mathbb{R}^m \to \mathbb{R}$ linear

same polytope for all instances of size *n* makes sense because solution space for Max Cut depends only on *n*

computing with size-R LP relaxation L

general computational model—how to prove lower bounds?

geometric characterization (à la Yannakakis'88)

 2^n standard basis functions correspond to

exact 2^n -size LP relaxation for Max Cut_n

geometric characterization (à la Yannakakis'88)

every size-*R* LP relaxation \mathcal{L} for Max Cut_n corresponds to nonnegative functions q_1, \dots, q_R : $\{\pm 1\}^n \to \mathbb{R}_{\geq 0}$ such that $\mathcal{L}(G) \leq c$ iff $c - \operatorname{cut}_G = \sum_r \lambda_r q_r$ and $\lambda_1, \dots, \lambda_R \geq 0$ for all $G \in \operatorname{Max} \operatorname{Cut}_n$ intuition: all inequalities for functions on $\{\pm 1\}^n$ with local proofs

connection to Sherali-Adams hierarchy

 n^d -size Sherali-Adams relaxation for Max Cut_n

exactly corresponds to

generated by n^d "base juntas"

d-junta = function on $\{\pm 1\}^n$ depends on $\leq d$ coordinates

nonnegative combinations of nonnegative *d*-juntas on $\{\pm 1\}^n$

geometric characterization (à la Yannakakis'88)

every size-*R* LP relaxation \mathcal{L} for Max Cut_n corresponds to nonnegative functions $q_1, \dots, q_R : \{\pm 1\}^n \to \mathbb{R}_{\geq 0}$ such that $\mathcal{L}(G) \leq c$ iff $c - \operatorname{cut}_G = \sum_r \lambda_r q_r$ and $\lambda_1, \dots, \lambda_R \geq 0$ for all $G \in \operatorname{Max} \operatorname{Cut}_n$

to rule out (c,s)-approx. by size-R LP relaxation, show: for every size-R nonnegative cone, exists $G \in Max Cut_n$ with $Opt(G) \leq s$ but $c - cut_G$ outside of cone

from d-juntas to n^{ε} -juntas

let $q_1, ..., q_R$ be nonneg. n^{ε} -juntas on $\{\pm 1\}^n$ for $R = n^{(1-10\varepsilon)d}$

want: subset $S \subseteq [n]$ of size $m \approx n^{\varepsilon}$ where functions behave like *d*-juntas

let J_1, \ldots, J_R be junta-coordinates of q_1, \ldots, q_R

claim: there exists subset $S \subseteq [n]$ of size $m = n^{\varepsilon}$ such that $|J_r \cap S| \leq d$ for all $r \in [R]$

proof: choose *S* at random $\mathbb{P}\{|S \cap J_r| > d\} \le \left(\frac{|S|}{n} \cdot |J_r|\right)^d = n^{-(1-2\varepsilon)d}$

 \rightarrow can afford **union bound** over *R* junta sets J_1, \dots, J_R

from n^{ε} -juntas to non-spiky functions

let *q* be a nonnegative function on $\{\pm 1\}^n$ with $\mathbb{E}q = 1$ non-spiky: max $q \leq 2^t$

junta structure lemma: can approximate q by nonnegative n^{ε} -junta q', Fourier coefficients error $\eta = q - q'$ satisfies $|\hat{\eta}_S|^2 \le td/n^{\varepsilon}$ for |S| < d

proof:nonnegative function q \rightarrow probability distribution over $\{\pm 1\}^n$,+1/-1 rand. variables X_1, \dots, X_n (dependent)non-spiky \rightarrow entropy $H(X_1, \dots, X_n) \ge n - t$

want: $J \subseteq [n]$ of size n^{ε} such that $\forall S \subseteq [n] \setminus J$. $\{X_S \mid X_J\} \approx$ uniform, that is, $(|S| < d) \quad |S| - H(X_S \mid X_J) \leq \beta$ for $\beta = \frac{td}{n^{\varepsilon}}$ *construction:* start with $J = \emptyset$; as long as bad S exists, update $J \leftarrow J \cup S$

analysis: total entropy defect $\leq t \rightarrow \text{stop after } \frac{t}{\beta} \text{ iterations } \rightarrow |J| \leq \frac{dt}{\beta} = n^{\varepsilon}$

from non-spiky functions to general functions

let $q_1, ..., q_R$ be general nonneg. functions on $\{\pm 1\}^n$ for $R = n^d$

proof: truncate functions carefully

intuition: $c - \operatorname{cut}_{G}$ is non-spiky. Thus, spiky q_i don't help!

