# Approximate Constraint Satisfaction requires Large LP Relaxations 

David Steurer<br>Cornell

Siu On Chan
MSR

James R. Lee
Washington

Prasad Raghavendra
Berkeley
best-known (approximation) algorithms for many combinatorial optimization problems:

Max Cut, Traveling Salesman, Sparsest Cut, Steiner Tree, ...
common core $=$ linear $/$ semidefinite programming (LP/SDP)


## LP / SDP relaxations

$$
\begin{array}{ll}
\max & \frac{1}{|E|} \sum_{i j \in E} \mu_{i j} \\
\text { s.t. } & \mu_{i j}-\mu_{i k}-\mu_{k j} \leq 0 \\
& \mu_{i j}+\mu_{i k}+\mu_{k j} \leq 2 \\
& 0 \leq \mu_{i j} \leq 1
\end{array}
$$

particular kind of reduction from hard problem to LP/SDP running time: polynomial in size of relaxation
what guarantees are possible for approximation and running time?
example: basic LP relaxation for Max Cut
Max Cut: Given a graph, find bipartition $x \in\{ \pm 1\}^{n}$ that cuts as many edges as possible
$x_{i}=1 \quad x_{i}=-1$

maximize $\quad \frac{1}{|E|} \sum_{i j \in E} \mu_{i j}$
subject to

$$
\begin{aligned}
& \mu_{i j}-\mu_{i k}-\mu_{k j} \leq 0 \\
& \mu_{i j}+\mu_{i k}+\mu_{k j} \leq 2
\end{aligned}
$$

## intended solution

$$
\left(\mu_{x}\right)_{i j}=\left\{\begin{array}{lc}
1, & \text { if } x_{i} \neq x_{j} \\
0, & \text { otherwise }
\end{array}\right.
$$

linear program

$$
\mu_{i j} \in\{0,1\} \quad \mu_{i j} \in[0,1] \quad \text { (relax integrality constraint) }
$$

$O\left(n^{3}\right)$ inequalities
depend only on instances size (but not instance itself)

## approximation guarantee

optimal value of instance VS.
optimal value of LP relaxation

## challenges

many possible relaxations for same problem small difference syntactically $\rightarrow$ big difference for guarantees goal: identify "right" polynomial-size relaxation
hierarchies = systematic ways to generate relaxations
best-known: Sherali-Adams (LP), sum-of-squares/Lasserre (SDP); best possible?
goal: compare hierarchies and general LP relaxations
often: more complicated/larger relaxations $\rightarrow$ better approximation $\mathrm{P} \neq \mathrm{NP}$ predicts limits of this approach; can we confirm them?
goal: understand computational power of relaxations

## Rule out that poly-size LP relaxations show $\mathrm{P}=\mathrm{NP}$ ?

great variety (sometimes different ways to apply same hierarchy) current champions: Sherali-Adams (LP) \& sum-of-squares / Lasserre (SDP)
connections to proof complexity (Nullstellensatz and Positivstellensatz refutations)

## lower bounds

[Mathieu-Fernandez de la Vega
Charikar-Makarychev-Makarychev]
Sherali-Adams requires size $2^{n^{\Omega(1)}}$ to beat ratio $1 / 2$ for Max Cut
[Grigoriev, Schoenebeck]
sum-of-squares requires size $2^{\Omega(n)}$ to beat ratio ${ }^{7} / 8$ for Max 3-Sat

## upper bounds

implicit: many algorithms (e.g., Max Cut and Sparsest Cut)
[Goemans-Williamson, Arora-Rao-Vazirani] explicit: Coloring, Unique Games, Max Bisection
[Chlamtac, Arora-Barak-S., Barak-Raghavendra-S., Raghavendra-Tan]

## lower bounds for general LP formulations (extended formulations)

characterization; symmetric formulations for TSP \& matching [Yannakakis'88]
general, exact formulations for TSP \& Clique
[Fiorini-Massar-Pokutta
-Tiwary-de Wolf'12]
[Braun-Fiorini-Pokutta-S.'12
Braverman-Moitra’13]
general, exact formulation for maximum matching
[Rothvoß'13]

general polynomial-size LP relaxations are no more powerful than polynomial-size Sherali-Adams relaxations
also holds for almost
quasi-polynomial size
concrete consequences
unconditional lower bound in
confirm non-trivial prediction of $\mathrm{P} \neq \mathrm{NP}$ : powerful computational model poly-size LP relaxations cannot achieve 0.99 approximation for Max Cut, Max 3-Sat, or Max 2-Sat (NP-hard approximations)
approximability and UGC:
poly-size LP relaxation cannot refute Unique Games Conjecture (cannot improve current Max CSP approximations)
separation of LP relaxation and SDP relaxation:
poly-size LP relaxations are strictly weaker than SDP relaxations for Max Cut and Max 2Sat
general polynomial-size LP relaxations are no more powerful than polynomial-size Sherali-Adams relaxations
for concreteness: focus on Max Cut
notation: $\operatorname{cut}_{G}(x)=$ fraction of edges that bipartition $x$ cuts in $G$ Max Cut $_{n}=$ Max Cut instances $/$ graphs on $n$ vertices
compare: general $n^{(1-\varepsilon) d}$-size LP relaxation for Max Cut ${ }_{n}$ vs. $n^{d}$-size Sherali-Adams relaxations for Max Cut ${ }_{n}$

## general LP relaxation for Max $\mathrm{Cut}_{\mathrm{n}}$

## linearization

$G \mapsto L_{G}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ linear
such that $\quad L_{G}\left(\mu_{\mathrm{x}}\right)=\operatorname{cut}_{G}(x)$
$x \mapsto \mu_{x} \in \mathbb{R}^{m}$
polytope of size $R$
$P_{n} \subseteq \mathbb{R}^{m}$, at most $R$ facets, $\left\{\mu_{x}\right\}_{x \in\{ \pm 1\}^{n}} \subseteq P_{n}$

$$
L_{G}\left(\mu_{\mathrm{x}}\right)=\operatorname{cut}_{G}(x)
$$



$$
L_{G}(\mu)=\frac{1}{|E|} \sum_{i j \in E} \mu_{i j}
$$

$$
\left(\mu_{x}\right)_{i j}= \begin{cases}1, & \text { if } x_{i} \neq x_{j} \\ 0, & \text { otherwise }\end{cases}
$$

same polytope for all instances of size $n$ makes sense because solution space for Max Cut depends only on $n$

## computing with size- $R$ LP relaxation $\mathcal{L}$

## output


poly $(R)$-time computation

$$
\begin{aligned}
& \text { always upper-bounds Opt } G \\
& \text { how far in the worst-case? }
\end{aligned}
$$

general computational model—how to prove lower bounds?

## geometric characterization (à la Yannakakis'88)

$$
\begin{aligned}
& \text { every size- } \boldsymbol{R} \text { LP relaxation } \mathcal{L} \text { for Max Cut } \boldsymbol{n} \\
& \text { corresponds to } \\
& \text { nonnegative functions } \boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{\boldsymbol{R}}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}_{\geq 0} \text { such that } \\
& \qquad \mathcal{L}(G) \leq c \quad \text { iff } \quad c-\operatorname{cut}_{G}=\sum_{r} \lambda_{r} q_{r} \text { and } \lambda_{1}, \ldots, \lambda_{R} \geq 0
\end{aligned}
$$

for all $G \in \operatorname{Max~Cut}_{n}$
certifies cut $_{G} \leq c$ over $\{ \pm 1\}^{n}$
canonical linear program
of size $R$
example
$2^{n}$ standard basis functions correspond to exact $2^{n}$-size LP relaxation for Max $\mathrm{Cut}_{n}$

## geometric characterization (à la Yannakakis'88)

every size- $\boldsymbol{R}$ LP relaxation $\mathcal{L}$ for Max Cut $_{\boldsymbol{n}}$ corresponds to
nonnegative functions $q_{1}, \ldots, q_{R}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\mathcal{L}(G) \leq c \quad \text { iff } \quad c-\operatorname{cut}_{G}=\sum_{r} \lambda_{r} q_{r} \text { and } \lambda_{1}, \ldots, \lambda_{R} \geq 0
$$

for all $G \in \operatorname{Max~Cut}_{n}$
intuition: all inequalities for functions on $\{ \pm 1\}^{\text {n }}$ with local proofs
connection to Sherali-Adams hierarchy
$n^{d}$-size Sherali-Adams relaxation for Max Cut $_{n}$
exactly corresponds to

depends on $\leq d$ coordinates
nonnegative combinations of nonnegative $d$-juntas on $\{ \pm 1\}^{n}$

## geometric characterization (à la Yannakakis'88)

$$
\begin{aligned}
& \text { every size- } \boldsymbol{R} \text { LP relaxation } \mathcal{L} \text { for Max } \text { Cut }_{\boldsymbol{n}} \\
& \text { corresponds to } \\
& \text { nonnegative functions } \boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{\boldsymbol{R}}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}_{\geq 0} \text { such that } \\
& \qquad \mathcal{L}(G) \leq c \quad \text { iff } \quad c-\operatorname{cut}_{G}=\sum_{r} \lambda_{r} q_{r} \text { and } \lambda_{1}, \ldots, \lambda_{R} \geq 0 \\
& \text { for all } G \in \operatorname{Max~Cut~}_{n}
\end{aligned}
$$


to rule out ( $c, s$ )-approx. by size- $R$ LP relaxation, show: for every size- $R$ nonnegative cone, exists $G \in \operatorname{Max}$ Cut $_{n}$ with $\operatorname{Opt}(G) \leq s$ but $c-$ cut $_{G}$ outside of cone
lower-bound for Sherali-Adams relaxations of size $n^{d}$

lower-bounds for size- $n^{d}$ nonneg. cones with restricted functions
$d$-juntas $\longrightarrow n^{\varepsilon}$-juntas $\longrightarrow$ non-spiky $\longrightarrow$ general

lower-bound for general LP relaxations of size $n^{(1-\varepsilon) d}$

## from d-juntas to $\boldsymbol{n}^{\varepsilon}$-juntas

let $q_{1}, \ldots, q_{R}$ be nonneg. $n^{\varepsilon}$-juntas on $\{ \pm 1\}^{n}$ for $R=n^{(1-10 \varepsilon) d}$
want: $\quad$ subset $S \subseteq[n]$ of size $m \approx n^{\varepsilon}$ where functions behave like $d$-juntas
let $J_{1}, \ldots, J_{R}$ be junta-coordinates of $q_{1}, \ldots, q_{R}$

claim: there exists subset $S \subseteq[n]$ of size $m=n^{\varepsilon}$ such that $\left|J_{r} \cap S\right| \leq d$ for all $r \in[R]$
proof: choose $S$ at random

$$
\mathbb{P}\left\{\left|S \cap J_{r}\right|>d\right\} \leq\left(\frac{|S|}{n} \cdot\left|J_{r}\right|\right)^{d}=n^{-(1-2 \varepsilon) d}
$$

$\rightarrow$ can afford union bound over $R$ junta sets $J_{1}, \ldots, J_{R}$
lower-bound for Sherali-Adams relaxations of size $n^{d}$

lower-bounds for size- $n^{d}$ nonneg. cones with restricted functions
$d$-juntas $\longrightarrow n^{\varepsilon}$-juntas $\longrightarrow$ non-spiky $\longrightarrow$ general

lower-bound for general LP relaxations of size $n^{(1-\varepsilon) d}$

## from $n^{\varepsilon}$-juntas to non-spiky functions

let $q$ be a nonnegative function on $\{ \pm 1\}^{n}$ with $\mathbb{E} q=1$ non-spiky: $\max q \leq 2^{t}$
junta structure lemma: small low-degree
can approximate $q$ by nonnegative $n^{\varepsilon}$-junta $q^{\prime}$, Fourier coefficients error $\eta=q-q^{\prime}$ satisfies $\left|\hat{\eta}_{S}\right|^{2} \leq t d / n^{\varepsilon}$ for $|S|<d$
proof:
nonnegative function $q \rightarrow$ probability distribution over $\{ \pm 1\}^{n}$,
$+1 /-1$ rand. variables $X_{1}, \ldots, X_{n}$ (dependent)
non-spiky
$\rightarrow$ entropy $H\left(X_{1}, \ldots, X_{n}\right) \geq n-t$
want: $J \subseteq[n]$ of size $n^{\varepsilon}$ such that $\forall S \subseteq[n] \backslash J .\left\{X_{S} \mid X_{J}\right\} \approx$ uniform, that is,

$$
(|S|<d) \quad|\mathrm{S}|-H\left(X_{S} \mid X_{J}\right) \leq \beta \text { for } \beta=\frac{t d}{n^{\varepsilon}}
$$

construction: start with $J=\emptyset$; as long as bad $S$ exists, update $J \leftarrow J \cup S$
analysis: total entropy defect $\leq t \rightarrow$ stop after $\frac{t}{\beta}$ iterations $\rightarrow|J| \leq \frac{d t}{\beta}=n^{\varepsilon}$
lower-bound for Sherali-Adams relaxations of size $n^{d}$

lower-bounds for size- $n^{d}$ nonneg. cones with restricted functions
$d$-juntas $\longrightarrow n^{\varepsilon}$-juntas $\longrightarrow$ non-spiky $\longrightarrow$ general

lower-bound for general LP relaxations of size $n^{(1-\varepsilon) d}$

## from non-spiky functions to general functions

let $q_{1}, \ldots, q_{R}$ be general nonneg. functions on $\{ \pm 1\}^{n}$ for $R=n^{d}$
non-spiky
claim: exists nonneg. $q_{1}^{\prime}, \ldots, q_{R}^{\prime}$ such that $q_{i}^{\prime} \leq n^{2 d}, \mathbb{E} q_{i}^{\prime}=1$ and

$$
\operatorname{cone}\left(q_{1}, \ldots, q_{R}\right) \approx \operatorname{cone}\left(q_{1}^{\prime}, \ldots, q_{R}^{\prime}\right)
$$

proof: truncate functions carefully
intuition: $c-$ cut $_{G}$ is non-spiky. Thus, spiky $q_{i}$ don't help!
lower-bound for Sherali-Adams relaxations of size $n^{d}$

$$
\downarrow
$$

lower-bounds for nonneg. cones of size $n^{d}$ with restricted functions

$$
d \text {-juntas } \longrightarrow n^{\varepsilon} \text {-juntas } \longrightarrow \text { non-spiky } \longrightarrow \text { general }
$$

$$
\downarrow
$$

lower-bound for general LP relaxations of size $n^{(1-\varepsilon) d}$

## open problems

1. LP size $2^{n^{\varepsilon}} \quad$ 2. beyond CSPs (e.g., TSP) 3. SDPs
lower-bound for Sherali-Adams relaxations of size $n^{d}$

$$
\downarrow
$$

lower-bounds for nonneg. cones of size $n^{d}$ with restricted functions
$d$-juntas $\longrightarrow n^{\varepsilon}$-juntas $\longrightarrow$ non-spiky $\longrightarrow$ general

I

Recent: for symmetric relaxations [Lee-Raghavendra-S.-Tan'13]

## Thank you!

1. LP size $2^{n^{\varepsilon}} \quad$ 2. beyond CSPs (e.g., TSP) 3. SDPs
