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best-known (approximation) algorithms for 
many combinatorial optimization problems:

Max Cut, Traveling Salesman,
Sparsest Cut, Steiner Tree, …

common core = linear / semidefinite programming (LP/SDP)

LP / SDP relaxations

particular kind of reduction from hard problem to LP/SDP
running time: polynomial in size of relaxation

what guarantees are possible 
for approximation and running time?



example: basic LP relaxation for Max Cut

maximize
1

𝐸
 

𝑖𝑗∈𝐸

𝜇𝑖𝑗

subject to

𝜇𝑖𝑗 ∈ 0,1

𝜇𝑖𝑗 − 𝜇𝑖𝑘 − 𝜇𝑘𝑗 ≤ 0

𝜇𝑖𝑗 + 𝜇𝑖𝑘 + 𝜇𝑘𝑗 ≤ 2

intended solution

𝜇𝑥 𝑖𝑗 =  
1, if 𝑥𝑖 ≠ 𝑥𝑗 ,

0, otherwise.

𝑂 𝑛3 inequalities

depend only on instances size
(but not instance itself)

approximation guarantee

optimal value of instance
vs.

optimal value of LP relaxation

𝜇𝑖𝑗 ∈ 0,1

integer linear program

Max Cut: Given a graph, find bipartition 𝑥 ∈ ±1 𝑛

that cuts as many edges as possible

(relax integrality constraint)

𝑥𝑖 = 1 𝑥𝑖 = −1



challenges

many possible relaxations for same problem
small difference syntactically  big difference for guarantees
goal: identify “right” polynomial-size relaxation

hierarchies = systematic ways to generate relaxations
best-known: Sherali-Adams (LP), sum-of-squares/Lasserre (SDP); best possible?

goal: compare hierarchies and general LP relaxations

often: more complicated/larger relaxations  better approximation
P ≠ NP predicts limits of this approach; can we confirm them?
goal: understand computational power of relaxations

Rule out that poly-size LP relaxations show 𝐏 = 𝐍𝐏?



hierarchies

great variety (sometimes different ways to apply same hierarchy)

current champions: Sherali–Adams (LP) & sum-of-squares / Lasserre (SDP)

[Lovász–Schrijver,  Sherali–Adams, Parrilo / Lasserre]

connections to proof complexity (Nullstellensatz and Positivstellensatz refutations)

lower bounds

Sherali-Adams requires size 2𝑛
Ω 1

to beat ratio ½ for Max Cut

sum-of-squares requires size 2Ω 𝑛 to beat ratio  7 8 for Max 3-Sat

[Mathieu–Fernandez de la Vega 
Charikar–Makarychev–Makarychev]

[Grigoriev, Schoenebeck]

upper bounds

implicit: many algorithms (e.g., Max Cut and Sparsest Cut)

explicit: Coloring, Unique Games, Max Bisection
[Chlamtac, Arora-Barak-S., 

Barak-Raghavendra-S., 
Raghavendra-Tan]

[Goemans-Williamson,
Arora-Rao-Vazirani]



lower bounds for general LP formulations (extended formulations)

characterization; symmetric formulations for TSP & matching [Yannakakis’88]

general, exact formulations for TSP & Clique
[Fiorini–Massar–Pokutta

–Tiwary–de Wolf’12]

approximate formulations for Clique [Braun–Fiorini–Pokutta–S.’12
Braverman–Moitra’13]

general, exact formulation for maximum matching [Rothvoß’13]

geometric idea: complicated polytopes can be 
projections of simple polytopes



universality result for LP relaxations of Max CSPs

general polynomial-size LP relaxations are no more powerful 
than polynomial-size Sherali-Adams relaxations

also holds for almost 
quasi-polynomial size

confirm non-trivial prediction of P≠NP:
poly-size LP relaxations cannot achieve 0.99 approximation
for Max Cut, Max 3-Sat, or Max 2-Sat (NP-hard approximations)

approximability and UGC:
poly-size LP relaxation cannot refute Unique Games Conjecture 

(cannot improve current Max CSP approximations)

concrete consequences

[this talk]

separation of LP relaxation and SDP relaxation:
poly-size LP relaxations are strictly weaker than SDP relaxations

for Max Cut and Max 2Sat

unconditional lower bound in 
powerful computational model



universality result for LP relaxations of Max CSPs

general polynomial-size LP relaxations are no more powerful 
than polynomial-size Sherali-Adams relaxations

also holds for almost 
quasi-polynomial size

[this talk]

for concreteness: focus on Max Cut

compare: general 𝑛 1−𝜀 𝑑-size LP relaxation for Max Cut𝑛
vs. 𝑛𝑑-size Sherali-Adams relaxations for Max Cut𝑛

notation: cut𝐺 𝑥 = fraction of edges that bipartition 𝑥 cuts in 𝐺
Max Cut𝑛 = Max Cut instances / graphs on 𝑛 vertices



general LP relaxation for 𝐌𝐚𝐱 𝐂𝐮𝐭𝐧

linearization

𝐺 ↦ 𝐿𝐺: ℝ
𝑚 → ℝ linear

such that 𝐿𝐺 𝜇x = cut𝐺 𝑥
𝑥 ↦ 𝜇𝑥 ∈ ℝ𝑚

polytope of size R

𝑃𝑛 ⊆ ℝ𝑚, at most 𝑅 facets, 
𝜇𝑥 𝑥∈ ±1 𝑛 ⊆ 𝑃𝑛

example linearization

𝐿𝐺 𝜇 =
1

𝐸
 𝑖𝑗∈𝐸 𝜇𝑖𝑗

𝜇𝑥 𝑖𝑗 =  
1, if 𝑥𝑖 ≠ 𝑥𝑗 ,

0, otherwise.

𝑃𝑛

ℝ𝑚

same polytope for all instances of size 𝑛
makes sense because solution space 

for Max Cut depends only on 𝑛

𝜇𝑥 .



computing with size-𝑹 LP relaxation 𝓛

input

graph G 
on n vertices

computation

maximize 𝐿𝐺 𝜇
subject to 𝜇 ∈ 𝑃𝑛

output

value ℒ 𝐺
= max

𝜇∈𝑃
𝐿𝐺 𝜇

approximation ratio 𝛼 𝑐, 𝑠 -approximation

Opt 𝐺 ≤ 𝑠 ⇒ ℒ 𝐺 ≤ 𝑐

for all 𝐺 ∈ Max Cut𝑛

ℒ 𝐺 ≤ 𝛼 ⋅ Opt 𝐺

for all 𝐺 ∈ Max Cut𝑛

always upper-bounds Opt G
how far in the worst-case?

general computational model—how to prove lower bounds? 

poly(𝑅)-time computation



geometric characterization (à la Yannakakis’88)

every size-R LP relaxation 𝓛 for Max Cu𝐭𝒏
corresponds to 

nonnegative functions 𝒒𝟏, … , 𝒒𝑹: ±1 𝑛 → ℝ≥0 such that

ℒ 𝐺 ≤ 𝑐 iff 𝑐 − cut𝐺 =  𝑟 𝜆𝑟𝑞𝑟 and 𝜆1, … , 𝜆𝑅 ≥ 0

for all 𝐺 ∈ Max Cut𝑛 certifies cut𝐺 ≤ 𝑐 over ±1 𝑛

canonical linear program 
of size 𝑅

example

2𝑛 standard basis functions correspond to 
exact 2𝑛-size LP relaxation for Max Cut𝑛



geometric characterization (à la Yannakakis’88)

every size-R LP relaxation 𝓛 for Max Cu𝐭𝒏
corresponds to 

nonnegative functions 𝒒𝟏, … , 𝒒𝑹: ±1 𝑛 → ℝ≥0 such that

ℒ 𝐺 ≤ 𝑐 iff 𝑐 − cut𝐺 =  𝑟 𝜆𝑟𝑞𝑟 and 𝜆1, … , 𝜆𝑅 ≥ 0

for all 𝐺 ∈ Max Cut𝑛

connection to Sherali-Adams hierarchy

𝑛𝑑-size Sherali-Adams relaxation for Max Cut𝑛

exactly corresponds to 

nonnegative combinations of nonnegative 𝑑-juntas on ±1 𝑛

𝑑-junta = function on ±1 𝑛

depends on ≤ d coordinates

intuition: all inequalities for functions on ±1 n

with local proofs

generated by
𝑛𝑑 “base juntas”



geometric characterization (à la Yannakakis’88)

every size-R LP relaxation 𝓛 for Max Cu𝐭𝒏
corresponds to 

nonnegative functions 𝒒𝟏, … , 𝒒𝑹: ±1 𝑛 → ℝ≥0 such that

ℒ 𝐺 ≤ 𝑐 iff 𝑐 − cut𝐺 =  𝑟 𝜆𝑟𝑞𝑟 and 𝜆1, … , 𝜆𝑅 ≥ 0

for all 𝐺 ∈ Max Cut𝑛

to rule out (c,s)-approx. by size-R LP relaxation, show:

for every size-𝑅 nonnegative cone, 
exists 𝐺 ∈ Max Cut𝑛 with Opt 𝐺 ≤ 𝑠
but 𝑐 − cut𝐺 outside of cone

𝑐 − cut𝐺
cone 𝑞1, … , 𝑞𝑅

=  𝑟 𝜆𝑟𝑞𝑟 𝜆𝑟 ≥ 0



lower-bound for Sherali–Adams relaxations of size 𝑛𝑑

lower-bound for general LP relaxations of size 𝑛 1−𝜀 𝑑

𝑑-juntas 𝑛𝜀-juntas non-spiky general 

lower-bounds for size-𝑛𝑑 nonneg. cones with restricted functions



from 𝒅-juntas to 𝒏𝜺-juntas 

let 𝑞1, … , 𝑞𝑅 be nonneg. 𝑛𝜀-juntas on ±1 𝑛 for 𝑅 = 𝑛 1−10𝜀 𝑑

want: subset 𝑆 ⊆ 𝑛 of size 𝑚 ≈ 𝑛𝜀

where functions behave like 𝑑-juntas

claim: there exists subset 𝑆 ⊆ [𝑛] of size 𝑚 = 𝑛𝜀 such that 
𝐽𝑟 ∩ 𝑆 ≤ 𝑑 for all 𝑟 ∈ 𝑅

proof: choose 𝑆 at random

ℙ 𝑆 ∩ 𝐽𝑟 > 𝑑 ≤
𝑆

𝑛
⋅ 𝐽𝑟

𝑑
= 𝑛− 1−2𝜀 𝑑

[n]

𝐽1𝐽2

𝐽3 𝐽4

𝐽𝑛𝑑/2

S

let 𝐽1, … , 𝐽𝑅 be junta-coordinates of 𝑞1, … , 𝑞𝑅

 can afford union bound over 𝑅 junta sets 𝐽1, … , 𝐽𝑅



lower-bound for Sherali–Adams relaxations of size 𝑛𝑑

lower-bound for general LP relaxations of size 𝑛 1−𝜀 𝑑

𝑑-juntas 𝑛𝜀-juntas non-spiky general 

lower-bounds for size-𝑛𝑑 nonneg. cones with restricted functions



from 𝒏𝜺-juntas to non-spiky functions

let 𝑞 be a nonnegative function on ±1 𝑛with 𝔼𝑞 = 1
non-spiky: max 𝑞 ≤ 2𝑡

junta structure lemma:
can approximate 𝑞 by nonnegative 𝑛𝜀-junta 𝑞′, 
error 𝜂 = 𝑞 − 𝑞′ satisfies  𝜂𝑆

2 ≤ 𝑡𝑑/𝑛𝜀 for 𝑆 < 𝑑

proof:
nonnegative function 𝑞  probability distribution over ±1 𝑛,

+1/-1 rand. variables 𝑋1, … , 𝑋𝑛 (dependent)

small low-degree 
Fourier coefficients

non-spiky  entropy 𝐻 𝑋1, … , 𝑋𝑛 ≥ 𝑛 − 𝑡

want: 𝐽 ⊆ [𝑛] of size 𝑛𝜀 such that ∀𝑆 ⊆ 𝑛 ∖ 𝐽. 𝑋𝑆 ∣ 𝑋𝐽 ≈ uniform, that is,

S − 𝐻 𝑋𝑆 𝑋𝐽 ≤ 𝛽 for 𝛽 =
𝑡𝑑

𝑛𝜀

construction: start with 𝐽 = ∅; as long as bad 𝑆 exists, update 𝐽 ← 𝐽 ∪ 𝑆

analysis: total entropy defect ≤ 𝑡 stop after 
𝑡

𝛽
iterations  𝐽 ≤

𝑑𝑡

𝛽
= 𝑛𝜀

( 𝑆 < 𝑑)



lower-bound for Sherali–Adams relaxations of size 𝑛𝑑

lower-bound for general LP relaxations of size 𝑛 1−𝜀 𝑑

𝑑-juntas 𝑛𝜀-juntas non-spiky general 

lower-bounds for size-𝑛𝑑 nonneg. cones with restricted functions



from non-spiky functions to general functions

let 𝑞1, … , 𝑞𝑅 be general nonneg. functions on ±1 𝑛 for 𝑅 = 𝑛𝑑

claim: exists nonneg. 𝑞1
′ , … , 𝑞𝑅

′ such that 𝑞𝑖
′ ≤ 𝑛2𝑑 , 𝔼𝑞𝑖

′ = 1 and
cone 𝑞1, … , 𝑞𝑅 ≈ cone(𝑞1

′ , … , 𝑞𝑅
′ )

proof: truncate functions carefully

intuition: 𝑐 − cut𝐺 is non-spiky. Thus, spiky 𝑞𝑖 don’t help!

non-spiky



lower-bound for general LP relaxations of size 𝑛 1−𝜀 𝑑

lower-bound for Sherali–Adams relaxations of size 𝑛𝑑

𝑑-juntas 𝑛𝜀-juntas non-spiky general 

lower-bounds for nonneg. cones of size 𝑛𝑑 with restricted functions

open problems

1. LP size 𝟐𝒏𝜺
2. beyond CSPs (e.g., TSP) 3. SDPs



Lower-bound for general LP relaxations of size 𝑛 1−𝜀 𝑑

𝑑-juntas 𝑛𝜀-juntas non-spiky general 

open problems

1. LP size 𝟐𝒏𝜺
2. beyond CSPs (e.g., TSP) 3. SDPs

Thank you!

Recent: for symmetric relaxations   [Lee-Raghavendra-S.-Tan’13]

lower-bound for Sherali–Adams relaxations of size 𝑛𝑑

lower-bounds for nonneg. cones of size 𝑛𝑑 with restricted functions


