Hypercontractivity, Sum-of-Squares Proofs, and their Applications

Boaz Barak
Fernando G.S.L. Brandão
Aram W. Harrow
Jonathan Kelner
David Steurer
Yuan Zhou
MSR New England
Universidade Federal de Minas Gerais
University of Washington
MIT
MSR New England
CMU

Motivation

Unique Games Conjecture (UGC)

[Khot'02]

For every $\varepsilon>0$, the following is NP-hard:
Given: system of equations $x_{i}-x_{j}=c \bmod k \quad($ say $\mathrm{k}=\log n)$
Distinguish:
YES: at least $1-\varepsilon$ of equations satisfiable
NO:
at most ε of equations satisfiable

Motivation

Unique Games Conjecture (UGC)
 Implications of UGC

For large class of problems, BASIC SDP achieves optimal approximation
Examples: Max Cut, Vertex Cover, any Max Csp
[Khot-Regev'03, Khot-Kindler-Mossel-O'Donnell'04,
Mossel-O'Donnell-Oleszkiewicz'05, Raghavendra'08]

Is the conjecture true?

1) Evidence: \exists polynomial-time algorithm refuting UGC Show: natural algorithm solves all known UG instances (including hard instances for other algorithms)
2) Evidence: \nexists polynomial-time algorithm refuting UGC Show: natural generalization of UG requires qpoly(n)-time (but still admits "same" subexponential algorithm as UG)

Semidefinite Programming (SDP) Hierarchies

Known bounds (for certain SDP hierarchies)

Semidefinite Programming (SDP) Hierarchies

Result in this work: aka: Lasserre hierarchy

Sum-of-Squares (SoS) hierarchy [Parrilo'00, Lasserre'01]
All known UG instances in level-8 of this hierarchy
qualitative difference: basis independence of SoS hierarchy

Small-Set Expansion (SSE) \& Operator Norms

(closely related to UG [Raghavendra-S.09])

Result:

$P_{\lambda}=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda$

Corollary: SSE-hard to certify hypercontractivity (even for projectors)

Complexity of Hypercontractivity

Given: \quad projector P into subspace of functions $f: V \rightarrow \mathbb{R}$ with $|V|=n$
Promise: $\|P\|_{2 \rightarrow 4}=O(1) \quad$ (hypercontractive)
Certify: $\|P\|_{2 \rightarrow 4}=O(1) \quad$ (for different constant $O(1)$)
Results:
subexponential time $\exp \left(n^{1 / 2}\right)$ suffices
quasipolynomial time necessary (*)
(can recover best algorithm for SSE by choice of norm)
(builds on hardness of quantum separability) [Harrow-Montanaro'10]

PROOF IDEAS

Result:

Level-8 SoS relaxation refutes UG instances based on long-code and short-code graphs

How to prove it? (rounding algorithm?)
Interpret dual as proof system
Lift soundness proofs to this proof system

Sum-of-Squares Proof System (informal)

Axioms

$$
\begin{array}{cll}
P_{1}(z) \geq 0 & \text { derive } \\
\vdots \\
P_{m}(z) \geq 0
\end{array} \quad \square \quad Q(z) \leq c \quad \begin{aligned}
& \left(P_{1}, \ldots, P_{m}, Q\right. \\
& \text { bounded-degree } \\
& \text { polynomials })
\end{aligned}
$$

Rules
Polynomial operations
"Positivstellensatz" [Stengel'74]
$R(z)^{2} \geq 0$ for any polynomial R
Intermediate polynomials have bounded degree
(c.f. bounded-width resolution,
but basis independent)

Example

In SoS proof system, $\left\{z^{2} \leq z\right\} \Leftrightarrow\{0 \leq z \leq 1\}$

Axiom: $z^{2} \leq z \quad$ Derive: $z \leq 1$

$$
\begin{aligned}
1-z & =z-z^{2}+(1-z)^{2} \\
& \geq z-z^{2} \quad \text { (non-negativity of squares) } \\
& \geq 0 \quad \text { (axiom) }
\end{aligned}
$$

Components of soundness proof (for known UG instances)

Non-serious issues:
Cauchy-Schwarz / Hölder
Influence decoding
Independent rounding
Serious issues:
Hypercontractivity
can use variant of inductive proof, works in Fourier basis
typically uses bump functions, but for UG, polynomials suffice

Concrete component:

Level-4 SoS relaxation certifies small-set expansion of long-code graph

long-code graph

$$
\mathrm{G}=\operatorname{Cay}\left(\mathbb{F}_{2}^{m}, T\right) \text { where } T=\{\text { points with Hamming weight } \varepsilon m\}
$$

Small-Set Expansion (SSE)

Given: \quad regular graph G with vertex set V, parameter $\delta>0$
Find: \quad function $f \in \mathbb{R}^{V}$

$$
\begin{gathered}
\max \langle f, G f\rangle \\
f^{2}=f \\
\mathbf{E} f \leq \delta
\end{gathered}
$$

Hypercontractivity implies SSE

$P=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda$
Suppose $\|P\|_{2 \rightarrow 4} \ll 1 / \delta^{1 / 4}$ and f is an optimal SSE solution.
Since $\|f\|_{4} /\|f\|_{2} \geq \delta^{-1 / 4} \gg\|P\|_{2 \rightarrow 4}$, function f is far from image(P)
Hence, $\langle f, G f\rangle \leq(\lambda+o(1))\|f\|_{2}^{2} \approx \lambda \cdot \delta$
$\mathrm{G}=$ long-code graph $\operatorname{Cay}\left(\mathbb{F}_{2}^{m}, T\right)$ where $T=$ \{points with Hamming weight $\left.\varepsilon m\right\}$
$P=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda=0.1$
SoS proof of hypercontractivity:

$$
2^{O(1 / \varepsilon)}\|f\|_{2}^{4}-\|P f\|_{4}^{4} \text { is a sum of squares }
$$

$\mathrm{G}=$ long-code graph $\operatorname{Cay}\left(\mathbb{F}_{2}^{m}, T\right)$ where $T=$ \{points with Hamming weight $\left.\varepsilon m\right\}$
$P=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda=0.1$
SoS proof of hypercontractivity:

$$
\|P f\|_{4}^{4} \preccurlyeq 2^{O(1 / \varepsilon)}\|f\|_{2}^{4}
$$

For long-code graph, P projects into Fourier polynomials with degree $O(1 / \varepsilon)$
Stronger ind. Hyp.:

$$
\mathbf{E} f^{2} g^{2} \preccurlyeq 3^{d+e} \mathbf{E} f^{2} \cdot \mathbf{E} g^{2} \quad \begin{aligned}
& \text { where } \\
& \text { and }
\end{aligned} f \text { is a generic degree- } d \text { Fourier polynomial }
$$

$\mathrm{G}=$ long-code graph $\operatorname{Cay}\left(\mathbb{F}_{2}^{m}, T\right)$ where $T=$ \{points with Hamming weight $\left.\varepsilon m\right\}$
$P=$ projector into span of eigenfunctions of G with eigenvalue $\geq \lambda=0.1$
SoS proof of hypercontractivity:

$$
\|P f\|_{4}^{4} \preccurlyeq 2^{O(1 / \varepsilon)}\|f\|_{2}^{4}
$$

For long-code graph, P projects into Fourier polynomials with degree $O(1 / \varepsilon)$
Stronger ind. Hyp.:

$$
\mathbf{E} f^{2} g^{2} \preccurlyeq 3^{d+e} \mathbf{E} f^{2} \cdot \mathbf{E} g^{2} \quad \begin{aligned}
& \text { where } f \text { is a generic degree- } d \text { Fourier polynomial } \\
& \text { and } g \text { is a generic degree-e Fourier polynomial }
\end{aligned}
$$

Write $f=f_{0}+x_{1} \cdot f_{1}$ and $g=g_{0}+x_{1} \cdot g_{1}$ (degrees of f_{1}, g_{1} smaller than d, e)

$$
\begin{array}{rlrl}
\mathbf{E} f^{2} g^{2} & =\mathbf{E} f_{0}^{2} g_{0}^{2}+\mathbf{E} f_{1}^{2} g_{0}^{2}+\mathbf{E} f_{0}^{2} g_{1}^{2}+\mathbf{E} f_{1}^{2} g_{1}^{2}+4 \mathbf{E} f_{0} f_{1} g_{0} g_{1} \\
& \preccurlyeq \quad \ldots \\
& \leqslant 3^{d+e}\left(\mathbf{E} f_{0}^{2}+\mathbf{E} f_{1}^{2}\right) \cdot\left(\mathbf{E} g_{0}^{2} g_{1}^{2}+\mathbf{E} g_{1}^{2}\right) & \text { (ind. hyp.) }
\end{array}
$$

Let P be projector into d dimensional subspace of functions $f: V \rightarrow \mathbb{R}$
In time $\exp O\left(n^{2 / q}\right)$, can distinguish $\|P\|_{2 \rightarrow q}=O(1)$ and $\|P\|_{2 \rightarrow q} \gg 1$

Algorithm

Enumerate subspace if dimension $<O\left(n^{2 / q}\right)$
Otherwise, project standard basis vectors into the subspace and pick best
Analysis
$\operatorname{Tr} P=d$

$$
\text { worst case: }\left\|P \mathbb{1}_{i}\right\|_{\infty}=\frac{d}{n} \text { and }\left\|P \mathbb{1}_{i}\right\|_{2}=\frac{\sqrt{d}}{n} \text { for all } i \in V
$$

$\operatorname{Tr} P=\sum_{i}\left(P \mathbb{1}_{i}\right)_{i} \leq \sum_{i}\left\|P \mathbb{1}_{i}\right\|_{\infty}$
$\operatorname{Tr} P=n \cdot \sum_{i}\left\|P \mathbb{1}_{i}\right\|_{2}^{2}$
Finally, use $\left\|P \mathbb{1}_{i}\right\|_{q} \geq\left\|P \mathbb{1}_{i}\right\|_{\infty} / n^{q}$

Summary

Level-8 of SoS hierarchy refutes all known UG instances show soundness via SoS proof

New connections between hypercontractivity \& small-set expansion and between ... \& quantum separability

Open Problems

New UG instances from 2-to-4 norm hardness?
Stronger hardness for 2-to-4 norms?
Show that level-8 of SoS hierarchy solves all UG instances!

