SUM-OF-SQUARES method and approximation algorithms I

David Steurer Cornell

Cargese Workshop, 2014

meta-task

encoded as low-degree polynomial in $\mathbb{R}[x]$

example:
$$f(x) = \sum_{i,j \in [n]} w_{ij} \cdot (x_i - x_j)^2$$

given: functions $f_1, \dots, f_m: \{\pm 1\}^n \to \mathbb{R}$ *find:* solution $x \in \{\pm 1\}^n$ to $\{f_1 = 0, \dots, f_m = 0\}$

Laplacian
$$L_G = \frac{1}{|E(G)|} \sum_{ij \in E(G)} \frac{1}{4} (x_i - x_j)^2$$

$$x_{(G)}\frac{1}{4}\left(x_{i}-x_{j}\right)^{2}$$

examples: combinatorial optimization problem on graph G

MAX CUT: $\{L_G = 1 - \varepsilon\}$ over $\{\pm 1\}^n$

where $1 - \varepsilon$ is guess for optimum value

MAX BISECTION:
$$\{L_G = 1 - \varepsilon, \sum_i x_i = 0\}$$
 over $\{\pm 1\}^n$

goal: develop SDP-based algorithms with provable guarantees in terms of complexity and approximation

("on the edge intractability" \rightarrow need strongest possible relaxations)

meta-task

given: functions $f_1, \dots, f_m: \{\pm 1\}^n \to \mathbb{R}$ *find:* solution $x \in \{\pm 1\}^n$ to $\{f_1 = 0, \dots, f_m = 0\}$

goal: develop SDP-based algorithms with provable guarantees in terms of complexity and approximation

price of convexity: individual solutions \rightarrow distributions over solutions

price of tractability: can only enforce "efficiently checkable knowledge" about solutions

distribution D over $\{\pm 1\}^n$ function $D: \{\pm 1\}^n \rightarrow \mathbb{R}$ \longleftarrow # function values is exponential \rightarrow need careful representation $non-negativity: D(x) \ge 0$ for all $x \in \{\pm 1\}^n$ $normalization: \sum_{x \in \{\pm 1\}} D(x) = 1$ # independent inequalities is exponential \rightarrow not efficiently checkable

distribution D satisfies $\{f_1=0,\ldots,f_m=0\}$ for some $f_i\colon\{\pm 1\}^n\to\mathbb{R}$

 $\mathbb{E}_D f_1^2 + \dots + f_m^2 = 0 \quad (equivalently: \mathbb{P}_D\{\forall i. f_i \neq 0\} = 0)$

convex: D, D' satisfy conditions $\rightarrow (D + D')/2$ satisfies conditions

> *examples* fixed 2-bit parity distribution satisfies $\{x_1x_2 = 1\}$ uniform distribution does not satisfy $\{f = 0\}$ for any $f \neq 0$

deg.-*d* pseudo-distribution *D*

distribution *D* over $\{\pm 1\}^n$

convenient notation: $\widetilde{\mathbb{E}}_D f \coloneqq \sum_x D(x) f(x)$ "**pseudo-expectation** of f under D"

function $D: \{\pm 1\}^n \to \mathbb{R}$

 $\begin{array}{l} non-negativity: D(x) \geq 0 \text{ for all } x \in \{\pm 1\}^n \\ normalization: \sum_{x \in \{\pm 1\}} D(x) = 1 \\ \end{array} \qquad \begin{array}{l} \sum_{x \in \{\pm 1\}^n} D(x) f(x)^2 \geq 0 \text{ for every deg.-} d/2 \text{ polynomial } f \\ \text{every deg.-} d/2 \text{ polynomial } f \\ \text{distribution } D \text{ satisfies } \{f_1 = 0, \dots, f_m = 0\} \text{ for some } f_i \colon \{\pm 1\}^n \to \mathbb{R} \end{array}$

 $\widetilde{\mathbb{E}}_{D} \mathbb{E}_{D} f_{1}^{2} + \dots + f_{m}^{2} = 0 \quad (equivalently: \mathbb{P}_{D} \{\forall i. f_{i} \neq 0\} = 0)$

deg.-2*n* pseudo-distributions are actual distributions (point-indicators $\mathbf{1}_{\{x\}}$ have deg. $n \rightarrow D(x) = \widetilde{\mathbb{E}}_D \mathbf{1}_{\{x\}}^2 \ge 0$) deg.-*d* pseudo-distr. $D: \{\pm 1\}^n \to \mathbb{R}$

notation: $\widetilde{\mathbb{E}}_D f \coloneqq \sum_x D(x) f(x)$, "**pseudo-expectation** of f under D" *non-negativity:* $\widetilde{\mathbb{E}}_D f^2 \ge 0$ for every deg.-d/2 poly. f*normalization:* $\widetilde{\mathbb{E}}_D 1 = 1$

pseudo-distr. *D* satisfies $\{f_1 = 0, ..., f_m = 0\}$ for some $f_i: \{\pm 1\}^n \to \mathbb{R}$ $\widetilde{\mathbb{E}}_D f_1^2 + \cdots + f_m^2 = 0$ (equivalently: $\widetilde{\mathbb{E}}_D f_i \cdot g = 0$ whenever deg $g \le d - \deg f_i$) deg.-*d* pseudo-distr. $D: \{\pm 1\}^n \to \mathbb{R}$ *notation:* $\widetilde{\mathbb{E}}_D f \coloneqq \sum_x D(x) f(x)$, "**pseudo-expectation** of *f* under *D*" *non-negativity:* $\widetilde{\mathbb{E}}_D f^2 \ge 0$ for every deg.-*d*/2 poly. *f normalization:* $\widetilde{\mathbb{E}}_D 1 = 1$

pseudo-distr. *D* satisfies $\{f_1 = 0, ..., f_m = 0\}$ for some $f_i: \{\pm 1\}^n \to \mathbb{R}$ $\widetilde{\mathbb{E}}_D f_1^2 + \cdots + f_m^2 = 0$ (equivalently: $\widetilde{\mathbb{E}}_D f_i \cdot g = 0$ whenever deg $g \le d - \deg f_i$)

claim: can compute such *D* in time $n^{O(d)}$ if it exists (otherwise, certify that no solution to original problem exists) [Shor, Parrilo, Lasserre]

(can assume *D* is deg.-*d* polynomial \rightarrow separation problem $\min_{f} \widetilde{\mathbb{E}}_{D} f^{2}$ is n^{d} -dim. eigenvalue prob. $\rightarrow n^{O(d)}$ -time via grad. descent / ellipsoid method)

deg.-*d* pseudo-distr. $D: \{\pm 1\}^n \to \mathbb{R}$ *notation:* $\widetilde{\mathbb{E}}_D f \coloneqq \sum_x D(x) f(x)$, "**pseudo-expectation** of *f* under *D*" *non-negativity:* $\widetilde{\mathbb{E}}_D f^2 \ge 0$ for every deg.-*d*/2 poly. *f normalization:* $\widetilde{\mathbb{E}}_D 1 = 1$

pseudo-distr. *D* satisfies $\{f_1 = 0, ..., f_m = 0\}$ for some $f_i: \{\pm 1\}^n \to \mathbb{R}$ $\widetilde{\mathbb{E}}_D f_1^2 + \cdots + f_m^2 = 0$ (equivalently: $\widetilde{\mathbb{E}}_D f_i \cdot g = 0$ whenever deg $g \le d - \deg f_i$)

surprising property: $\widetilde{\mathbb{E}}_D f \ge 0$ for many^{*} low-degree polynomials f such that $\{f \ge 0\}$ follows from $\{f_1 = 0, ..., f_m = 0\}$ by "explicit proof"

soon: examples of such properties and how to exploit them

deg.-*d* pseudo-distr. $D: \{\pm 1\}^n \to \mathbb{R}$ *notation:* $\widetilde{\mathbb{E}}_D f \coloneqq \sum_x D(x) f(x)$, "**pseudo-expectation** of f under D" *non-negativity:* $\widetilde{\mathbb{E}}_D f^2 \ge 0$ for every deg.-d/2 poly. fnormalization: $\widetilde{\mathbb{E}}_{D} 1 = 1$

pseudo-distr. *D* satisfies $\{f_1 = 0, \dots, f_m = 0\}$ for some $f_{\cdot} \cdot \{\pm 1\}^n \to \mathbb{R}$ $\widetilde{\mathbb{E}}_D f_1^2 + \dots + f_m^2 = 0$ (equival $n^{o(d)}$ -time algorithms cannot* distinguish between deg.-*d* pseudo-distributions and surprising property: $\widetilde{\mathbb{E}}_D f \ge 0$ for n deg.-d part of actual distr.'s such that $\{f \ge 0\}$ follows from $\{f_1 = 0, ..., f_m = 0\}$ by " \mathscr{I} plicit proof" *soon:* examples of such properties and how to exploit them deg.-*d* part of actual distr. over optimal solutions *efficient algorithm* \longrightarrow approximate solution pseudo-distr. over

(to original problem)

emerging algorithm-design paradigm:

optimal solutions

analyze algorithm pretending that underlying actual distribution exists; verify only afterwards that low-deg. pseudo-distr's satisfy required properties

dual view (sum-of-squares proof system)

either

 \exists deg.-d pseudo-distribution D over $\{\pm 1\}^n$ satisfying $\{f_1=0,\ldots,f_m=0\}$ or

 $\exists g_1, \dots, g_m \text{ and } h_1, \dots, h_k \text{ such that } \sum_i f_i \cdot g_i + \sum_j h_j^2 = -1 \text{ over } \{\pm 1\}^n$ and deg $f_i + \deg g_i \leq d$ and deg $h_i \leq d/2$

> derivation of unsatisfiable constraint $\{-1 \ge 0\}$ from $\{f_1 = 0, ..., f_m = 0\}$ over $\{\pm 1\}^n$

if $-1 \notin K_d$ then ∃ separating hyperplane *D* with $\widetilde{\mathbb{E}}_D - 1 = -1$ and $\widetilde{\mathbb{E}}_D f \ge 0$ for all $f \in K_d$

 $K_d = \left\{ f = \sum_i f_i \cdot g_i + \sum_j h_j^2 \right\}$

pseudo-distribution satisfies all local properties of $\{\pm 1\}^n$

example: triangle inequalities over $\{\pm 1\}^n$ $\widetilde{\mathbb{E}}_D(x_i - x_j)^2 + (x_j - x_k)^2 - (x_i - x_k)^2 \ge 0$

claim

suppose $f \ge 0$ is d/2-junta over $\{\pm 1\}^n$ (depends on $\le d/2$ coordinates) then, $\widetilde{\mathbb{E}}_D f \ge 0$ *proof:* \sqrt{f} has degree $\le d/2 \rightarrow \widetilde{\mathbb{E}}_D f = \widetilde{\mathbb{E}}_D (\sqrt{f})^2 \ge 0$

corollary

for any set *S* of $\leq d$ coordinates, marginal $D' = \{x_S\}_D$ is actual distribution

$$D'(x_S) = \sum_{x_{[n]\setminus S}} D(x_S, x_{[n]\setminus S}) = \widetilde{\mathbb{E}}_D \mathbf{1}_{\{x_S\}} \ge 0$$

d-junta

(also captured by LP methods, e.g., Sherali-Adams hierarchies ...)

conditioning pseudo-distributions

claim $\forall i \in [n], \sigma \in \{\pm 1\}. D' = \{x \mid x_j = \sigma\}_D$ is deg.-(d - 2) pseudo-distr.

(also captured by LP methods, e.g., Sherali-Adams hierarchies ...)

pseudo-covariances are covariances of distributions over \mathbb{R}^n

claim
there exists a (Gaussian) distr.
$$\{\xi\}$$
 over \mathbb{R}^n such that
 $\widetilde{\mathbb{E}}_D x = \mathbb{E} \ \xi$ and $\widetilde{\mathbb{E}}_D x x^T = \mathbb{E} \ \xi \xi^T$
consequence: $\widetilde{\mathbb{E}}_D q = \mathbb{E}_{\{\xi\}} q$
for every q of deg. 2
let $\mu = \widetilde{\mathbb{E}}_D x$ and $M = \widetilde{\mathbb{E}}_D (x - \mu)(x - \mu)^T$

choose $\{\xi\}$ to be Gaussian with mean μ and covariance M

matrix *M* p.s.d. because $v^T M v = \widetilde{\mathbb{E}}_D (v^T x)^2 \ge 0$ for all $v \in \mathbb{R}^n$ square of linear form pseudo-distr.'s satisfy (compositions of) low-deg. univariate properties

claim

for every univariate $p \ge 0$ over \mathbb{R} and every *n*-variate polynomial q with deg $p \cdot \deg q \le d$, $\approx (q \le 1) = 2$ useful class of non-local

 $\widetilde{\mathbb{E}}_D p(q(x)) \ge 0$

enough to show: p is sum of squares

proof by induction on deg p

choose: minimizer α of p

higher-deg. inequalities

then: $p = p(\alpha) + (x - \alpha)^2 \cdot p'$ for some polynomial *P'* with deg $p' < \deg p$ squares sum of squares by ind. hyp. MAX CUT

given: deg.-*d* pseudo-distr. *D* over $\{\pm 1\}^n$, satisfies $\{L_G = 1 - \varepsilon\}$

 $L_{G} = \frac{1}{|E(G)|} \sum_{ij \in E(G)} \frac{1}{4} (x_{i} - x_{j})^{2}$

[Goeman-Williamson]

goal: find $y \in \{\pm 1\}^n$ with $L_G(y) \ge 1 - O(\sqrt{\varepsilon})$

algorithm

sample from Gaussian distr. $\{\xi\}$ over \mathbb{R}^n with $\mathbb{E} \xi \xi^T = \widetilde{\mathbb{E}}_D x x^T$ output $y = \operatorname{sgn} \xi$

analysis

claim:
$$\mathbb{P}_D\{x_i \neq x_j\} = 1 - \eta \Rightarrow \mathbb{P}\{y_i \neq y_j\} \ge 1 - O(\sqrt{\eta})$$

proof: $\{\xi_i, \xi_j\}$ satisfies $-\mathbb{E} \xi_i \xi_j = -\widetilde{\mathbb{E}}_D x_i x_j = 1 - O(\eta)$ and $\mathbb{E} \xi_i^2 = \mathbb{E} \xi_j^2 = 1$ \rightarrow (tedious calculation) $\rightarrow \mathbb{P} \{ \operatorname{sgn} \xi_i \neq \operatorname{sgn} \xi_j \} \ge 1 - O(\sqrt{\eta})$

[Barak-Raghavendra-S., Raghavendra-Tan]

claim

 $\forall r. \exists \text{ deg.-}(d-2r) \text{ pseudo-distribution } D', \text{ obtained by conditioning } D,$ $Avg_{i,j\in[n]} I_{D'}(x_i, x_j) \leq 1/r$ mutual information: I(x, y) = H(x) - H(x|y) proof $potential Avg_{i\in[n]}H(x_i); \text{ greedily condition on variables to maximize}$

potential decrease until global correlation is low

how often do we need to condition?

potential decrease
$$\geq \operatorname{Avg}_{i \in [n]} H(x_i) - \operatorname{Avg}_{j \in [n]} \operatorname{Avg}_{i \in [n]} H(x_i \mid x_j)$$

= $\operatorname{Avg}_{i,j \in [n]} I_{D'}(x_i, x_j)$

 \rightarrow only need to condition $\leq r$ times

MAX BISECTION $d = 1/\varepsilon^{O(1)}$ [Raghavendra-Tan]given: deg.-d pseudo-distr. D over $\{\pm 1\}^n$, satisfies $\{L_G = 1 - \varepsilon, \sum_i x_i = 0\}$ goal: find $y \in \{\pm 1\}^n$ with $L_G(y) \ge 1 - O(\sqrt{\varepsilon})$ and $\sum_i y_i = 0$

algorithm

let *D'* be conditioning of *D* with global correlation $\leq \varepsilon^{O(1)}$ sample Gaussian $\{\xi\}$ with same deg.-2 moments as *D'* output *y* with $y_i = \operatorname{sgn}(\xi_i - t_i)$ (choose $t_i \in \mathbb{R}$ so that $\mathbb{E} y_i = \widetilde{\mathbb{E}}_D x_i$)

analysis

 $(t_i = 0 \text{ is worst case} \rightarrow \text{same analysis as MAX CUT})$

almost as before: $\mathbb{P}_{D'}\{x_i \neq x_j\} \ge 1 - \eta \Rightarrow \mathbb{P}\{y_i \neq y_j\} \ge 1 - O(\sqrt{\eta})$

new: $I(x_i, x_j) \le \varepsilon^{O(1)} \Rightarrow \mathbb{E} y_i y_j = \widetilde{\mathbb{E}} x_i x_j \pm \varepsilon^{O(1)}$ $\widetilde{\mathbb{E}}(\sum_i x_i)^2 = 0$ $\Rightarrow \mathbb{E}|\sum_i y_i| \le (\mathbb{E}(\sum_i y_i)^2)^{1/2} = (\widetilde{\mathbb{E}}(\sum_i x_i)^2)^{1/2} + \varepsilon^{O(1)} \cdot n = \varepsilon^{O(1)} \cdot n$ \Rightarrow get bisection y' from y by correcting $\varepsilon^{O(1)}$ fraction of vertices SUM-OF-SQUARES method and approximation algorithms II

David Steurer Cornell

Cargese Workshop, 2014

sparse vector

given:	linear subspace $U \subseteq \mathbb{R}^n$ (represented by some basis),
	parameter $k \in [n]$
promise:	$\exists v_0 \in U$ such that v_0 is k-sparse (and $v_0 \in \{0, \pm 1\}^n$)
goal:	find k -sparse vector $v \in U$

efficient approximation algorithm for $k = \Omega(n)$ would be major step toward refuting Khot's Unique Games Conjecture and improved guarantees for MAX CUT, VERTEX COVER, ...

planted / average-case version (benchmark for unsupervised learning tasks) subspace U spanned by d - 1 random vectors and some k-sparse vector v_0

previous best algorithms only work for very sparse vectors $\frac{k}{n} \le 1/\sqrt{d}$ [Spielman-Wang-Wright, Demanet-Hand]

here: deg.-4 pseudo-distributions work for $\frac{k}{n} = \Omega(n)$ up to $d \le O(\sqrt{n})$ [Barak-Kelner-S.]

analytical proxy for sparsity

(tight if $v \in \{0, \pm 1\}^n$)

if vector
$$v$$
 is k -sparse then $\frac{\|v\|_{\infty}}{\|v\|_{1}} \ge \frac{1}{k}$, $\frac{\|v\|_{2}^{2}}{\|v\|_{1}^{2}} \ge \frac{1}{k}$, and $\frac{\|v\|_{4}^{4}}{\|v\|_{2}^{4}} \ge \frac{1}{k}$

limitations of ℓ_{∞}/ℓ_1 (previous best algorithm; exact via linear programming)

 $v = \text{sum of } d \text{ random } \pm 1 \text{ vectors with same first coordinate}$ $\|v\|_{\infty} \ge d$, $\|v\|_{1} \le d + n\sqrt{d} \rightarrow \text{ratio} \approx \frac{\sqrt{d}}{n}$ $\rightarrow \ell_{\infty}/\ell_{1}$ algorithm fails for $\frac{k}{n} \ge \frac{1}{\sqrt{d}}$

limitations of std. SDP relaxation for ℓ_2/ℓ_1 (best proxy for sparsity)

"ideal object": distribution *D* over ℓ_2 unit sphere of subspace *U* ℓ_1 -constraint: $\mathbb{E}_D ||v||_1^2 \leq k$ not a low-deg. polynomial in *v* tractable relaxation: $\sum_{i,j} |\mathbb{E}_D v_i v_j| \leq k$ onclear how to represent (also NP-hard in worst-case) [d'Aspremont-El Ghaoui-Jordan-Lanckriet]

but: for uniform distr. *D* over ℓ_2 sphere of *d*-dim. rand. subspace $\sum_{i,j} |\mathbb{E}_D v_i v_j| \approx \frac{n}{\sqrt{d}} \rightarrow$ same limitation as ℓ_{∞}/ℓ_1

deg.-*d* pseudo-distr. *D*: { $v \in U$; $||v||_2 = 1$ } $\rightarrow \mathbb{R}$ over unit ℓ_2 -sphere of *U notation:* $\widetilde{\mathbb{E}}_D f \coloneqq \int_{\substack{v \in U; \\ ||v||=1}} D \cdot f$ (only consider polynomials \rightarrow easy to integrate) *non-negativity:* $\widetilde{\mathbb{E}}_D h(v)^2 \ge 0$ for every *h* of deg. $\le d/2$

normalization: $\widetilde{\mathbb{E}}_D 1 = 1$

pseudo-distribution satisfies $\{||v||_4^4 = 1/k\}$

orthogonality: $\widetilde{\mathbb{E}}_D\left(\|\nu\|_4^4 - \frac{1}{k}\right) \cdot g(\nu) = 0$ for every g of deg. $\leq d - 4$

deg.-*d* pseudo-distr. *D*: { $v \in U$; $||v||_2 = 1$ } $\rightarrow \mathbb{R}$ over unit ℓ_2 -sphere of *U notation:* $\widetilde{\mathbb{E}}_D f \coloneqq \int_{\substack{v \in U; \\ ||v||=1}} D \cdot f$ (only consider polynomials \rightarrow easy to integrate) *non-negativity:* $\widetilde{\mathbb{E}}_D h(v)^2 \ge 0$ for every *h* of deg. $\le d/2$

normalization: $\widetilde{\mathbb{E}}_D 1 = 1$

pseudo-distribution satisfies $\{\|v\|_4^4 = 1/k\}$

orthogonality: $\widetilde{\mathbb{E}}_D\left(\|v\|_4^4 - \frac{1}{k}\right) \cdot g(v) = 0$ for every g of deg. $\leq d - 4$

how to find pseudo-distributions?

set of deg.-*d* pseudo-distributions = convex set with $n^{O(d)}$ -time separation oracle

separation problem

given: function D (represented as deg.-d polynomial) *check:* quadratic form $f \mapsto \widetilde{\mathbb{E}}_D f^2$ is p.s.d. or output violated constraint $\widetilde{\mathbb{E}}_D f^2 < 0$

deg.-*d* pseudo-distr. *D*: { $v \in U$; $||v||_2 = 1$ } $\rightarrow \mathbb{R}$ over unit ℓ_2 -sphere of *U notation:* $\widetilde{\mathbb{E}}_D f \coloneqq \int_{\substack{v \in U; \\ ||v||=1}} D \cdot f$ (only consider polynomials \rightarrow easy to integrate) *non-negativity:* $\widetilde{\mathbb{E}}_D h(v)^2 \ge 0$ for every *h* of deg. $\le d/2$

normalization: $\widetilde{\mathbb{E}}_D 1 = 1$

pseudo-distribution satisfies $\{||v||_4^4 = 1/k\}$

orthogonality: $\widetilde{\mathbb{E}}_D\left(\|v\|_4^4 - \frac{1}{k}\right) \cdot g(v) = 0$ for every g of deg. $\leq d - 4$

how to use pseudo-distributions?

rule of thumb: set of deg.-*d* pseudo-moments $\{\tilde{\mathbb{E}}_D f \mid \deg f \leq d\}$ difficult^{*} to distinguish / separate from deg.-*d* moments of actual distr. of solutions

also: values $\{\widetilde{\mathbb{E}}_D f \mid \deg f > d\}$ do not carry additional information \rightarrow no need to look at them

(* unless you invest $n^{\Omega(d)}$ time to distinguish)

deg.-*d* pseudo-distr. *D*: { $v \in U$; $||v||_2 = 1$ } $\rightarrow \mathbb{R}$ over unit ℓ_2 -sphere of *U notation:* $\widetilde{\mathbb{E}}_D f \coloneqq \int_{\substack{v \in U; \\ ||v||=1}} D \cdot f$ (only consider polynomials \rightarrow easy to integrate) *non-negativity:* $\widetilde{\mathbb{E}}_D h(v)^2 \ge 0$ for every *h* of deg. $\le d/2$

normalization: $\widetilde{\mathbb{E}}_D 1 = 1$

pseudo-distribution satisfies $\{||v||_4^4 = 1/k\}$

orthogonality: $\widetilde{\mathbb{E}}_D\left(\|\nu\|_4^4 - \frac{1}{k}\right) \cdot g(\nu) = 0$ for every g of deg. $\leq d - 4$

dual view (SOS certificates)

$$\left(\|v\|_{4}^{4} - \frac{1}{k} \right) \cdot g + \sum_{j} h_{j}^{2} = -1 \text{ over } \{ v \in U; \|v\|_{2} = 1 \}$$

for some *g* of deg. $\leq d - 4$ and $\{h_{j}\}$ of deg. $\leq d/2$

 \Leftrightarrow no deg.-*d* pseudo-distr. exists (\rightarrow no solution exists)

for approximation algorithms: need pseudo-distr. to extract approx. solution (hard to exploit non-existence of SOS certificate directly)

general properties of pseudo-distributions

let $D = \{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^n \times \mathbb{R}^n$

following inequalities hold as expected (same as for distributions)

Cauchy–Schwarz inequality

 $\widetilde{\mathbb{E}}_{D}\langle u, v \rangle \leq \left(\widetilde{\mathbb{E}}_{D} \|u\|^{2}\right)^{1/2} \left(\widetilde{\mathbb{E}}_{D} \|v\|^{2}\right)^{1/2}$

Hölder's inequality

 $\widetilde{\mathbb{E}}_D \sum_i u_i^3 \cdot v_i \le \left(\widetilde{\mathbb{E}}_D \|u\|_4^4\right)^{3/4} \left(\widetilde{\mathbb{E}}_D \|v\|_4^4\right)^{1/4}$

 ℓ_4 -triangle inequality

 $\widetilde{\mathbb{E}}_{D} \| u + v \|_{4}^{4} \le \left(\widetilde{\mathbb{E}}_{D} \| u \|_{4}^{4} \right)^{1/4} + \left(\widetilde{\mathbb{E}}_{D} \| v \|_{4}^{4} \right)^{1/4}$

claim

let $U' \subseteq \mathbb{R}^n$ be a random d-dim. subspace with $d \ll \sqrt{n}$ let P' be the orthogonal projector into U'

then w.h.p, $||P'v||_4^4 = \frac{O(1)}{n} ||v||_2^4 - \sum_j h_j(v)^2$ over $v \in \mathbb{R}^n$ for h_j 's of deg. 4 [Barak-Brandao-Harrow-Kelner-S.-Zhou]

(SOS certificate for classical inequality $||P'v||_4^4 \le \frac{O(1)}{n} ||v||_2^4$)

proof sketch

basis change: let $x = B^T v$ where *B*'s columns are orthonormal basis of *U* (so that $P' = BB^T$) $\rightarrow ||P'v||_4^4 = \frac{1}{n^2} \sum_i \langle b_i, x \rangle^4$ with b_1, \dots, b_n close to i.i.d. standard Gaussian vectors (so that $\mathbb{E}_b \langle b, x \rangle^2 = ||x||_2^2$ and $\mathbb{E}_b \langle b, x \rangle^4 = 3 \cdot ||x||_2^4$)

enough to show: $\frac{1}{n}\sum_{i=1}^{n} \langle b_i, x \rangle^4 = O(1) \cdot \mathbb{E}_b \langle b, x \rangle^4 - \sum_j h'_j(x)^2$

reduce to deg. 2: $\frac{1}{n} \sum_{i=1}^{n} \langle b_i^{\otimes 2}, y \rangle^2 \le O(1) \cdot \mathbb{E}_b \langle b^{\otimes 2}, y \rangle^2 \quad (y = x^{\otimes 2})$

→ use concentration inequalities for quadratic forms (aka matrices)

approximation algorithm for planted sparse vector

given: some basis of subspace $U = \operatorname{span} U' \cup \{v_0\} \subseteq \mathbb{R}^n$, where $U' \subseteq \mathbb{R}^n$ random *d*-dim. subspace, and $v_0 \in \mathbb{R}^n$ with $v_0 \perp U'$, $||v_0||_4^4 = \frac{1}{k}$, and $||v_0||_2^4 = 1$ (e.g., *k*-sparse)

goal: find unit vector *w* with $\langle w, v_0 \rangle^2 \ge 1 - O(k/n)^{1/4}$

algorithm

compute deg.-4 pseudo-distr. $D = \{v\}$ over unit ball of U satisfying $\{\|v\|_4^4 = \frac{1}{k}\}$ sample Gaussian distr. $\{w\}$ with $\mathbb{E} ww^T = \widetilde{\mathbb{E}}_D vv^T$ and renormalize

analysis

claim: $\widetilde{\mathbb{E}}_D \langle v, v_0 \rangle^2 \ge 1 - O(k/n)^{1/4}$ (\rightarrow Gaussian {w} almost 1-dim.)

approximation algorithm for planted sparse vector

given: some basis of subspace $U = \operatorname{span} U' \cup \{v_0\} \subseteq \mathbb{R}^n$, where $U' \subseteq \mathbb{R}^n$ random *d*-dim. subspace, and $v_0 \in \mathbb{R}^n$ with $v_0 \perp U'$, $||v_0||_4^4 = \frac{1}{k}$, and $||v_0||_2^4 = 1$ (e.g., *k*-sparse)

goal: find unit vector *w* with $\langle w, v_0 \rangle^2 \ge 1 - O(k/n)^{1/4}$

analysis

claim: $\widetilde{\mathbb{E}}_D \langle v, v_0 \rangle^2 \ge 1 - O(k/n)^{1/4}$ (\rightarrow Gaussian {w} almost 1-dim.)

$$\frac{1}{k^{1/4}} = \left(\widetilde{\mathbb{E}}_{D} \| v \|_{4}^{4}\right)^{1/4} \qquad (D \text{ satisfies } \{ \| v \|_{4}^{4} = 1/k \})$$

$$= \left(\widetilde{\mathbb{E}}_{D} \| \langle v, v_{0} \rangle v_{0} + P' v \|_{4}^{4}\right)^{1/4} \qquad (same \text{ function})$$

$$\leq \left(\widetilde{\mathbb{E}}_{D} \| \langle v, v_{0} \rangle v_{0} \|_{4}^{4}\right)^{1/4} + \left(\widetilde{\mathbb{E}}_{D} \| P' v \|_{4}^{4}\right)^{1/4} \qquad (\ell_{4} \text{ triangle inequ.})$$

$$\leq \frac{1}{k^{1/4}} \cdot \left(\widetilde{\mathbb{E}}_{D} \langle v, v_{0} \rangle^{4}\right)^{1/4} + \frac{O(1)}{n^{1/4}} \qquad (SOS \text{ cert. for } U')$$

 $\rightarrow \widetilde{\mathbb{E}}_D \langle v, v_0 \rangle^4 \ge 1 - O(k/n)^{1/4}$ $\rightarrow \widetilde{\mathbb{E}}_D \langle v, v_0 \rangle^2 \ge 1 - O(k/n)^{1/4} \quad (\text{because } \langle v, v_0 \rangle^4 = (1 - \|P'v\|_2^2) \langle v, v_0 \rangle^2)$

general properties of pseudo-distributions

let $D = \{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^n \times \mathbb{R}^n$

following inequalities hold as expected (same as for distributions)

Cauchy–Schwarz inequality

 $\widetilde{\mathbb{E}}_{D}\langle u, v \rangle \leq \left(\widetilde{\mathbb{E}}_{D} \|u\|^{2}\right)^{1/2} \left(\widetilde{\mathbb{E}}_{D} \|v\|^{2}\right)^{1/2}$

Hölder's inequality

 $\widetilde{\mathbb{E}}_D \sum_i u_i^3 \cdot v_i \le \left(\widetilde{\mathbb{E}}_D \|u\|_4^4\right)^{3/4} \left(\widetilde{\mathbb{E}}_D \|v\|_4^4\right)^{1/4}$

 ℓ_4 -triangle inequality

 $\widetilde{\mathbb{E}}_{D} \| u + v \|_{4}^{4} \le \left(\widetilde{\mathbb{E}}_{D} \| u \|_{4}^{4} \right)^{1/4} + \left(\widetilde{\mathbb{E}}_{D} \| v \|_{4}^{4} \right)^{1/4}$

products of pseudo-distributions

```
claim
suppose D, D': \Omega \to \mathbb{R} is deg.-d pseudo-distr. over \Omega
then, D \otimes D': \Omega \times \Omega \to \mathbb{R} is deg.-d pseudo-distr. over \Omega \times \Omega
```

proof

tensor products of positive semidefinite matrices are positive semidefinite

let $D = \{u, v\}$ be a deg.-2 pseudo-distribution over $\mathbb{R}^n \times \mathbb{R}^n$

Cauchy–Schwarz inequality

 $\widetilde{\mathbb{E}}_{D}\langle u, v \rangle \leq \left(\widetilde{\mathbb{E}}_{D} \|u\|_{2}^{2}\right)^{1/2} \left(\widetilde{\mathbb{E}}_{D} \|v\|_{2}^{2}\right)^{1/2}$

proof

$$\begin{split} \left(\widetilde{\mathbb{E}}_{D}\langle u, v \rangle\right)^{2} \\ &= \widetilde{\mathbb{E}}_{D \otimes D} \langle u, v \rangle \langle u', v' \rangle \\ &= \widetilde{\mathbb{E}}_{D \otimes D} \sum_{ij} u_{i} v_{i} u'_{j} v'_{j} \\ &\leq \frac{1}{2} \widetilde{\mathbb{E}}_{D \otimes D} \sum_{ij} u_{i}^{2} \left(v'_{j}\right)^{2} + \sum_{ij} \left(u'_{j}\right)^{2} v_{i}^{2} \\ &= \frac{1}{2} \widetilde{\mathbb{E}}_{D \otimes D} \|u\|_{2}^{2} \|v'\|_{2}^{2} + \|u'\|_{2}^{2} \|v\|_{2}^{2} \\ &= \widetilde{\mathbb{E}}_{D} \|u\|_{2}^{2} \cdot \widetilde{\mathbb{E}}_{D} \|v\|_{2}^{2} \end{split}$$

 $(D \otimes D'$ is product pseudo-distr.)

$$(2ab = a^2 + b^2 - (a - b)^2)$$

 $(D \otimes D'$ is product pseudo-distr.)

let $D = \{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^n \times \mathbb{R}^n$

Hölder's inequality

$$\widetilde{\mathbb{E}}_D \sum_i u_i^3 \cdot v_i \le \left(\widetilde{\mathbb{E}}_D \|u\|_4^4\right)^{3/4} \left(\widetilde{\mathbb{E}}_D \|v\|_4^4\right)^{1/4}$$

proof

$$\begin{split} &\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{3} \cdot v_{i} \\ &\leq \left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{4}\right)^{1/2} \cdot \left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{2} \cdot v_{i}^{2}\right)^{1/2} & (Cauchy-Schwarz) \\ &\leq \left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{4}\right)^{1/2} \cdot \left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{4} \cdot \widetilde{\mathbb{E}}_{D} \sum_{i} v_{i}^{4}\right)^{1/4} & (Cauchy-Schwarz) \end{split}$$

we also used: {u, v} deg-4 pseudo-distr. \rightarrow { $u \otimes u, u \otimes v$ } deg.-2 pseudo-distr. (every deg.-2 poly. in { $u \otimes u, u \otimes v$ } is deg.-4 poly. in {u, v}) let $D = \{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^n \times \mathbb{R}^n$

ℓ_4 -triangle inequality

$$\left(\widetilde{\mathbb{E}}_{D} \| u + v \|_{4}^{4}\right)^{1/4} \leq \left(\widetilde{\mathbb{E}}_{D} \| u \|_{4}^{4}\right)^{1/4} + \left(\widetilde{\mathbb{E}}_{D} \| v \|_{4}^{4}\right)^{1/4}$$

proof

expand $||u + v||_4^4$ in terms of $\sum_i u_i^4$, $\sum_i u_i^3 v_i$, $\sum_i u_i^2 v_i^2$, $\sum_i u_i v_i^3$, $\sum_i v_i^4$

bound pseudo-expect. of "mixed terms" using Cauchy-Schwarz / Hölder

check that total is equal to right-hand side

tensor decomposition

given: tensor $T \approx \sum_{i} a_i^{\otimes 4}$ (in spectral norm) for nice $a_1, \dots, a_m \in \mathbb{R}^n$ goal: find set of vectors $B \approx \{\pm a_1, \dots, \pm a_m\}$

for simplicity: orthonormal and m = n

approach

show "uniqueness": $\sum_{i} a_i^{\otimes 4} \approx \sum_{i} b_i^{\otimes 4} \Rightarrow \{\pm a_1, \dots, \pm a_m\} \approx \{\pm b_1, \dots, \pm b_m\}$

show that uniqueness proof translates to SOS certificate

- → any pseudo-distribution over decomposition is "concentrated" on unique decomposition $\{\pm a_1, \dots, \pm a_m\}$
- → recover decomposition by reweighing pseudo-distribution by $\log n$ degree polynomial (approximation to δ function)