SUM-OF-SQUARES method and approximation algorithms I

David Steurer
Cornell

Cargese Workshop, 2014
given: functions $f_{1}, \ldots, f_{m}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
find: solution $x \in\{ \pm 1\}^{n}$ to $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$

$$
\text { Laplacian } L_{G}=\frac{1}{|E(G)|} \sum_{i j \in E(G)} \frac{1}{4}\left(x_{i}-x_{j}\right)^{2}
$$

examples: combinatorial optimization problem on graph G
MAX CUT:

$$
\left\{L_{G}=1-\varepsilon\right\} \text { over }\{ \pm 1\}^{n}
$$

where $1-\varepsilon$ is guess for optimum value
max bisection: $\left\{L_{G}=1-\varepsilon, \sum_{i} x_{i}=0\right\}$ over $\{ \pm 1\}^{n}$
goal: develop SDP-based algorithms with provable guarantees in terms of complexity and approximation
("on the edge intractability" \rightarrow need strongest possible relaxations)

meta-task

given: functions $f_{1}, \ldots, f_{m}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
find: solution $x \in\{ \pm 1\}^{n}$ to $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$
goal: develop SDP-based algorithms with provable guarantees in terms of complexity and approximation
price of convexity: individual solutions \rightarrow distributions over solutions
price of tractability: can only enforce "efficiently checkable knowledge" about solutions
individual solutions

"pseudo-distributions over solutions" (consistent with efficiently checkable knowledge)
distribution D over $\{ \pm 1\}^{n}$

examples

uniform distribution: $D=2^{-n}$
fixed 2-bit parity: $D(x)=\left(1+x_{1} x_{2}\right) / 2^{n}$
non-negativity: $D(x) \geq 0$ for all $x \in\{ \pm 1\}^{n}$
normalization: $\sum_{x \in\{ \pm 1\}} D(x)=1$ \# independent inequalities is exponential \rightarrow not efficiently checkable
distribution D satisfies $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ for some $f_{i}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$

$$
\left.\mathbb{E}_{D} f_{1}^{2}+\cdots+f_{m}^{2}=0 \quad \text { (equivalently: } \mathbb{P}_{D}\left\{\forall i . f_{i} \neq 0\right\}=0\right)
$$

convex: D, D^{\prime} satisfy conditions
$\rightarrow\left(D+D^{\prime}\right) / 2$ satisfies conditions

examples

fixed 2-bit parity distribution satisfies $\left\{x_{1} x_{2}=1\right\}$
uniform distribution does not satisfy $\{f=0\}$ for any $f \neq 0$
deg.- d pseudo-distribution D
distribution D over $\{ \pm 1\}^{n}$
convenient notation: $\widetilde{\mathbb{E}}_{D} f:=\sum_{x} D(x) f(x)$ "pseudo-expectation of f under D "
function $D:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
non-negativity: $B(x) \geq 0$ for all $x \in\{ \pm 1\}^{n}$

$$
\text { normalization: } \sum_{x \in\{ \pm 1\}} D(x)=1
$$ $\sum_{x \in\{ \pm 1\}^{n}} D(x) f(x)^{2} \geq 0$ for every deg. $-d / 2$ polynomial f pseudo-

distribution D satisfies $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ for some $f_{i}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$

$$
\widetilde{\mathbb{E}}_{D} \mathbb{E}_{D} f_{1}^{2}+\cdots+f_{m}^{2}=0 \quad \text { (equivalently: } \mathbb{P}_{D}\left(\forall i \cdot f_{i} \neq 0\right\}=0 \text {) }
$$

deg.- $2 n$ pseudo-distributions are actual distributions (point-indicators $\mathbb{1}_{\{x\}}$ have deg. $n \rightarrow D(x)=\widetilde{\mathbb{E}}_{D} \mathbb{1}_{\{x\}}^{2} \geq 0$)
deg.-d pseudo-distr. $D:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ notation: $\widetilde{\mathbb{E}}_{D} f:=\sum_{x} D(x) f(x)$, "pseudo-expectation of f under D " non-negativity: $\widetilde{\mathbb{E}}_{D} f^{2} \geq 0$ for every deg.-d/2 poly. f normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distr. D satisfies $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ for some $f_{i}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ $\widetilde{\mathbb{E}}_{D} f_{1}^{2}+\cdots+f_{m}^{2}=0 \quad$ (equivalently: $\widetilde{\mathbb{E}}_{D} f_{i} \cdot g=0$ whenever $\operatorname{deg} g \leq d-\operatorname{deg} f_{i}$)
deg.-d pseudo-distr. $D:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
notation: $\widetilde{\mathbb{E}}_{D} f:=\sum_{x} D(x) f(x)$, "pseudo-expectation of f under D "
non-negativity: $\widetilde{\mathbb{E}}_{D} f^{2} \geq 0$ for every deg.-d/2 poly. f
normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distr. D satisfies $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ for some $f_{i}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$

$$
\widetilde{\mathbb{E}}_{D} f_{1}^{2}+\cdots+f_{m}^{2}=0 \quad \text { (equivalently: } \widetilde{\mathbb{E}}_{D} f_{i} \cdot g=0 \text { whenever } \operatorname{deg} g \leq d-\operatorname{deg} f_{i} \text {) }
$$

claim: can compute such D in time $n^{O(d)}$ if it exists (otherwise, certify that no solution to original problem exists)
[Shor, Parrilo, Lasserre]
(can assume D is deg.- d polynomial \rightarrow separation problem $\min _{f} \widetilde{\mathbb{E}}_{D} f^{2}$ is n^{d} dim. eigenvalue prob. $\rightarrow n^{O(d)}$-time via grad. descent / ellipsoid method)
deg.-d pseudo-distr. $D:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
notation: $\widetilde{\mathbb{E}}_{D} f:=\sum_{x} D(x) f(x)$, "pseudo-expectation of f under D "
non-negativity: $\widetilde{\mathbb{E}}_{D} f^{2} \geq 0$ for every deg.-d/2 poly. f
normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distr. D satisfies $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ for some $f_{i}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
$\widetilde{\mathbb{E}}_{D} f_{1}^{2}+\cdots+f_{m}^{2}=0 \quad$ (equivalently: $\widetilde{\mathbb{E}}_{D} f_{i} \cdot g=0$ whenever $\operatorname{deg} g \leq d-\operatorname{deg} f_{i}$)
surprising property: $\widetilde{\mathbb{E}}_{D} f \geq 0$ for many* low-degree polynomials f such that $\{f \geq 0\}$ follows from $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ by "explicit proof"
soon: examples of such properties and how to exploit them
deg.-d pseudo-distr. $D:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$
notation: $\widetilde{\mathbb{E}}_{D} f:=\sum_{x} D(x) f(x)$, "pseudo-expectation of f under D "
non-negativity: $\widetilde{\mathbb{E}}_{D} f^{2} \geq 0$ for every deg.-d/2 poly. f
normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distr. D satisfies $\left\{f_{1}=0, \ldots f=0\right\}$ for some $f . \cdot\{+1\}^{n} \rightarrow \mathbb{R}$ $\widetilde{\mathbb{E}}_{D} f_{1}^{2}+\cdots+f_{m}^{2}=0 \quad$ (equival $n^{o(d)}$-time algorithms cannot* distinguish between deg.-d pseudo-distributions and
surprising property: $\widetilde{\mathbb{E}}_{D} f \geq 0$ for n deg.-d part of actual distr.'s
such that $\{f \geq 0\}$ follows from $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ by " Rplicit proof"
Soon: examples of Such properties and how to xploit them
deg. d part of actual distr. over optimal solutions
pseudo-distr. over optimal solutions

efficient algorithm
approximate solution (to original problem)
emerging algorithm-design paradigm:
analyze algorithm pretending that underlying actual distribution exists; verify only afterwards that low-deg. pseudo-distr.'s satisfy required properties

dual view (sum-of-squares proof system)

either
\exists deg.-d pseudo-distribution D over $\{ \pm 1\}^{n}$ satisfying $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ or
$\exists g_{1}, \ldots, g_{m}$ and h_{1}, \ldots, h_{k} such that $\sum_{i} f_{i} \cdot g_{i}+\sum_{j} h_{j}^{2}=-1$ over $\{ \pm 1\}^{n}$ and $\operatorname{deg} f_{i}+\operatorname{deg} g_{i} \leq d$ and $\operatorname{deg} h_{i} \leq d / 2$ from $\left\{f_{1}=0, \ldots, f_{m}=0\right\}$ over $\{ \pm 1\}^{n}$

$$
K_{d}=\left\{f=\sum_{i} f_{i} \cdot g_{i}+\sum_{j} h_{j}^{2}\right\}
$$

pseudo-distribution satisfies all local properties of $\{ \pm 1\}^{n}$
example: triangle inequalities over $\{ \pm 1\}^{n}$ $\widetilde{\mathbb{E}}_{D}\left(x_{i}-x_{j}\right)^{2}+\left(x_{j}-x_{k}\right)^{2}-\left(x_{i}-x_{k}\right)^{2} \geq 0$
claim
suppose $f \geq 0$ is $d / 2$-junta over $\{ \pm 1\}^{n}$ (depends on $\leq d / 2$ coordinates) then, $\widetilde{\mathbb{E}}_{D} f \geq 0$
proof: \sqrt{f} has degree $\leq d / 2 \rightarrow \widetilde{\mathbb{E}}_{D} f=\widetilde{\mathbb{E}}_{D}(\sqrt{f})^{2} \geq 0$

corollary

for any set S of $\leq d$ coordinates, marginal $D^{\prime}=\left\{x_{S}\right\}_{D}$ is actual distribution

$$
D^{\prime}\left(x_{S}\right)=\sum_{x_{[n] \backslash S}} D\left(x_{S}, x_{[n] \backslash S}\right)=\underbrace{\widetilde{\mathbb{E}}_{D} \mathbf{1}_{\left\{x_{S}\right\}}}_{d \text {-junta }} \geq 0
$$

(also captured by LP methods, e.g., Sherali-Adams hierarchies ...)
conditioning pseudo-distributions

claim

$\forall i \in[n], \sigma \in\{ \pm 1\} . D^{\prime}=\left\{x \mid x_{j}=\sigma\right\}_{D}$ is deg. $\cdot(d-2)$ pseudo-distr.
proof
$D^{\prime}(x)=\frac{1}{\mathbb{P}_{D}\left\{x_{j}=\sigma\right\}} D(x) \cdot 1_{\left\{x_{j}=\sigma\right\}}$
$\left.\rightarrow \widetilde{\mathbb{E}}_{D^{\prime}} f^{2} \propto \widetilde{\mathbb{E}}_{D} 1_{\left\{x_{j}=\sigma\right\}} f^{2}=\widetilde{\mathbb{E}}_{D}\left(1_{\left\{x_{j}=\sigma\right\}}\right\}\right)^{2} \geq 0$

$$
\begin{gathered}
\uparrow \\
\operatorname{deg} f \leq(d-2) / 2
\end{gathered}
$$

$$
\operatorname{deg} \mathbb{1}_{\left\{x_{j}=\sigma\right\}} f \leq d / 2
$$

(also captured by LP methods, e.g., Sherali-Adams hierarchies ...)

pseudo-covariances are covariances of distributions over $\mathbb{R}^{\boldsymbol{n}}$

claim
there exists a (Gaussian) distr. $\{\xi\}$ over \mathbb{R}^{n} such that

$$
\widetilde{\mathbb{E}}_{D} x=\mathbb{E} \xi \text { and } \widetilde{\mathbb{E}}_{D} x x^{T}=\mathbb{E} \xi \xi^{T}
$$

proof
consequence: $\widetilde{\mathbb{E}}_{D} q=\mathbb{E}_{\{\xi\}} q$
for every q of deg. 2
let $\mu=\widetilde{\mathbb{E}}_{D} x$ and $M=\widetilde{\mathbb{E}}_{D}(x-\mu)(x-\mu)^{T}$
choose $\{\xi\}$ to be Gaussian with mean μ and covariance M
matrix M p.s.d. because $v^{T} M v=\widetilde{\mathbb{E}}_{D}\left(v^{T} x\right)^{2} \geq 0$ for all $v \in \mathbb{R}^{n}$
square of linear form

claim

for every univariate $p \geq 0$ over \mathbb{R} and every n-variate polynomial q with $\operatorname{deg} p \cdot \operatorname{deg} q \leq d$,

$$
\widetilde{\mathbb{E}}_{D} p(q(x)) \geq 0 \longleftarrow \text { useful class of non-local }
$$

enough to show: p is sum of squares proof by induction on $\operatorname{deg} p$ choose: minimizer α of p
 then: $\mathrm{p}=p(\alpha)+(x-\alpha)^{2} \cdot p^{\prime}$ for some polynomial P^{\prime} with $\operatorname{deg} p^{\prime}<\operatorname{deg} p$

$$
\underset{\text { squares }}{\nearrow}
$$

\uparrow
sum of squares by ind. hyp.

MAX CUT

given: deg.-d pseudo-distr. D over $\{ \pm 1\}^{n}$, satisfies $\left\{L_{G}=1-\varepsilon\right\}$ goal: find $y \in\{ \pm 1\}^{n}$ with $L_{G}(y) \geq 1-O(\sqrt{\varepsilon})$
[Goeman-Williamson]

$$
L_{G}=\frac{1}{|E(G)|} \sum_{i j \in E(G)} \frac{1}{4}\left(x_{i}-x_{j}\right)^{2}
$$

algorithm

sample from Gaussian distr. $\{\xi\}$ over \mathbb{R}^{n} with $\mathbb{E} \xi \xi^{T}=\widetilde{\mathbb{E}}_{D} x x^{T}$ output $y=\operatorname{sgn} \xi$

analysis

claim: $\mathbb{P}_{D}\left\{x_{i} \neq x_{j}\right\}=1-\eta \Rightarrow \mathbb{P}\left\{y_{i} \neq y_{j}\right\} \geq 1-O(\sqrt{\eta})$
proof: $\left\{\xi_{i}, \xi_{j}\right\}$ satisfies $-\mathbb{E} \xi_{i} \xi_{j}=-\widetilde{\mathbb{E}}_{D} x_{i} x_{j}=1-O(\eta)$ and $\mathbb{E} \xi_{i}^{2}=\mathbb{E} \xi_{j}^{2}=1$
\rightarrow (tedious calculation) $\rightarrow \mathbb{P}\left\{\operatorname{sgn} \xi_{i} \neq \operatorname{sgn} \xi_{j}\right\} \geq 1-O(\sqrt{\eta})$

claim

$\forall r . \exists$ deg. $-(d-2 r)$ pseudo-distribution D^{\prime}, obtained by conditioning D,

$$
\operatorname{Avg}_{i, j \in[n]} I_{D^{\prime}}\left(x_{i}, x_{j}\right) \leq 1 / r
$$

proof

$$
\text { mutual information: } I(x, y)=H(x)-H(x \mid y)
$$

potential $\operatorname{Avg}_{i \in[n]} H\left(x_{i}\right)$; greedily condition on variables to maximize potential decrease until global correlation is low
how often do we need to condition?

$$
\begin{aligned}
\text { potential decrease } & \geq \operatorname{Avg}_{i \in[n]} H\left(x_{i}\right)-\operatorname{Avg}_{j \in[n]} \operatorname{Avg}_{i \in[n]} H\left(x_{i} \mid x_{j}\right) \\
= & \operatorname{Avg}_{i, j \in[n]} I_{D^{\prime}}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

\rightarrow only need to condition $\leq r$ times

MAX BISECTION

$$
d=1 / \varepsilon^{O(1)}
$$

given: deg.-d pseudo-distr. D over $\{ \pm 1\}^{n}$, satisfies $\left\{L_{G}=1-\varepsilon, \sum_{i} x_{i}=0\right\}$ goal: find $y \in\{ \pm 1\}^{n}$ with $L_{G}(y) \geq 1-O(\sqrt{\varepsilon})$ and $\sum_{i} y_{i}=0$

algorithm

let D^{\prime} be conditioning of D with global correlation $\leq \varepsilon^{O(1)}$ sample Gaussian $\{\xi\}$ with same deg. -2 moments as D^{\prime} output y with $y_{i}=\operatorname{sgn}\left(\xi_{i}-t_{i}\right)\left(\right.$ choose $t_{i} \in \mathbb{R}$ so that $\left.\mathbb{E} y_{i}=\widetilde{\mathbb{E}}_{D} x_{i}\right)$

analysis

$$
\text { (} t_{i}=0 \text { is worst case } \rightarrow \text { same analysis as MAX CUT) }
$$

almost as before: $\mathbb{P}_{D^{\prime}}\left\{x_{i} \neq x_{j}\right\} \geq 1-\eta \Rightarrow \mathbb{P}\left\{y_{i} \neq y_{j}\right\} \geq 1-O(\sqrt{\eta})$
new: $I\left(x_{i}, x_{j}\right) \leq \varepsilon^{O(1)} \Rightarrow \mathbb{E} y_{i} y_{j}=\widetilde{\mathbb{E}} x_{i} x_{j} \pm \varepsilon^{O(1)} \quad \widetilde{\mathbb{E}}\left(\sum_{i} x_{i}\right)^{2}=0$
$\rightarrow \mathbb{E}\left|\sum_{i} y_{i}\right| \leq\left(\mathbb{E}\left(\sum_{i} y_{i}\right)^{2}\right)^{1 / 2}=\left(\widetilde{\mathbb{E}}\left(\sum_{i} x_{i}\right)^{2}\right)^{1 / 2}+\varepsilon^{O(1)} \cdot n=\varepsilon^{O(1)} \cdot n$
\rightarrow get bisection y^{\prime} from y by correcting $\varepsilon^{O(1)}$ fraction of vertices

SUM-OF-SQUARES method and approximation algorithms II

David Steurer
Cornell

Cargese Workshop, 2014

sparse vector

given: \quad linear subspace $U \subseteq \mathbb{R}^{n}$ (represented by some basis), parameter $k \in[n]$
promise: $\quad \exists v_{0} \in U$ such that v_{0} is k-sparse (and $v_{0} \in\{0, \pm 1\}^{n}$)
goal: find k-sparse vector $v \in U$
efficient approximation algorithm for $k=\Omega(n)$ would be major step toward refuting Khot's Unique Games Conjecture and improved guarantees for MAX CUT, VERTEX COVER, ...
planted / average-case version (benchmark for unsupervised learning tasks) subspace U spanned by $d-1$ random vectors and some k-sparse vector v_{0}
previous best algorithms only work for very sparse vectors $\frac{k}{n} \leq 1 / \sqrt{d}$
[Spielman-Wang-Wright, Demanet-Hand]
here: deg.-4 pseudo-distributions work for $\frac{k}{n}=\Omega(n)$ up to $d \leq O(\sqrt{n})$
if vector v is k-sparse then $\frac{\|v\|_{\infty}}{\|v\|_{1}} \geq \frac{1}{k}, \frac{\|v\|_{2}^{2}}{\|v\|_{1}^{2}} \geq \frac{1}{k}$, and $\frac{\|v\|_{4}^{4}}{\|v\|_{2}^{4}} \geq \frac{1}{k}$
limitations of ℓ_{∞} / ℓ_{1} (previous best algorithm; exact via linear programming)
$v=$ sum of d random ± 1 vectors with same first coordinate
$\|v\|_{\infty} \geq d,\|v\|_{1} \leq d+n \sqrt{d} \rightarrow$ ratio $\approx \frac{\sqrt{d}}{n}$
$\rightarrow \ell_{\infty} / \ell_{1}$ algorithm fails for $\frac{k}{n} \geq \frac{1}{\sqrt{d}}$
limitations of std. SDP relaxation for ℓ_{2} / ℓ_{1} (best proxy for sparsity)
"ideal object": distribution D over ℓ_{2} unit sphere of subspace U ℓ_{1}-constraint: $\mathbb{E}_{D}\|v\|_{1}^{2} \leq k \quad$ not a low-deg. polynomial in v tractable relaxation: $\sum_{i, j}\left|\mathbb{E}_{D} v_{i} v_{j}\right| \leq k \quad \rightarrow$ unclear how to represent (also NP-hard in worst-case)
[d'Aspremont-El Ghaoui-Jordan-Lanckriet]
but: for uniform distr. D over ℓ_{2} sphere of d-dim. rand. subspace $\sum_{i, j}\left|\mathbb{E}_{D} v_{i} v_{j}\right| \approx \frac{n}{\sqrt{d}} \rightarrow$ same limitation as ℓ_{∞} / ℓ_{1}
degree- \boldsymbol{d} SOS relaxation for ℓ_{4} / ℓ_{2}
deg.-d pseudo-distr. $D:\left\{v \in U ;\|v\|_{2}=1\right\} \rightarrow \mathbb{R}$ over unit ℓ_{2}-sphere of U
notation: $\widetilde{\mathbb{E}}_{D} f:=\int_{\left\{\begin{array}{c}v \in U ; \\ \|v\|=1 \\ \}\end{array}\right.} D \cdot f$ (only consider polynomials \rightarrow easy to integrate)
non-negativity: $\widetilde{\mathbb{E}}_{D} h(v)^{2} \geq 0$ for every h of deg. $\leq d / 2$
normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distribution satisfies $\left\{\|v\|_{4}^{4}=1 / k\right\}$
orthogonality: $\widetilde{\mathbb{E}}_{D}\left(\|v\|_{4}^{4}-\frac{1}{k}\right) \cdot g(v)=0$ for every g of deg. $\leq d-4$
degree- \boldsymbol{d} SOS relaxation for ℓ_{4} / ℓ_{2}
deg.-d pseudo-distr. $D:\left\{v \in U ;\|v\|_{2}=1\right\} \rightarrow \mathbb{R}$ over unit ℓ_{2}-sphere of U notation: $\widetilde{\mathbb{E}}_{D} f:=\int_{\left\{\begin{array}{c}v \in U ; \\ \{v \|=1 \\ \| v\end{array}\right\}} D \cdot f$ (only consider polynomials \rightarrow easy to integrate)
non-negativity: $\widetilde{\mathbb{E}}_{D} h(v)^{2} \geq 0$ for every h of deg. $\leq d / 2$ normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distribution satisfies $\left\{\|v\|_{4}^{4}=1 / k\right\}$
orthogonality: $\widetilde{\mathbb{E}}_{D}\left(\|v\|_{4}^{4}-\frac{1}{k}\right) \cdot g(v)=0$ for every g of deg. $\leq d-4$

how to find pseudo-distributions?

set of deg.-d pseudo-distributions
$=$ convex set with $n^{O(d)}$-time separation oracle separation problem given: function D (represented as deg.-d polynomial) check: quadratic form $f \mapsto \widetilde{\mathbb{E}}_{D} f^{2}$ is p.s.d. or output violated constraint $\widetilde{\mathbb{E}}_{D} f^{2}<0$
degree- \boldsymbol{d} SOS relaxation for ℓ_{4} / ℓ_{2}
deg.-d pseudo-distr. $D:\left\{v \in U ;\|v\|_{2}=1\right\} \rightarrow \mathbb{R}$ over unit ℓ_{2}-sphere of U
notation: $\widetilde{\mathbb{E}}_{D} f:=\int_{\left\{\begin{array}{c}v \in U ; \\ \{\|v\|=1 \\ \| v\end{array}\right.} D \cdot f$ (only consider polynomials \rightarrow easy to integrate)
non-negativity: $\widetilde{\mathbb{E}}_{D} h(v)^{2} \geq 0$ for every h of deg. $\leq d / 2$
normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distribution satisfies $\left\{\|v\|_{4}^{4}=1 / k\right\}$
orthogonality: $\widetilde{\mathbb{E}}_{D}\left(\|v\|_{4}^{4}-\frac{1}{k}\right) \cdot g(v)=0$ for every g of deg. $\leq d-4$

how to use pseudo-distributions?

rule of thumb: set of deg.-d pseudo-moments $\left\{\widetilde{\mathbb{E}}_{D} f \mid \operatorname{deg} f \leq d\right\}$ difficult* to distinguish / separate from deg.- d moments of actual distr. of solutions
also: values $\left\{\widetilde{\mathbb{E}}_{D} f \mid \operatorname{deg} f>d\right\}$ do not carry additional information \rightarrow no need to look at them
(* unless you invest $n^{\Omega(d)}$ time to distinguish)
degree- \boldsymbol{d} SOS relaxation for ℓ_{4} / ℓ_{2}
deg.-d pseudo-distr. $D:\left\{v \in U ;\|v\|_{2}=1\right\} \rightarrow \mathbb{R}$ over unit ℓ_{2}-sphere of U
notation: $\widetilde{\mathbb{E}}_{D} f: \left.=\int_{\left\{\begin{array}{c}v \in U ; \\ \{\|v\|=1 \\ \}\end{array}\right.}^{\substack{\| v i l}} \right\rvert\,$ (only consider polynomials \rightarrow easy to integrate)
non-negativity: $\widetilde{\mathbb{E}}_{D} h(v)^{2} \geq 0$ for every h of deg. $\leq d / 2$ normalization: $\widetilde{\mathbb{E}}_{D} 1=1$
pseudo-distribution satisfies $\left\{\|v\|_{4}^{4}=1 / k\right\}$
orthogonality: $\widetilde{\mathbb{E}}_{D}\left(\|v\|_{4}^{4}-\frac{1}{k}\right) \cdot g(v)=0$ for every g of deg. $\leq d-4$

dual view (SOS certificates)

$\left(\|v\|_{4}^{4}-\frac{1}{k}\right) \cdot g+\sum_{j} h_{j}^{2}=-1$ over $\left\{v \in U ;\|v\|_{2}=1\right\}$
for some g of deg. $\leq d-4$ and $\left\{h_{j}\right\}$ of deg. $\leq d / 2$
\Leftrightarrow no deg.-d pseudo-distr. exists (\rightarrow no solution exists)
for approximation algorithms: need pseudo-distr. to extract approx. solution (hard to exploit non-existence of SOS certificate directly)
general properties of pseudo-distributions
let $D=\{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^{n} \times \mathbb{R}^{n}$
following inequalities hold as expected (same as for distributions)
Cauchy-Schwarz inequality

$$
\widetilde{\mathbb{E}}_{D}\langle u, v\rangle \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|^{2}\right)^{1 / 2}\left(\widetilde{\mathbb{E}}_{D}\|v\|^{2}\right)^{1 / 2}
$$

Hölder's inequality

$$
\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{3} \cdot v_{i} \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|_{4}^{4}\right)^{3 / 4}\left(\widetilde{\mathbb{E}}_{D}\|v\|_{4}^{4}\right)^{1 / 4}
$$

ℓ_{4}-triangle inequality

$$
\widetilde{\mathbb{E}}_{D}\|u+v\|_{4}^{4} \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|_{4}^{4}\right)^{1 / 4}+\left(\widetilde{\mathbb{E}}_{D}\|v\|_{4}^{4}\right)^{1 / 4}
$$

claim

let $U^{\prime} \subseteq \mathbb{R}^{n}$ be a random d-dim. subspace with $d \ll \sqrt{n}$ let P^{\prime} be the orthogonal projector into U^{\prime}
then w.h.p, $\left\|P^{\prime} v\right\|_{4}^{4}=\frac{o(1)}{n}\|v\|_{2}^{4}-\sum_{j} h_{j}(v)^{2}$ over $v \in \mathbb{R}^{n}$ for h_{j} 's of deg. 4 [Barak-Brandao-Harrow-Kelner-S.-Zhou]
(SOS certificate for classical inequality $\left\|P^{\prime} v\right\|_{4}^{4} \leq \frac{O(1)}{n}\|v\|_{2}^{4}$)

proof sketch

basis change: let $x=B^{T} v$ where B^{\prime} s columns are orthonormal basis of U (so that $P^{\prime}=B B^{T}$) $\rightarrow\left\|P^{\prime} v\right\|_{4}^{4}=\frac{1}{n^{2}} \sum_{i}\left\langle b_{i}, x\right\rangle^{4}$ with b_{1}, \ldots, b_{n} close to i.i.d. standard Gaussian vectors (so that $\mathbb{E}_{b}\langle b, x\rangle^{2}=\|x\|_{2}^{2}$ and $\mathbb{E}_{b}\langle b, x\rangle^{4}=3$. $\left.\|x\|_{2}^{4}\right)$
enough to show: $\frac{1}{n} \sum_{i=1}^{n}\left\langle b_{i}, x\right\rangle^{4}=O(1) \cdot \mathbb{E}_{b}\langle b, x\rangle^{4}-\sum_{j} h_{j}^{\prime}(x)^{2}$
reduce to deg. 2: $\frac{1}{n} \sum_{i=1}^{n}\left\langle b_{i}^{\otimes 2}, y\right\rangle^{2} \leq O(1) \cdot \mathbb{E}_{b}\left\langle b^{\otimes 2}, y\right\rangle^{2}\left(y=x^{\otimes 2}\right)$
\rightarrow use concentration inequalities for quadratic forms (aka matrices)

approximation algorithm for planted sparse vector

given: some basis of subspace $U=\operatorname{span} U^{\prime} \cup\left\{v_{0}\right\} \subseteq \mathbb{R}^{n}$, where $U^{\prime} \subseteq \mathbb{R}^{n}$ random d-dim. subspace, and $v_{0} \in \mathbb{R}^{n}$ with $v_{0} \perp U^{\prime},\left\|v_{0}\right\|_{4}^{4}=\frac{1}{k^{\prime}}$, and $\left\|v_{0}\right\|_{2}^{4}=1$ (e.g., k-sparse)
goal: \quad find unit vector w with $\left\langle w, v_{0}\right\rangle^{2} \geq 1-O(k / n)^{1 / 4}$

algorithm

compute deg. -4 pseudo-distr. $D=\{v\}$ over unit ball of U satisfying $\left\{\|v\|_{4}^{4}=\frac{1}{k}\right\}$
sample Gaussian distr. $\{w\}$ with $\mathbb{E} w w^{T}=\widetilde{\mathbb{E}}_{D} v v^{T}$ and renormalize
analysis
claim: $\widetilde{\mathbb{E}}_{D}\left\langle v, v_{0}\right\rangle^{2} \geq 1-O(k / n)^{1 / 4}(\rightarrow$ Gaussian $\{w\}$ almost 1-dim. $)$

approximation algorithm for planted sparse vector

given: \quad some basis of subspace $U=\operatorname{span} U^{\prime} \cup\left\{v_{0}\right\} \subseteq \mathbb{R}^{n}$, where $U^{\prime} \subseteq \mathbb{R}^{n}$ random d-dim. subspace, and $v_{0} \in \mathbb{R}^{n}$ with $v_{0} \perp U^{\prime},\left\|v_{0}\right\|_{4}^{4}=\frac{1}{k^{\prime}}$ and $\left\|v_{0}\right\|_{2}^{4}=1$ (e.g., k-sparse)
goal: \quad find unit vector w with $\left\langle w, v_{0}\right\rangle^{2} \geq 1-O(k / n)^{1 / 4}$ analysis claim: $\widetilde{\mathbb{E}}_{D}\left\langle v, v_{0}\right\rangle^{2} \geq 1-O(k / n)^{1 / 4}(\rightarrow$ Gaussian $\{w\}$ almost 1-dim. $)$

$$
\begin{array}{rlrl}
\frac{1}{k^{1 / 4}} & =\left(\widetilde{\mathbb{E}}_{D}\|v\|_{4}^{4}\right)^{1 / 4} & & \left(D \text { satisfies }\left\{\|v\|_{4}^{4}=1 / k\right\}\right) \\
& =\left(\widetilde{\mathbb{E}}_{D}\left\|\left\langle v, v_{0}\right\rangle v_{0}+P^{\prime} v\right\|_{4}^{4}\right)^{1 / 4} & & \text { (same function) } \\
& \leq\left(\widetilde{\mathbb{E}}_{D}\left\|\left\langle v, v_{0}\right\rangle v_{0}\right\|_{4}^{4}\right)^{1 / 4}+\left(\widetilde{\mathbb{E}}_{D}\left\|P^{\prime} v\right\|_{4}^{4}\right)^{1 / 4} & & \left(\ell_{4}\right. \text {-triangle inequ.) } \\
& \leq \frac{1}{k^{1 / 4}} \cdot\left(\widetilde{\mathbb{E}}_{D}\left\langle v, v_{0}\right\rangle^{4}\right)^{1 / 4}+\frac{o(1)}{n^{1 / 4}} & & \text { (sos cert. for } \left.U^{\prime}\right) \\
\rightarrow & \widetilde{\mathbb{E}}_{D}\left\langle v, v_{0}\right\rangle^{4} \geq 1-O(k / n)^{1 / 4} & & \\
\rightarrow \widetilde{\mathbb{E}}_{D}\left\langle v, v_{0}\right\rangle^{2} \geq 1-O(k / n)^{1 / 4} & \text { (because }\left\langle v, v_{0}\right\rangle^{4} & \left.=\left(1-\left\|P^{\prime} v\right\|_{2}^{2}\right)\left\langle v, v_{0}\right\rangle^{2}\right)
\end{array}
$$

general properties of pseudo-distributions
let $D=\{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^{n} \times \mathbb{R}^{n}$
following inequalities hold as expected (same as for distributions)
Cauchy-Schwarz inequality

$$
\widetilde{\mathbb{E}}_{D}\langle u, v\rangle \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|^{2}\right)^{1 / 2}\left(\widetilde{\mathbb{E}}_{D}\|v\|^{2}\right)^{1 / 2}
$$

Hölder's inequality

$$
\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{3} \cdot v_{i} \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|_{4}^{4}\right)^{3 / 4}\left(\widetilde{\mathbb{E}}_{D}\|v\|_{4}^{4}\right)^{1 / 4}
$$

ℓ_{4}-triangle inequality

$$
\widetilde{\mathbb{E}}_{D}\|u+v\|_{4}^{4} \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|_{4}^{4}\right)^{1 / 4}+\left(\widetilde{\mathbb{E}}_{D}\|v\|_{4}^{4}\right)^{1 / 4}
$$

products of pseudo-distributions

claim

suppose $D, D^{\prime}: \Omega \rightarrow \mathbb{R}$ is deg.-d pseudo-distr. over Ω then, $D \otimes D^{\prime}: \Omega \times \Omega \rightarrow \mathbb{R}$ is deg.- d pseudo-distr. over $\Omega \times \Omega$

proof

tensor products of positive semidefinite matrices are positive semidefinite
let $D=\{u, v\}$ be a deg.-2 pseudo-distribution over $\mathbb{R}^{n} \times \mathbb{R}^{n}$

Cauchy-Schwarz inequality

$$
\widetilde{\mathbb{E}}_{D}\langle u, v\rangle \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|_{2}^{2}\right)^{1 / 2}\left(\widetilde{\mathbb{E}}_{D}\|v\|_{2}^{2}\right)^{1 / 2}
$$

proof

$$
\begin{array}{ll}
\left(\widetilde{\mathbb{E}}_{D}\langle u, v\rangle\right)^{2} & \\
=\widetilde{\mathbb{E}}_{D \otimes D}\langle u, v\rangle\left\langle u^{\prime}, v^{\prime}\right\rangle & \left(D \otimes D^{\prime}\right. \text { is product pseudo-distr.) } \\
=\widetilde{\mathbb{E}}_{D \otimes D} \sum_{i j} u_{i} v_{i} u_{j}^{\prime} v_{j}^{\prime} & \\
\leq \frac{1}{2} \widetilde{\mathbb{E}}_{D \otimes D} \sum_{i j} u_{i}^{2}\left(v_{j}^{\prime}\right)^{2}+\sum_{i j}\left(u_{j}^{\prime}\right)^{2} v_{i}^{2} & \left(2 a b=a^{2}+b^{2}-(a-b)^{2}\right) \\
=\frac{1}{2} \widetilde{\mathbb{E}}_{D \otimes D}\|u\|_{2}^{2}\left\|v^{\prime}\right\|_{2}^{2}+\left\|u^{\prime}\right\|_{2}^{2}\|v\|_{2}^{2} & \\
=\widetilde{\mathbb{E}}_{D}\|u\|_{2}^{2} \cdot \widetilde{\mathbb{E}}_{D}\|v\|_{2}^{2} & \left(D \otimes D^{\prime}\right. \text { is product pseudo-distr.) }
\end{array}
$$

let $D=\{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^{n} \times \mathbb{R}^{n}$

Hölder's inequality

$$
\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{3} \cdot v_{i} \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|_{4}^{4}\right)^{3 / 4}\left(\widetilde{\mathbb{E}}_{D}\|v\|_{4}^{4}\right)^{1 / 4}
$$

proof

$$
\begin{align*}
& \widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{3} \cdot v_{i} \\
& \leq\left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{4}\right)^{1 / 2} \cdot\left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{2} \cdot v_{i}^{2}\right)^{1 / 2} \tag{Cauchy-Schwarz}\\
& \leq\left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{4}\right)^{1 / 2} \cdot\left(\widetilde{\mathbb{E}}_{D} \sum_{i} u_{i}^{4} \cdot \widetilde{\mathbb{E}}_{D} \sum_{i} v_{i}^{4}\right)^{1 / 4} \tag{Cauchy-Schwarz}
\end{align*}
$$

we also used:
$\{u, v\}$ deg-4 pseudo-distr. $\rightarrow\{u \otimes u, u \otimes v\}$ deg.-2 pseudo-distr. (every deg. -2 poly. in $\{u \otimes u, u \otimes v\}$ is deg. 4 poly. in $\{u, v\}$)
let $D=\{u, v\}$ be a deg.-4 pseudo-distribution over $\mathbb{R}^{n} \times \mathbb{R}^{n}$

ℓ_{4}-triangle inequality

$$
\left(\widetilde{\mathbb{E}}_{D}\|u+v\|_{4}^{4}\right)^{1 / 4} \leq\left(\widetilde{\mathbb{E}}_{D}\|u\|_{4}^{4}\right)^{1 / 4}+\left(\widetilde{\mathbb{E}}_{D}\|v\|_{4}^{4}\right)^{1 / 4}
$$

proof
expand $\|u+v\|_{4}^{4}$ in terms of $\sum_{i} u_{i}^{4}, \sum_{i} u_{i}^{3} v_{i}, \sum_{i} u_{i}^{2} v_{i}^{2}, \sum_{i} u_{i} v_{i}^{3}, \sum_{i} v_{i}^{4}$
bound pseudo-expect. of "mixed terms" using Cauchy-Schwarz / Hölder
check that total is equal to right-hand side goal: find set of vectors $B \approx\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\}$

approach

show "uniqueness": $\sum_{i} a_{i}^{\otimes 4} \approx \sum_{i} b_{i}^{\otimes 4} \Rightarrow\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\} \approx\left\{ \pm b_{1}, \ldots, \pm b_{m}\right\}$
show that uniqueness proof translates to SOS certificate
\rightarrow any pseudo-distribution over decomposition is "concentrated" on unique decomposition $\left\{ \pm a_{1}, \ldots, \pm a_{m}\right\}$
\rightarrow recover decomposition by reweighing pseudo-distribution by $\log n$ degree polynomial (approximation to δ function)

