
On the Complexity of

Unique Games and Graph Expansion

David Steurer

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

Advisor: Sanjeev Arora

November 2010



© Copyright by David Steurer, 2010. All rights reserved.



Abstract

Understanding the complexity of approximating basic optimization prob-
lems is one of the grand challenges of theoretical computer science. In recent
years, a sequence of works established that Khot’s Unique Games Conjecture,
if true, would settle the approximability of many of these problems, making
this conjecture a central open question of the field.

The results of this thesis shed new light on the plausibility of the Unique
Games Conjecture, which asserts that a certain optimization problem, called
Unique Games, is hard to approximate in a specific regime.

On the one hand, we give the first confirmation of this assertion for a re-
stricted model of computation that captures the best known approximation
algorithms. The results of this thesis also demonstrate an intimate connection
between the Unique Games Conjecture and approximability of graph expan-
sion. In particular, we show that the Unique Games Conjecture is true if the
expansion of small sets in graphs is hard to approximate in a certain regime.
This result gives the first sufficient condition for the truth of the conjecture
based on the inapproximability of a natural combinatorial problem.

On the other hand, we develop efficient approximation algorithms for cer-
tain classes of Unique Games instances, demonstrating that several previously
proposed variants of the Unique Games Conjecture are false. Finally, we
develop a subexponential-time algorithm for Unique Games, showing that
this problem is significantly easier to approximate than NP-hard problems
like Max 3-Sat, Max 3-Lin, and Label Cover, which are unlikely to have
subexponential-time algorithm achieving a non-trivial approximation guaran-
tee. This algorithm also shows that the inapproximability results based on the
Unique Games Conjecture do not rule out subexponential-time algorithms,
opening the possibility for such algorithms for many basic optimization prob-
lems like Max Cut and Vertex Cover.

At the heart of our subexponential-time algorithm for Unique Games lies a
novel algorithm for approximating the expansion of graphs across different
scales, which might have applications beyond Unique Games, especially in
the design of divide-and-conquer algorithms.
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1. Introduction

A central goal of theoretical computer science is to understand the complexity
of basic computational tasks, that is, the minimum amount of computational
resources (especially, time) needed to carry out such tasks.

We will focus on computational tasks arising from combinatorial optimiza-
tion problems. Here, the goal is to optimize a given objective function over a
finite set of solutions. Problems of this kind are ubiquitous in diverse fields,
for example, computer networks, artificial intelligence, operation research,
and the natural and social sciences. A simple, illustrating example is Max

Cut:

Max Cut: Given a graph G, find a partition of the vertex set of G into two sets
so as to maximize the number of edges of G crossing the partition.

With few exceptions, the complexity of finding optimal solutions to combi-
natorial optimization problems is understood. Either there is a (low-degree)
polynomial-time algorithm that finds an optimal solution for the problem, or
there is a (low-degree) polynomial-time reduction from 3-Sat to the problem
that shows that finding an optimal solution is NP-hard (as hard as solving
3-Sat). Prominent examples of the first category are Minimum Spanning Tree

and Maximum Matching. Problems of the first category typically reduce
to some form of convex optimization. Unfortunately, most combinatorial
optimization problems fall in the second category, ruling out polynomial-time
algorithms — and even subexponential-time algorithms — under standard
complexity assumptions. For example, finding an optimal solution for Max

Cut is NP-hard [Kar72] (and the reduction from 3-Sat takes linear time). Since
3-Sat is unlikely to have a exp(o(n))-time algorithm [IPZ01], this reduction
also shows that finding an optimal solution for Max Cut is likely to require
exponential time — exp(Ω(n)) — in the worst case.

Since finding optimal solution is intractable for many problems, it is natural
to allow for approximation, raising the general question:

What is the complexity of finding approximately optimal solutions?

1



1. Introduction

Understanding the approximability of optimization problems turns out to be
challenging. Even after much progress in the last decades, the approximability
of basic problems — in particular, Max Cut — remains open.

1.1. Approximation Complexity

There are several ways to measure the quality of an approximation. In many
cases, the “approximation ratio” is an appropriate measure. (Later, we will
come across problems that require less coarse measures of approximation.)
We say that an algorithm has approximation ratio α if it always computes
a solution whose value is within a factor α of the optimal value. (For us,
there is no difference between approximation ratios α and 1/α. Most of the
discussion in this chapter will be about maximization problems. In this
case, approximation ratios are typically taken to be less than 1.) We allow
algorithms to be randomized. In this case, we compare the expected value of
the computed solution to the optimal value. (The expectation is only over the
randomness of the algorithm and not over a particular input distribution.)
All randomized algorithms considered in this thesis can be derandomized
without (much) loss in efficiency or approximation.

For Max Cut, a trivial algorithm achieves approximation ratio 1/2: A random
partition cuts half of the edges in expectations, which is within a factor 1/2
of the optimal value. For a long time, no better approximation algorithm for
Max Cut was known, raising the question:

Is there an efficient algorithm for Max Cut with non-trivial
approximation ratio?

In a beautiful and influential result, Goemans and Williamson [GW95] an-
swered this question positively, giving an algorithm for Max Cut with non-
trivial approximation ratio αGW ≈ 0.878. This work introduced semidefinite
programming (SDP) relaxations as a general technique for designing approx-
imation algorithms. Today, this technique is the basis of the best known
approximation algorithms for many basic optimization problems. (Often,
no other techniques are known to achieve the same approximation as SDP
relaxations.)

The next question regarding the approximability of Max Cut is whether
the approximation ratio αGW is best possible or if it can be improved. In fact,
until the early 1990s, it was not ruled out that for every constant α < 1, Max

Cut has an efficient algorithm with approximation ratio α. (This question is

2



1. Introduction

not idle because such approximation schemes are known for other NP-hard
optimization problems.)

Is it NP-hard to obtain an approximation ratio 0.9999 for Max Cut?

A breakthrough result, known as PCP Theorem1 [ALM+98, AS98], answered
this question positively (possibly for a constant closer to 1 than 0.9999). For a
large class of problems, this result showed that the approximation ratios of
efficient algorithms are bounded away from 1 (assuming P is different from
NP).

These initial hardness of approximation results (for Max Cut say), based
on the PCP Theorem, are not entirely satisfying. First, the hardness results
leave open the possibility of efficient algorithms with significantly better
approximation ratios than currently known. Second, the initial reductions
showing these hardness results were quite inefficient (the blowup of the
reduction was a high-degree polynomial, especially because of the use of Raz’s
Parallel Reduction Theorem [Raz98]).

Numerous works addressed the first issue. In an influential work [Hås01],
Håstad showed optimal inapproximability results for several basic optimiza-
tion problem, including Max 3-Lin, a generalization of Max Cut to 3-uniform
hypergraph. Like for Max Cut, the trivial randomized algorithm for Max

3-Lin achieves approximation ratio 1/2. Shockingly, this algorithm is optimal
for Max 3-Lin (unlike for Max Cut). Håstad shows that no efficient algorithm
for Max 3-Lin can achieve a non-trivial approximation ratio (better than 1/2)
unless P = NP. For many other problems, Håstad obtains improved, but not
necessarily tight hardness results. For example, his results rule out efficient
algorithms for Max Cut with approximation ratio less than 16/17 ≈ 0.941 (us-
ing a gadget of Trevisan et al. [TSSW00]). Closing the gap between known
approximation algorithms and known hardness results for basic problems
like Max Cut remains one of the outstanding open problems of the field.
As discussed in the next section, Khot’s Unique Games Conjecture offers a
unified way to resolve this question for many problem classes. The hardness
results based on the Unique Games Conjecture can be seen as a continuation
of Håstad’s work.

The second issue (inefficiency of initial hardness reductions) led to the devel-
opment of efficient PCP constructions, culminating in the work of Moshkovitz
and Raz [MR08]. Their result implies that Håstad’s reductions (from 3-Sat)

1Here, PCP stands for probabilistically checkable proofs.

3



1. Introduction

can be carried out in near-linear time, which shows that achieving a non-
trivial approximation ratio for Max 3-Lin has essentially the same complexity
as solving 3-Sat (exactly). Concretely, if one assumes the Exponential Time
Hypothesis [IPZ01], namely that the decision problem 3-Sat requires time
exp(Ω(n)), then for every constant2 ε > 0, achieving an approximation ratio
1/2 + ε for Max 3-Lin requires time exp(n1−o(1)). One of the main results of this
thesis is that reductions based on the Unique Games Conjecture are inherently
inefficient, and therefore hardness results based on this conjecture cannot rule
out subexponential approximation algorithms.

1.2. Unique Games Conjecture

Unique Games
3 is the following constraint satisfaction problem, generalizing

Max Cut:

Unique Games: Given a variable set V , an alphabet size k ∈ N, and a list of
constraints of the form xi − xj = c mod k with i, j ∈ V and c ∈ {1, . . . , k},
find an assignment to the variables (xi)i∈V so as to satisfy as many of the
constraints as possible.

Khot [Kho02] conjectured that this problem is hard to approximate, in the
sense that for ε > 0, it is NP-hard to distinguish between the case that at
least 1− ε of the constraints can be satisfied and the case that not more than ε
of the constraints can be satisfied. (An additional condition of the conjecture
is that the alphabet size is allowed to grow only mildly with the input size,
say k = o(logn).)

Unique Games Conjecture: For every constant ε > 0, the following task is
NP-hard: Given a Unique Games instance with n variables and alphabet
size k = o(logn), distinguish between the cases,

YES: some assignment satisfies at least 1− ε of the constraints,

NO: no assignment satisfies at least ε of the constraints.

2One can choose ε even slightly subconstant.
3In fact, Unique Games typically refers to a slightly more general problem. (See Section 2.3

for the more general definition.) For the purpose of the current discussion, it suffices to
consider the special case of Unique Games described above.

4



1. Introduction

Starting with Khot’s work, a sequence of results showed that the truth
of this conjecture would imply improved and often optimal hardness of
approximation results for many basic problems, including Max Cut. Perhaps
most strikingly, Raghavendra [Rag08] showed that assuming the Unique
Games Conjecture a simple SDP relaxation achieves an optimal approximation
for every constraint satisfaction problem (this class of problems includes Max

Cut, Max 3-Lin, and Unique Games). We refer to the survey [Kho10] for a
more complete account of the known consequences of the Unique Games
Conjecture.

Independent of the truth of the Unique Games Conjecture, the above results
demonstrate that for many problems, Unique Games is a common barrier
for improving current algorithms (in the sense that improving the current
best algorithm for, say, Max Cut requires giving an improved algorithm for
Unique Games). We call approximation problems of this kind UG-hard (as
hard as approximating Unique Games).

The great number of strong UG-hardness results makes the Unique Games
Conjecture a fascinating open question. Towards resolving this conjecture, it
makes sense to ask more generally:

What is the complexity of approximating Unique Games?

On the one hand, any lower bound on the complexity of Unique Games

typically translates to corresponding lower bounds for all UG-hard problems.
(This translation is essentially without quantitative loss, because UG-hardness
reductions tend to be very efficient — the output of the reduction is only a
constant factor larger than the input.) On the other hand, any upper bound
on the complexity of Unique Games opens the possibility of similar upper
bounds for other UG-hard problems.

The works in this thesis address several aspects of the above question. First,
we consider the following aspect:

What properties make Unique Games instances easy?

The goal is to develop efficient algorithms for Unique Games that provide
good approximation guarantees for instances with certain properties. These
properties should not be too restrictive so that more general constraint satis-
faction problems (like Label Cover) remain hard even restricted to instances
with these properties. Results of this kind give concrete explanations why the
Unique Games Conjecture seems difficult to prove. Any approach for proving
the conjecture has to avoid producing instances with these property. Another

5



1. Introduction

hope in pursuing this question is that algorithms developed for special classes
of instances might be useful for general instances, leading to new upper
bounds on the complexity of Unique Games and potentially to a refutation of
the Unique Games Conjecture. (This hope turns out to be justified; at the end
of this section, we discuss a surprising algorithm for Unique Games that uses
algorithms developed for special classes of instances.)

In this thesis, we identify two properties that make Unique Games instances
easy. (The properties are not overly restrictive in the sense that the more
general Label Cover

4 problem remains hard when restricted to instances
with these properties.)

In Chapter 3, we show that instances with expanding constraint graphs
are easy. The constraint graph of a Unique Games instance is a graph on the
variable set with an edge between any two variables that appear in the same
constraint. Expansion measures how well a graph is connected. (In the next
section, we discuss graph expansion in greater detail.) In particular, randomly
generated graphs tend to be expanding. Therefore, this result demonstrates
that Unique Games is easy on certain, commonly studied input distributions.

In Chapter 4, we show that instances of Unique Games arising from parallel
repetition are easy. Parallel repetition is a commonly used reduction for
amplifying approximation hardness (e.g., for Label Cover). This result shows
that parallel repetition is unlikely to be useful for proving the Unique Games
Conjecture. (Previous work [FKO07] suggested an approach for proving the
Unique Games Conjecture based on parallel repetition.)

A major shortcoming of the current knowledge about the Unique Games
Conjecture is that only few consequences of a refutation of the conjecture are
known. Concretely, the following scenario is not ruled out: there exists an
efficient algorithm for Unique Games and, at the same time, it is intractable to
achieve better approximations for all other UG-hard problems. (In contrast, an
efficient algorithm for 3-Sat implies efficient algorithms for all other NP-hard
problems.) Hence, the goal is to identify “hard-looking” problems that could
be solved efficiently if an efficient algorithm for Unique Games existed, raising
the question:

What “hard-looking” problems reduce to Unique Games?

4
Label Cover is a more general constraint satisfaction problem than Unique Games, where
the constraints are allowed to be projections instead of permutations. The analog of the
Unique Games Conjecture for Label Cover is known to be true (e.g., [MR08]).

6



1. Introduction

In Chapter 6, we show that a certain graph expansion problem reduces to
Unique Games and is therefore easier to approximate than Unique Games.
(Graph expansion problems are well-studied and have a wide range of appli-
cations. See the next section for more discussion.) Our reduction shows that
any efficient algorithm for Unique Games could be turned into an algorithm
for this graph expansion problem. This algorithm would have a significantly
better approximation guarantee than the current best algorithms for this prob-
lem. Before this work, no consequence of a refutation of the Unique Games
Conjecture was known for a problem other than Unique Games itself.

Showing consequences of a refutation of the Unique Games Conjecture
gives some evidence for the truth of the conjecture. (Especially, if the conse-
quences are surprising.) Another way to generate evidence for the truth of the
conjecture is to prove lower bounds for Unique Games in restricted models of
computation, which leads us to the following question:

What is the complexity of approximating Unique Games in
restricted models of computation?

In the context of approximation problems, it is natural to study models
of computations defined by hierarchies of relaxations (typically linear or
semidefinite relaxations). Such hierarchies contain relaxations with gradually
increasing complexity — from linear complexity to exponential complexity.
Relaxations with higher complexity provide better approximations for the
optimal value of optimization problems. (The relaxations with highest, i.e.,
exponential, complexity typically compute the optimal value exactly.)

Starting with the seminal work of Arora, Bollobás, and Lovász [ABL02],
lower bounds on the complexity of many approximation problems were ob-
tained in various hierarchies. We show the first super-polynomial lower bound
for Unique Games in a hierarchy that captures the best known algorithms for
all constraint satisfaction problems (see Chapter 8).

Our lower bounds translate to corresponding lower bounds for most classes
of UG-hard problems (via the known UG-hardness reductions). Even for
specific UG-hard problem like Max Cut such lower bounds were not known
before.

Finally, we address the question about the complexity of approximating
Unique Games directly. In Chapter 5, we give an algorithm for Unique Games

with subexponential running time. The algorithm achieves an approxima-
tion guarantee that the Unique Games Conjecture asserts to be NP-hard to

7



1. Introduction

achieve. Concretely, the algorithm distinguishes between the case that at
least 1− ε of the constraints are satisfiable and the case that not more than ε
of the constraints are satisfiable in time exp(knε1/3), where n is the number
of variables and k is alphabet size. We conclude that UG-hardness results
cannot rule out subexponential algorithms (unlike hardness results based on
Håstad’s reductions). The algorithm also shows that any reduction from 3-Sat
to Unique Games proving the Unique Games Conjecture must be inefficient
(i.e., blow up the instance size by a high-degree polynomial ), assuming 3-Sat
does not have subexponential algorithms. In this way, our algorithm rules out
certain classes of reductions for proving the Unique Games Conjecture (in
particular, reductions of the kind of Håstad’s reductions).

At the heart of our subexponential algorithm for Unique Games lies a
novel algorithm for approximating the expansion of graphs across different
scales. Cheeger’s influential work [Che70], relating eigenvalues and expansion,
started a great body of research on approximations for graph expansion. The
results of this thesis show an intimate connection between the complexity of
Unique Games and the complexity of approximating graph expansion. We
discuss more of this connection in next sections (especially §1.4).

1.3. Graph Expansion

Graphs are ubiquitous structures in computer science, mathematics, and the
natural and social sciences. For example, they are useful for modeling various
networks like the internet, genetic networks, and social networks.

A fundamental parameter of a graph is its expansion. The expansion5 of a
vertex set S, denoted Φ(S), measures how well the vertices in S are connected
to the rest of the graph. Formally, Φ(S) is defined as the number of edges
leaving S normalized by the number of the edges incident to the set. (An edge
with both endpoints in the set S counts twice in this normalization.) The
expansion Φ of a graph is then defined as the minimum expansion of a vertex
set with volume at most 1/2. (In the context of expansion, the volume of a set
is defined as the fraction of edges incident to the set.)

A natural computational question is to compute the expansion of a graph.
We can formulate this question as optimization problem:

Sparsest Cut: Given a graph, find a vertex set S with volume at most 1/2 so

5In this thesis, expansion always refers to edge expansion. In the context of Markov chains,
the quantity we call expansion is often called conductance.

8



1. Introduction

as to minimize its expansion Φ(S).

A related problem is Balanced Separator, where the goal is to find a set with
minimum expansion among all sets with volume between β and 1/2 for some
balance parameter β. We refer to optimization problem of this kind (where
we are required to find a set with minimum expansion subject to volume
constraints) loosely as graph expansion problems.

Unfortunately (but not surprisingly), it is NP-hard to solve graph expansion
problems exactly, which motivates the following question:

How well can we approximate graph expansion problems?

In an influential work, Cheeger [Che70] showed a relation, known as
Cheeger’s inequality, between the expansion of a graph and the second largest
eigenvalue of its adjacency matrix. (Cheeger’s proof is for manifolds instead
of graphs. Dodziuk [Dod84] and independently Alon–Milman [AM85] and
Alon [Alo86] showed the corresponding inequality for graphs.) Cheeger’s
inequality leads to an algorithm for Sparsest Cut with the following approxi-
mation guarantee: Given a graph with expansion ε, the algorithm finds a set
with volume at most 1/2 and expansion at most 2

√
ε. We say that the algorithm

achieves an (ε,2
√
ε)-approximation for every ε > 0.

Leighton and Rao [LR99] gave an algorithm for Sparsest Cut with approxi-
mation ratio O(logn) based on a linear programming relaxation. Arora, Rao,
and Vazirani (ARV) [ARV04] improved this approximation ratio to O(

√
logn)

using a semidefinite programming relaxation. Both of these approxima-
tions are incomparable to Cheeger’s inequality. For graphs with low expan-
sion Φ � 1/ logn, the ARV approximation guarantee is strongest. For expan-
sion Φ � 1/ logn, Cheeger’s inequality gives the best known approximation.

A major open question in combinatorial optimization is whether the ap-
proximations of ARV and Cheeger’s inequality are optimal in their respec-
tive regimes, or if better approximations for Sparsest Cut are achievable.
Even assuming the Unique Games Conjecture, no strong hardness result for
Sparsest Cut is known. (The best known result is that one cannot achieve
approximation ratios arbitrarily close to 1 unless 3-Sat has subexponential
algorithms [AMS07].) In this thesis, we introduce a hypothesis about the
approximability of the expansion of small sets that allows us to show quanti-
tatively tight hardness results for Sparsest Cut and other expansion problems
(in a certain regime).
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1. Introduction

In the following discussion, we will focus6 on the case that the size of the
graph is very large compared to its expansion (for example, Φ � 1/ loglogn).
In this case, approximation guarantees depending on the instance size are
meaningless. In particular, Cheeger’s inequality provides the only known
non-trivial approximation for Sparsest Cut in this regime.

1.4. Small-Set Expansion Hypothesis

Cheeger’s inequality provides a good approximation for Sparsest Cut in the
sense that it can distinguish between the case that the expansion of a graph
is very close to 0, say Φ 6 0.001, and the case that the expansion is bounded
away from 0, say Φ > 0.1. For the following natural generalization of Sparsest
Cut, no such approximation is known:

Small-Set Expansion: Given a graph and a scale δ, find a vertex set S with
volume at most δ so as to minimize its expansion Φ(S).

Concretely, for every constant ε > 0, there exists δ > 0 such that all known
polynomial-time algorithms fail to distinguish between the following cases:

Small-set expansion close to 0: there exists a vertex set with volume δ and
expansion at most ε,

Small-set expansion close to 1: every vertex set with volume δ has expan-
sion more than 1− ε.

The lack of efficient algorithms suggests that this problem may be compu-
tationally hard. To formalize this possibility, we introduce the following
hypothesis:

Small-Set Expansion (SSE) Hypothesis: For every constant ε > 0, there ex-
ists a constant δ = δ(ε) > 0 such that the following task is NP-hard: Given
a graph, distinguish between the cases,

YES: the graph contains a vertex set with volume δ and expansion at
most ε,

6 This restriction is of course not without loss of generality. We restrict ourselves to this
regime because it turns out to be closely related to the Unique Games Conjecture and
because we can prove tight bounds on the approximability of graph expansion problems in
this regime. Understanding the approximability of Sparsest Cut in the regimeΦ � 1/ logn
remains wide open.

10



1. Introduction

NO: the graph does not contain a vertex set with volume δ and expan-
sion at most 1− ε.

In Chapter 6, we show that this hypothesis implies the Unique Games
Conjecture. (Combined with results of Chapter 7, we can in fact show that this
hypothesis is equivalent to a variant of the Unique Games Conjecture, namely
Hypothesis 6.3.) This result gives the first (and so far only) sufficient condition
for the truth of the Unique Games Conjecture based on the inapproximability
of a problem different than Unique Games.

Given that the SSE hypothesis is a stronger hardness assumption than the
Unique Games Conjecture, we can ask if it has further consequences (beyond
the consequences of the Unique Games Conjecture).

What consequences would a confirmation of the SSE hypothesis have?

In Chapter 7, we show that the SSE hypothesis implies quantitatively tight
inapproximability results for many graph expansion problems, in particular
Sparsest Cut and Balanced Separator. Concretely, our results imply that it is
SSE-hard to beat Cheeger’s inequality and achieve an (ε,o(

√
ε))-approximation

for Sparsest Cut. (We say a problem is SSE-hard if an efficient algorithm for
the problem implies that the SSE hypothesis is false.)

There is a strong parallel between this result and the known consequences
of the Unique Games Conjecture. The Unique Games Conjecture asserts a
qualitative7 inapproximability for Unique Games, which is generalization of
Max Cut. In turn, the conjecture implies tight quantitative inapproximability
results for Max Cut and similar problems. Similarly, the SSE hypothesis
asserts a qualitative inapproximability for Small-Set Expansion, which gen-
eralizes Sparsest Cut. In turn, the hypothesis implies tight quantitative
inapproximability results for Sparsest Cut and other graph expansion prob-
lems. The value of results of this kind is that they unify the question of
improving known algorithms for a class of problems to a question about the
qualitative approximability of a single problem.

The significant consequences of a confirmation of the SSE hypothesis make
it an interesting open question to prove or refute the hypothesis. As for
Unique Games, it makes sense to ask the general question:

What is the complexity of approximating Small-Set Expansion?

7 The Unique Games Conjecture is a qualitative hardness assumption in the sense that it
does not specify any precise absolute constants or any concrete functional dependencies.
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1. Introduction

On the one hand, it turns out that the lower bounds for Unique Games in
Chapter 8 extend to Small-Set Expansion, confirming the SSE hypothesis
in a restricted model of computation (defined by a hierarchy of relaxations
that captures the best known approximation algorithms). As for UG-hard
problems, this lower bound translates to all SSE-hard problems. These results
give the first quantitatively tight super-polynomial lower bounds for graph
expansion problems in a hierarchy that captures the best known algorithms.

The results of Chapter 6 and Chapter 7 also show that the SSE hypothesis is
equivalent to a variant of the Unique Games Conjecture. This variant asserts
that Unique Games remains hard to approximate even restricted to instances
with constraint graphs satisfying a relatively mild, qualitative expansion
property. (In particular, the techniques of Chapter 3 — unique games with
expanding constraints graphs — fail on instances with this mild expansion
property.)

On the other hand, we show that Small-Set Expansion (like Unique Games)
admits approximation algorithms with subexponential running time (see
Chapter 5). This result demonstrates that SSE-hardness results do not rule
out subexponential algorithms. A concrete possibility is that Sparsest Cut
has a subexponential-time algorithm with constant approximation ratio. The
subexponential-time algorithm for Small-Set Expansion inspired the subex-
ponential algorithm for Unique Games discussed previously (in §1.2).

1.5. Organization of this Thesis

In the following, we outline the structure of this thesis and describe the
contributions and results of the individual chapters.

Part 1 — Algorithms

Chapter 3: Unique Games with Expanding Constraint Graphs. We study
the approximability of Unique Games in terms of expansion properties of
the underlying constraint graph. If the optimal solution satisfies a 1 − ε
fraction of the constraints and the constraint graph has spectral gap8 λ, the
algorithm developed in this chapter finds an assignment satisfying a 1−O(ε/λ)
fraction of constraints. This results demonstrates that Unique Games instances

8Cheeger’s inequality asserts that spectral gap of a graph is close to its expansion. Concretely,
λ/2 6 Φ 6

√
2λ. Sometimes λ is called spectral expansion.
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1. Introduction

with spectral gap λ� ε cannot be hard in the sense of the Unique Games
Conjecture.

Our algorithm is based on a novel analysis of the standard SDP relaxation
for Unique Games. In contrast to the usual local analysis, our analysis takes
into account global properties of the solution to the SDP relaxation.

This chapter is based on joint work with Arora, Khot, Kolla, Tulsiani, and
Vishnoi [AKK+08].

Chapter 4: Parallel-Repeated Unique Games. We study the approxima-
bility of parallel-repeated instances of Unique Games. Parallel repetition is
commonly used for hardness amplification (e.g., for Label Cover, a general-
ization of Unique Games). We give an improved approximation algorithm for
parallel-repeated instances of Unique Games. The guarantee of our algorithm
matches the best known approximation for unrepeated instances [CMM06a].
In this sense, our result demonstrates that parallel repetition fails to amplify
hardness (for Unique Games).

Our algorithm is based on a novel rounding for the standard SDP relaxation
of Unique Games. In contrast to previous works, our rounding is able to
exploit a tensor-product structure of the solution.

This chapter is based on joint work with Barak, Hardt, Haviv, Rao and
Regev [BHH+08] and on the work [Ste10b].

Chapter 5: Subexponential Approximation Algorithms. We develop an
algorithm for Unique Games with subexponential running time. The Unique
Games Conjecture asserts that the approximation provided by our algorithm
is NP-hard to achieve. A consequence of our algorithm is that known UG-
hardness results do not rule subexponential algorithms.

The main ingredient of our algorithm is a general decomposition for graphs.
We show that any graph can be efficiently partitioned into induced subgraphs,
each with at most nβ eigenvalues above 1 − η. Furthermore, the partition
respects all but O(η/β3)1/2 of the original edges.

This chapter is based on joint work with Arora and Barak [ABS10].

Part 2 — Reductions

Chapter 6: Graph Expansion and the Unique Games Conjecture. We pro-
pose a hypothesis (SSE hypothesis) about the approximability of the expansion
of small sets in graphs. The reduction from Small-Set Expansion to Unique

13



1. Introduction

Games developed in this chapter demonstrates that this hypothesis implies
the Unique Games Conjecture. This result gives the first sufficient condition
for the truth of the Unique Games Conjecture based on a problem different
that Unique Games.

Furthermore, we show a partial converse of this implication: An refutation
of the SSE hypothesis implies that a stronger variant of the Unique Games
Conjecture is false. This stronger variant asserts that Unique Games remains
hard to approximate (in the sense of the Unique Games Conjecture) even
restricted to instances with constraint graphs satisfying a relatively mild,
qualitative expansion property.

This chapter is based on joint work with Raghavendra [RS10].

Chapter 7: Reductions between Expansion Problems. Based on the reduc-
tion from Small-Set Expansion to Unique Games in Chapter 6, we develop
reductions from Small-Set Expansion to other graph expansion problems, in
particular Balanced Separator. Under the SSE hypothesis, these reductions
imply quantitatively tight inapproximability results for these graph expansion
problems.

Furthermore, we show that the SSE hypothesis implies a stronger variant
of the Unique Games Conjecture, asserting that Unique Games restricted to
instances with constraint graphs that satisfy a certain expansion property.

Compared to similar reductions from Unique Games, a key novelty of these
reductions is that, on top of a composition with local gadgets, carefully placed
random edges are added to the construction. The random edges are placed
such that, on the one hand, the completeness of the reduction is not changed
and, on the other hand, the expansion properties in the soundness case are
improved.

This chapter is based on joint work with Raghavendra and Tul-
siani [RST10b].

Part 3 — Lower Bounds

Chapter 8: Limits of Semidefinite Programming. We show super-
polynomial lower bounds for Unique Games in certain hierarchies of SDP
relaxations (which capture the best known approximation algorithms for
constraint satisfaction problems). Previous lower bounds considered only
relaxations of fixed polynomial complexity or hierarchies that do not capture
the best known approximation algorithms. Via known reductions, our lower

14



1. Introduction

bounds extend to all known UG-hard problems. (Our construction and analy-
sis also yields super-polynomial lower bounds for Small-Set Expansion. Via
the reductions in Chapter 7, these lower bounds extend to other SSE-hard
graph expansion problems, like Balanced Separator.)

A simple, but important ingredient of our analysis is a robustness theorem
for the hierarchies we consider. This robustness theorem asserts that an
“approximate solution” to a relaxation in these hierarchies can be turned to a
proper solution without changing the objective value by much.

This chapter is based on joint work with Raghavendra [RS09a].
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2. Background

This chapter serves as a source of references for the following chapters. (How-
ever, its content is not assumed in the following.) Interested readers can skim
this chapter for the first reading.

2.1. Optimization and Approximation

For simplicity, we restrict the discussion to maximization problems. For
minimization problems, we use the same notations, but change signs in the
definitions appropriately.

Optimization Problems. A generic optimization instance I consists of a set Ω
of feasible solutions and an objective function f : Ω→ R. (The symbol I is a
capital “i” in Fraktur font. It is intended to be pronounced as “i”.) If the
meaning is clear from the context, we identify the instance I with its objective
function and write I(x) to denote the objective value of x. The (optimal) value
opt(I) is defined as maximum objective value of a feasible solution,

opt(I) def= max
x∈Ω
I(x) .

A solution x∗ is optimal for instance I if it achieves the optimal value I(x∗) =
opt(I).

An optimization problem Π is formally specified as a set of optimization
instances. We say that an optimization problem Π is combinatorial if every
instance I ∈Π has only a finite number of feasible solutions. For any optimiza-
tion problem Π, we associate the following computational problem Exact-Π,

Exact-Π: Given an instance I ∈Π, find an optimal solution x∗ of I.

The computational problem Exact-Π makes only sense if we also fix an suc-
cinct encoding of the instances of Π. For example, the instances of Max Cut

are naturally encoded as graphs.
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2. Background

Typically, we use the same notation for the collection of instances and
for the computational problem. For example, Max Cut stands both for the
set of Max Cut instances and for the computational problem of finding the
maximum cut in a graph.

Approximation Algorithms. We say that an algorithm A achieves a (c, s)-
approximation for an optimization problem Π if given an instance I ∈Π with
opt(I) > c, the algorithm finds a feasible solution x =A(I) for the instance I
with objective value I(x) > s.

To understand the approximation guarantees of an algorithm A for a prob-
lem Π, we want to find for every value c ∈R, the largest value s such that the
algorithm A achieves a (c, s)-approximation for Π.

For example, the Goemans–Williamson algorithm achieves a (1 − ε, 1 −
O(
√
ε))-approximation for Max Cut for all ε > 0.

If the objective functions of all instances of a problem Π are nonnegative,
we define the approximation ratio α of an algorithm A for Π as the minimum
ratio between the value of the solution found by A and the optimal value,

α
def= min

I∈Π
x=A(I)

I(x)
opt(I)

.

Gap-Promise Problems. Hardness of approximation results are typically
based on gap-preserving reductions between optimization problems. In this
context, it is convenient to associate the following kind of promise problems
with optimization problems. For an optimization problem Π and constants
c, s ∈R with c > s, define the following promise problem,

(c,s)-Gap-Π: Given an instance I ∈Π, distinguish between the cases

Yes opt(I) > c ,

No opt(I) < s .

(In some situations, it makes sense to take c and s as functions of instance
parameters, e.g., the size of the instance. In this thesis, we focus on the case
that c and s are constants, depending only on the problem Π.)
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2. Background

2.2. Graphs, Expansion, and Eigenvalues

In this work, we consider undirected, weighted graphs and we allow self-loops.
In this case, we can represent a graph G with vertex set V as a symmetric
distribution over pairs ij with i, j ∈ V . The edges of G are the pairs ij in the
support of this distribution. (Here, symmetry means that for any two vertices
i, j ∈ V , the pair ij has the same probability as the pair ji.) We will assume
finite vertex sets.

We write ij ∼ G to denote a random edge ij sampled from G. For a vertex
i ∈ V , we write j ∼ G(i) to denote a random neighbor of i in G. (A random
neighbor of i is obtained by sampling a random edge of G conditioned on
the event that the first endpoint of the edge is i and outputting the second
endpoint of that edge.)

Expansion and Expansion Profile. For two vertex sets S,T ⊆ V , we define
G(S,T ) as the fraction of edges going from S to T ,

G(S,T ) def= P
ij∼G
{i ∈ S, j ∈ T } .

For a vertex set S ⊆ V , we define its (edge) boundary ∂G(S) as the fraction of
edges leaving S (going from S to the complement of S),

∂G(S) def= G(S,V \ S) .

We define its volume µG(S) as the fraction of edges going out a vertex in S,

µG(S) def= G(S,V ) .

The expansion ΦG(S) is the ratio of these quantities

ΦG(S) def=
∂G(S)
µG(S)

.

(According to the above expression, the expansion of the empty set is un-
defined, since both the boundary and the volume is naught. Since we are
interested in minimizing the expansion, it is convenient to define the expan-
sion of the empty set to be infinite.)
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2. Background

The quantities defined above have the following probabilistic interpreta-
tions,

∂G(S) = P
ij∼G
{i ∈ S, j < S} ,

µG(S) = P
ij∼G
{i ∈ S} ,

ΦG(S) = P
ij∼G
{j < S | i ∈ S} .

Another probabilistic interpretation of the expansion of the set S is the fraction
of neighbors outside of S for a typical vertex in S,

ΦG(S) = E
i∼G

[
P

j∼G(i)
{j < S}

∣∣∣∣ i ∈ S] .
Here, i ∼ G denotes a random vertex of G, obtained by sampling a random
edge of G and taking its first endpoint. If the graph G is clear from the context,
we usually write i ∼ V or i ∼ µ to denote a random vertex of G.

The expansion ΦG of the graph G is the minimum expansion of a set with
volume at most 1/2,

ΦG
def= min

S⊆V
µG(S)61/2

ΦG(S) .

More generally, for δ ∈ [0,1], the expansion at volume δ, denoted ΦG(δ), is the
minimum expansion of a set with volume at most δ,

ΦG(δ) def= min
S⊆V

µG(S)6δ

ΦG(S) .

The curve δ 7→ ΦG(δ) is called the expansion profile of G. If the graph G is clear
from the context, we typically omit the subscript G for the above notations.

Note that for every δ > 0, the expansion profile satisfies Φ(δ) · δ′ = Φ(1 −
δ) · (1− δ′) for some δ′ 6 δ. In particular, Φ(1− δ) 6 δ/(1− δ). Therefore, we
typically take δ ∈ [0,1/2].

Functions on Graphs, Laplacians, and Cheeger Bounds. For a graph G
with vertex set V , we write L2(V ) to denote the space {f : V → R} equipped
with natural inner product for f ,g ∈ L2(V ),

〈f ,g〉 def= E
i∼V

figi .
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2. Background

(We often write fi to denote the value f (i) of the function f on vertex i.) This
inner product induces the norm ‖f ‖ := 〈f , f 〉1/2. We will also be interested in
the norms ‖f ‖∞ = maxi∈V fi and ‖f ‖1 = Ei∼V |fi |.

We identify the graph G with the following linear (Markov) operator on V ,

Gf (i) def= E
j∼G(i)

f (j) .

The matrix corresponding to this operator is the (weighted) adjacency matrix
of G normalized so that every row sums to 1. The operator G is self-adjoint
with respect to the inner product on L2(V ) (because 〈f ,Gg〉 = Eij∼G figj).
Since G is self-adjoint, its eigenvalues are real and its eigenfunctions are an
orthogonal basis of L2(V ).

For a vertex set S ⊆ V , let 1S ∈ L2(V ) be the {0,1}-indicator function of S.
(For the all-ones functions 1V , we typically drop the subscript.) Since G1 =
1, the all-ones functions is an eigenfunction of G with eigenvalue 1. The
Laplacian LG of the graph G is the following linear operator on L2(V ),

LG
def= I −G,

where I is the identity operator on L2(V ). The Laplacian LG corresponds to
the following quadratic form

〈f ,Lf 〉 = E
ij∼G

1
2

(
fi − fj

)2
.

(We drop the subscript for the Laplacian if the graph is clear from the context.)
The following identities hold for all vertex sets S,T ⊆ V ,

G(S,T ) = 〈1S ,G1T 〉 ,
µ(S) = ‖1S‖2 , ∂(S) = 〈1S ,L1S〉 ,

Φ(S) =
〈1S ,L1S〉
‖1S‖2

.

Lemma 2.1 (Cheeger’s Inequality, [Che70]). Let 1 = λ1 > λ2 > . . . > λn be the
eigenvalues of G. Suppose the gap between the largest and second largest eigenvalue
is ε = λ1 −λ2 (the spectral gap of G). Then,

ε/2 6 ΦG 6
√

2ε .
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The proof of Cheeger’s inequality combined with a truncation argument
yields the following lemma. For a self-contained proof, see the next subsection
§2.2.1.

Lemma 2.2 (Local Cheeger Bound). For every function f ∈ L2(V ), there exists a
level set S ⊆ V of the function f 2 with volume µ(S) 6 δ and expansion

Φ(S) 6

√
1− 〈f ,Gf 〉2/‖f ‖4

1− ‖f ‖21/δ‖f ‖2
6

√
2〈f ,Lf 〉/‖f ‖2

1− ‖f ‖21/δ‖f ‖2
.

The above Cheeger bound is an important ingredient for the results of
Chapter 5 (Subexponential Approximation Algorithms). Local variants of
Cheeger’s inequality (similar to the above bound) appear in several works, for
example, [DI98, GMT06, RST10a].

Spectral Profile. The spectral profile of the graph G refers the curve δ 7→
ΛG(δ), where

ΛG(δ) def= min
f ∈L2(V )
‖f ‖216δ‖f ‖

2

〈f ,Lf 〉
‖f ‖2

.

The spectral profile is a lower bound on the expansion profile, ΛG(δ) 6ΦG(δ),
because f = 1S satisfies ‖f ‖21 = µ(S)‖f ‖2 for every vertex set S ⊆ V . Lemma 2.2
implies an upper bound of the expansion profile in terms of spectral profile.
For all δ,γ ∈ [0,1), the following relations hold

Λ(δ) 6Φ(δ) 6
√

2Λ
(
(1−γ)δ

)
/γ .

2.2.1. Proof of Local Cheeger Bound

In this subsection, we prove the following local Cheeger bound.

Lemma (Restatement of Lemma 2.2). For every function f ∈ L2(V ), there exists
a level set S ⊆ V of the function f 2 with volume µ(S) 6 δ and expansion

Φ(S) 6

√
1− 〈f ,Gf 〉2/‖f ‖4

1− ‖f ‖21/δ‖f ‖2
6

√
2〈f ,Lf 〉/‖f ‖2

1− ‖f ‖21/δ‖f ‖2
.

Let f ∈ L2(V ). Suppose f 2 6 1. Consider the following distribution over
vertex subsets S ⊆ V :
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1. Sample t ∈ [0,1] uniformly at random.

2. Output the set S = {i ∈ V | f 2
i > t}.

Note that every set S in the support of this distribution is a level set of the
function f 2. In the following lemmas, we establish simple properties of this
distribution.

Claim 2.3. The expected volume of S satisfies ES µ(S) = ‖f ‖2.

Proof. We calculate the expected volume as follows

E
S
µ(S) = E

i∼µ
P

t∈[0,1]

{
f 2
i > t

}
= ‖f ‖2 .

Claim 2.4. The second moment of µ(S) is at most ES µ(S)2 6 ‖f ‖21.

Proof. We bound the expectation of µ(S)2 as follows

E
S
µ(S)2 = E

i,j∼µ
P
t

{
min{f 2

i , f
2
j } > t

}
= E
i,j∼µ

min{f 2
i , f

2
j } 6 E

i,j∼µ
fifj = ‖f ‖21 .

Claim 2.5. Sets with volume larger than δ contribute to the expected volume at
most ES µ(S)1µ(S)>δ 6 ES µ(S)2/δ.

Proof. Immediate because µ(S)1µ(S)>δ 6 µ(S)2/δ holds pointwise.

Claim 2.6. The expected boundary of S is bounded by

E
S
G(S,V \ S) 6 ‖f ‖2

√
1− 〈f ,Gf 〉2/‖f ‖4.

Proof. We calculate the expected boundary of S and apply the Cauchy–
Schwarz inequality,

E
S
G(S,V \ S) = E

ij∼G
P
S
{i ∈ S ∧ j < S} = E

ij∼G
P
t

{
f 2
i > t > f

2
j

}
= E
ij∼G

max
{
f 2
i − f

2
j ,0

}
= 1

2 E
ij∼G

∣∣∣∣f 2
i − f

2
j

∣∣∣∣ = 1
2 E
ij∼G

∣∣∣fi − fj ∣∣∣ · ∣∣∣fi + fj
∣∣∣

6
(
E
ij∼G

1
2(fi − fj)2 · E

ij∼G
1
2(fi + fj)

2
)1/2

(using Cauchy–Schwarz)

= 〈f , (I −G)f 〉1/2〈f , (I +G)f 〉1/2 =
√
‖f ‖4 − 〈f ,Gf 〉2 .

22



2. Background

We combine the previous claims to complete the proof of Lemma 2.2. Let S∗

be the level set of f 2 with volume at most δ and minimum expansion. Then,

Φ(S∗) 6
ESG(S,V \ S)1µ(S)6δ

ES µ(S)1µ(S)6δ

6
ESG(S,V \ S)

ES µ(S)−ES µ(S)2/δ
(using Claim 2.5)

6
‖f ‖2

√
1− 〈f ,Gf 〉2/‖f ‖4

‖f ‖2 − ‖f ‖21/δ
(using Claim 2.3, Claim 2.4,

and Claim 2.6).

Therefore, the set S∗ satisfies the conclusion of the local Cheeger bound
(Lemma 2.2).

2.3. Unique Games and Semidefinite Relaxation

Unique Games. A unique game U with vertex set V and alphabet Σ is a
distribution over constraints (u,v,π) ∈ V ×V × SΣ, where SΣ denotes the set
of permutations of Σ. An assignment x ∈ ΣV satisfies a constraint (u,v,π) if
xv = π(xu), that is, the permutation π maps labels for u to labels for v. The
value U(x) of an assignment x for U is the fraction of the constraints of U
satisfied by the assignment x, i.e.,

U(x) def= P
(u,v,π)∼U

{π(xu) = xv} .

(Here, (u,v,π) ∼U denotes a constraint sampled from U.) The (optimal) value
opt(U) is defined as the maximum value of an assignment, i.e.,

opt(U) = max
x∈ΣV

U(x) .

We will assume that the distribution over constraints is symmetric, in the sense
that a constraint (u,v,π) has the same probability as the constraint (v,u,π−1).

The value of an assignment x corresponds to the success probability of the
following probabilistic verification procedure:

1. Sample a random constraint (u,v,π) ∼U.

2. Verify that xv = π(xu).
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Constraint and Label-Extended Graph. We can associate two graphs with
a unique game. Let U be a unique game with vertex set V and alphabet Σ.
The constraint graph G(U) is a graph with vertex set V . Its edge distribution is
obtained as follows:

1. Sample a random constraint (u,v,π) ∼U.

2. Output the edge uv.

The label-extended graph Ĝ(U) is a graph with vertex set V × Σ. Its edge
distribution is obtained in the following way:

1. Sample a random constraint (u,v,π) ∼U.

2. Sample a random label i ∈ Σ.

3. Output an edge between (u, i) and (v,π(i)).

Sometimes it will be convenient to denote a vertex (u, i) in the label-extended
graph by ui .

An assignment x ∈ ΣV naturally corresponds to a set S ⊆ V ×Σ with cardi-
nality |S | = |V | (and therefore, volume µ(S) = 1/|Σ|). The value of the assignment
x for the unique game U corresponds exactly to the expansion of the corre-
sponding set S in the label-extended graph Ĝ(U),

U(x) = 1−Φ(S) .

This correspondence between expansion and the value of an assignment is
the basis of the connection between Unique Games and Small-Set Expansion

discussed in this thesis.

Partial Unique Games. It is sometimes convenient to consider partial as-
signments for unique games. Let U be a unique game with vertex set V and
alphabet Σ. An assignment x ∈ (Σ∪ {⊥})V is α-partial if at least an α fraction
of the vertices are labeled (with symbols from Σ), i.e.,

P
(u,v,π)∼U

{xu ,⊥} > α .

A partial assignment x satisfies a constraint (u,v,π) if both vertices u and v are
labeled and their labels satisfy the constraint xv = π(xu). For conciseness, we
write xv = π(xu) ∈ Σ to denote the event that the partial assignment x satisfies
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the constraint (u,v,π). The value U(x) of a partial assignment x is the fraction
of constraints satisfied by x,

U(x) def= P
(u,v,π)∼U

{xv = π(xu) ∈ Σ} .

The α-partial value optα(U) is the maximum value of a α-partial assignment
normalized by the fraction of labeled vertices,

optα(U) def= max
{

1
Pu∼V {xu,⊥}

U(x)

∣∣∣∣∣∣ x ∈ (Σ∪ {⊥})V , P
(u,v,π)∼U

{xu ,⊥} > α
}
.

(2.1)
Note that opt(U) = opt1(U) and optα(U) 6 optα′ (U) whenever α > α′.

SDP Relaxation of Unique Games. With every unique gameU, we associate
a semidefinite program SDP(U) of polynomial size. (Semidefinite programs
are instances of Semidefinite Programming, an efficiently solvable1 (convex)
optimization problem.)

Relaxation 2.7 (Semidefinite Relaxation for Unique Games).
Given a unique game U with vertex V and alphabet Σ, find a collection of
vectors {ui}u∈V ,i∈Σ ⊆Rd for some d ∈N so as to

SDP(U) : maximize E
(u,v,π)∼U

〈ui ,vπ(i)〉 (2.2)

subject to
∑
i∈Σ
‖ui‖2 = 1 (u ∈ V ) , (2.3)

〈ui ,uj〉 = 0 (u ∈ V ,i , j ∈ Σ) . (2.4)

We let sdp(U) denote the optimal value of the relaxation SDP(U).

Γ -Max 2-Lin. An interesting special case of Unique Games is the Γ -Max 2-Lin
problem. (Indeed, in many situations it suffices to consider the simpler Γ -Max

2-Lin problem.) For a finite group Γ , a unique game U with alphabet Σ is a
Γ -Max 2-Lin instance, if we can identify the alphabet Σ with the group Γ such

1 More precisely, for every desired accuracy ε > 0, one can efficiently compute a solution
with objective value within ε of the optimal value (even if ε is exponentially small in the
instance size.) Since we are interested in approximation algorithms for combinatorial
problems, we can ignore this (arbitrarily small) error and assume that we can find an
optimal solution efficiently.

25



2. Background

that for every constraint (u,v,π) in U, there exists a group element c ∈ Γ such
that a = π(b) if and only if ab−1 = c. For example, in the case that Γ = Zk is the
cyclic group of order k, all constraints of U have the form xu − xv = c mod k
for some c ∈ Zk.

Parallel Repetition. Let U be a unique game with vertex set V and alphabet
Σ. For ` ∈ N, the `-fold (parallel) repetition of U, denoted U⊗`, is a unique
game with vertex set V ` and alphabet Σ`. (We sometimes write U` instead of
U⊗`.) The unique game U⊗` corresponds to the following probabilistic verifier
for an assignment X : V `→ Σ`:

1. Sample ` constraints (u1,v1,π1), . . . , (u`,v`,π`) ∼U.

2. Verify that X(vr) = πr(X(ur)) for all r ∈ {1, . . . , `}.

Note that the constraint distribution of U⊗` corresponds to the `-fold product
of the constraint distribution of U.

It is easy to verify that the optimal value of the repeated unique game U⊗`

is at least opt(U)`. This lower bound is not always tight. Indeed, Raz [Raz08]
showed that for every small ε > 0, there exists a unique gamesUwith opt(U) 6
1− ε, but opt(U⊗`) > 1−O(

√
` ε).

If the constraint graph of the unique game U is bipartite, then an approach
of Feige and Lovász [FL92] shows that the semidefinite value of the repeated
game is just a function of the semidefinite value of the unrepeated game.

Theorem 2.8 ([FL92, MS07, KRT08]). For every unique game U with bipartite
constraint graph and every ` ∈N,

sdp(U⊗`) = sdp(U)` .

We note that in many situations it is possible to reduce general unique
games to ones with bipartite constraints.

Squares of Unique Games. In Part II (Reductions), we often consider
“squares” of unique games (either implicitly or explicitly). For a unique
game U with vertex set V and alphabet Σ, its square U2 is a unique game with
the same vertex set and alphabet. It corresponds to the following probabilistic
verifier for an assignment x ∈ ΣV ,

1. Sample a random vertex u ∼ V . (We sample u according to the marginal
distribution of the first vertex in a random constraint of U.)

26



2. Background

2. Sample two random constraints (u,v,π), (u,v′,π′) ∼U | u incident to u.
(Here, U | u denotes the constraint distribution of U conditioned on the
first vertex being u.)

3. Verify that π−1(xv) = (π′)−1(xv′ ).

It is easy to check thatU(x) > 1−η impliesU2(x) > 1−2η. On the other hand,
if U2(x) > ζ, then one can construct an assignment y such that U(y) > ζ/4.

Let U	 be the unique game obtained by sampling with probability 1/2 a
random constraint from U and sampling with the remaining probability a
trivial constraint (u,u, id). Note thatU	(x) = 1/2(1+U(x)) for every assignment
x ∈ (Σ∪ {⊥})V .

The square of the unique game U	 is very close to the unique game U. In
particular, U2

	(x) = 1/4 + 1/2U(x) + 1/4U2(x) for every assignment x. Therefore,
if U(x) > 1− η, then also U2

	(x) > 1− η. On the other hand, if U2
	(x) > 1− η′,

then U(x) > 1− 2η′. (Similar statements also hold for partial assignments.)

2.4. Unique Games Conjecture and Reductions

Unique Games Conjecture. In Chapter 1, we presented a simplified form
of the Unique Games Conjecture. This simplified is formally equivalent to the
original formulation of conjecture in [Kho02]. However, this equivalence is
non-trivial (it follows from results of [KKMO07]).

The following statement of the Unique Games Conjecture is very close to
the original formulation in [Kho02]:

Unique Games Conjecture: For every constant ε > 0, there exists k = k(ε) ∈
N such that given a unique game U with alphabet size k, it is NP-hard to
distinguish between the cases,

YES: opt(U) > 1− ε,

NO: opt(U) < ε.

In fewer words, for every ε > 0, there exists k ∈ N such that the promise
problem (1− ε, ε)-Gap-Unique Games(k) is NP-hard. (Here, Unique Games(k)
denotes the optimization problem given by unique games with alphabet size
k. See §2.1 for the definition of gap-promise problems.)

To clarify further, we spell out what NP-hardness means in this context: For
every constant ε > 0, there exists k = k(ε) ∈N and a polynomial time reduction
from 3-Sat to Unique Games such that
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– every satisfiable 3-Sat instance reduces to a unique game with alphabet
size k and optimal value at least 1− ε,

– every unsatisfiable 3-Sat instance reduces to a unique game with alpha-
bet size k and optimal value less than ε.

Consequences of the Unique Games Conjecture. We say a promise prob-
lem Π is UG-hard if there exists a constant ε > 0 and an efficient reduction
from Unique Games to Π such that every unique game with value at least
1− ε reduces to a YES instance of Π and every unique game with value less
than ε reduces to a NO instance of Π. The reduction needs to be efficient only
for constant alphabet size (in particular, the blow-up of the reduction can be
exponential in the alphabet size of the unique game). Assuming the Unique
Games Conjecture, every UG-hard problem is also NP-hard.

We briefly discuss the known consequences of the Unique Games Conjecture
for constraint satisfaction problems (CSPs). This class of problems contains
many basic optimization problems, for example, Max Cut, Unique Games(k)
(with fixed alphabet size k), Max 3-Lin, and Max 3-Sat. Raghavendra [Rag08]
showed that for every CSP Π and every constant c, there exists a constant
s = sΠ(c) such that for every constant ε > 0, there exists an efficient algorithm
that achieves a (c+ε, s−ε)-approximation and on the other hand, it is UG-hard
to achieve a (c − ε, s + ε)-approximation. Hence, Raghavendra’s algorithms
achieve essentially optimal approximation guarantees for CSPs assuming the
Unique Games Conjecture. In [Ste10a], we show that these approximation
guarantees for CSPs can in fact be obtained in quasi-linear time.

Noise Graphs. An important ingredient of UG-hardness reductions are
“noise graphs”. Two kinds of noise graphs are relevant for this thesis. The
first kind are Gaussian noise graphs, denoted Uρ for a parameter ρ ∈ [0,1].
The vertex set of these graphs is Rd for some d ∈N. The edge distribution of
Uρ on Rd is given by two d-dimensional vectors sampled from the Gaussian
distribution on R2d with mean 0 and covariance matrix(

I ρ I
ρ I I

)
.

Alternatively, we can describe the edge distribution as follows:
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1. Sample two standard Gaussian vectors x,y in Rd independently. (The
coordinates of x and y are independent Gaussians with mean 0 and
variance 1.)

2. Output an edge between x and ρx+
√

1− ρ2 y.

We identify Uρ with the following linear (Markov) operator on L2(Rd) (where
Rd is equipped with the standard Gaussian measure γ),

Uρf (x) def=
∫
Rd
f
(
ρx+

√
1− ρ2 y

)
dγ(y) .

The second kind of noise graph, denote Tρ for some parameter ρ ∈ [0,1], is
defined on vertex set ΩR, where Ω is any (finite) probability space and R ∈N.
The graph Tρ on ΩR has the following edge distribution

1. Sample x1, . . . ,xR independently from Ω.

2. For every r ∈ [R], sample yr as follows: With probability ρ, set yr = xr
and with the remaining probability 1− ρ, sample yr from Ω.

3. Output the edge xy, where x = (x1, . . . ,xR) and y = (y1, . . . , yR).

The graph Tρ corresponds to the following linear (Markov) operator on L2(ΩR),

Tρf (x) def= E
y∼Tρ(x)

f (y) .

Here, y ∼ Tρ(x) denotes that y is a random neighbor of x in the graph Tρ,
i.e., for every coordinate r ∈ [R], we set yr = xr with probability ρ and choose
yr ∼Ω with probability 1− ρ.

We remark that both Uρ and Tρ have second largest eigenvalue ρ. Since
Uρ and Tρ are both product operators (acting independently on coordinates),
their spectral decomposition is simple to describe. For k ∈ N, let Qk be the
linear operator on L2(Rd) projecting on the subspace spanned by polynomials
of degree k that are orthogonal to all polynomials of degree k − 1. Similarly,
let Pk be the linear operator on L2(ΩR) projecting on subspace spanned by
functions that depend only on k coordinates and are orthogonal to all func-
tions depending on at most k − 1 coordinates. The operators Uρ and Tρ have
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the following spectral decompositions

Uρ =
∑
k∈N

ρkQk , (2.5)

Tρ =
∑
k∈[R]

ρkPk . (2.6)

Another useful property of the operatorsUρ and Tρ is the following semigroup
structure: For all ρ,ρ′ ∈ [0,1], it holds that

UρUρ′ =Uρρ′ , (2.7)

TρTρ′ = Tρρ′ . (2.8)

Influence. Let f ∈ L2(ΩR) for some finite probability space Ω. The influence
of coordinate i, denoted Infi f , is the squared norm of f projected on the space
of functions that depend only on coordinate i and are orthogonal to constant
functions. Equivalently, Infi f is the typical variance of f (x) for xi ∼Ω,

Infi f
def= E

x1,...,xi−1,xi+1,...,xR∼Ω

(
E

xi∼Ω
f (x)2 −

(
E

xi∼Ω
f (x)

)2
)
.

From the above definition, it is straight-forward to check that Infi f is convex
in f (using Cauchy–Schwarz).

The total influence of a function
∑
i∈[R] Infi f has the following expansion in

terms of the projections Pkf ,∑
i∈[R]

Infi f =
∑
k

k‖Pkf ‖2 .

A consequence is that “noised” functions can have only few influential coordi-
nates.

Fact 2.9. Let f ∈ L2(ΩR) for a finite probability space Ω and R ∈ N. Then, for
every ρ ∈ [0,1), ∑

i∈[R]

Infi Tρf 6
1

log(1/ρ)‖f ‖
2

In particular, if ‖f ‖2 = 1, the number of coordinates with influence larger than
τ > 0 is bounded by 1

τ log(1/ρ) .

Proof. The total influence of Tρf is equal to
∑
k∈[R] kρ

k‖Pkf ‖2 6
‖f ‖2 maxk kρk 6 ‖f ‖2/ log(1/ρ).
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Gaussian Noise Stability. Let Γρ : [0,1]→ [0,1] be the stability profile of the
Gaussian noise graph Uρ on R, that is,

Γρ(δ) def= max
S⊆R, µ(S)6δ

Uρ(S,S) ,

(Recall that the notation Uρ(S,S) denotes the probability that a random edge
of Uρ has both endpoints in S.) The stability profile of Uρ is related to its
expansion profile in the following way ΦUρ(δ) = 1 − Γρ(δ)/δ. A result of C.
Borell [Bor85] shows that vertex sets of the form [t,∞) have maximum stability
in Uρ,

Γρ(δ) = P
xy∼Uρ

{x > t, y > t} for t ∈R such that P
x∼Uρ
{x > t} = δ.

The Gaussian noise stability trivially satisfies δ2 6 Γρ(δ) 6 δ for all δ > 0.
(This relation holds for any regular graph.) Let ρ = 1−ε. Using basic properties
of the Gaussian distribution, one can show the following basic bounds on Γρ(δ).
For all ε,δ > 0, the Gaussian noise stability satisfies Γρ(δ)/δ 6 δε/2 [KKMO07].
If δ� 2−ε, then Γρ(δ)/δ ≈ 1−O(

√
ε log(1/δ)) (e.g. [CMM06b]).

Invariance Principle. In this work, the following simple form of the in-
variance principle suffices: The graph Tρ acts on bounded functions without
influential coordinates in approximately the same way as the graph Uρ. The
formal statement is as follows:

Theorem 2.10 (Invariance Principle, [MOO05]). For every finite probability
space Ω and constants ρ ∈ [0,1), η > 0, there exists constants τ,γ > 0 such that
for every function f ∈ L2(ΩR) with 0 6 f 6 1, either

〈f ,Tρf 〉 6 Γρ(Ef ) + η,

or Infi T1−γf > τ for some coordinate i ∈ [R].

Influence Decoding. To describe this construction, we introduce two no-
tations: (1) For a vertex u of a unique game U, we write (u,v,π) ∼ U | u to
denote a random constraint incident to u in U. (In other words, we condition
the constraint distribution on the event that u is the first vertex of the con-
straint.) (2) For a vector x ∈ΩR (where Ω can be any set) and a permutation
π ∈ SR of the coordinates, we write π.x to denote the vector in ΩR obtained by
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permuting the coordinates of x according to π. Formally, for all coordinates
i ∈ [R], we set (π.x)π(i) = xi .

The following lemma gives a sufficient condition for when we can decode
a good assignment for a unique game based on influential coordinates of
functions associated with the vertices of the unique game.

Lemma 2.11 (Influence Decoding). Let U be a unique game with vertex set V
and alphabet [R]. For some probability space Ω, let {fu}u∈V be a collections of
normalized functions in L2(ΩR). Consider functions gu in L2(ΩR) defined by

gu(x) = E
(u,v,π)∼U|u

fv(π.x) .

Then, for all γ,τ > 0, there exists cγ,τ > 0 (in fact, cγ,τ = poly(γ,τ)) such that

opt(U) > cγ,τ · P
u∼V

{
max
i∈[R]

Infi T1−γgu > τ

}
.

Proof. We construct an assignment for the unique game U by the following
probabilistic procedure:

1. For every vertex u ∈ V , randomly choose one of the following ways to
determine the label xu :

a) Assign xu randomly from the set

Lf (u) := {i ∈ [R] | Infi T1−γfu > τ}.

(If the set is empty, assign xu =⊥.)

b) Assign xu randomly from the set

Lg(u) := {i ∈ [R] | Infi T1−γgu > τ}.

(If the set is empty, assign xu =⊥.)

First, we note that the sets Lf (u) and Lg(u) cannot be large. (By Fact 2.9 at most
1/τγ coordinates of say T1−γfu can have influence larger that τ) To estimate the
expected fraction of constraints satisfied by xu , consider a vertex u such that
Infi T1−γgu > τ for some label i ∈ [R]. Since i ∈ Lg(u), we assign xu = i with
probability at least 1/2 · 1/|Lg (u)| > τγ/2.
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Next, we estimate the probability that xv = π(i) for a constraint (u,v,π) ∼
U | u. Using the convexity of Infi and the fact that coordinate i for the function
x 7→ fu(π.x) corresponds to coordinate π(i) for the function f , we derive that

τ < Infi T1−γgu 6 E
(u,v,π)∼U|u

Infπ(i)T1−γfv ,

which means that π(i) ∈ Lf (v) with probability at least τ (over the choice of
(u,v,π) ∼U | u). Hence, the assignment x satisfies in expectation at least

P
(u,v,π)∼U|u

{xv = π(xu)} > P
(u,v,π)∼UG|u

{xu = i ∧ xv = π(i)}

> (τγ/2) P
(u,v,π)∼UG|u

{xv = π(i)}

> (τ2γ2/4) P
(u,v,π)∼UG|u

{
π(i) ∈ Lf (v)

}
> (τ3γ2/4)

of the constraints (u,v,π) incident to u.
The expected value of the assignment x is therefore at least

P
(u,v,π)∼U

{xv = π(xu)} = E
u∼V

P
(u,v,π)∼U|u

{xv = π(xu)}

> (τ3γ2/4) P
u∼V

{
∃i. Infi T1−γgu > τ

}
.
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Algorithms
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3. Unique Games with Expanding

Constraint Graphs

Many constraint satisfaction problems have natural candidates for hard input
distributions. For example, Feige’s [Fei02] Random 3-Sat hypothesis asserts
that it is intractable to distinguish near-satisfiable 3-Sat instances and random
3-Sat instances of appropriate density (which are far from being satisfiable
with high probability). A striking evidence for this hypothesis is that even very
strong semidefinite relaxations (Ω(n)-levels of Lasserre’s hierarchy [Las01])
fail to distinguish between the two cases [Sch08].

In this chapter, we present an efficient algorithm for Unique Games that
provides a good approximation whenever the underlying constraint graph
is mildly expanding. Since random instances tend to be expanding, this
algorithm shows that Unique Games is easy for many input distributions (for
example, Erdős–Renyi graphs with logarithmic average degree or random
regular graphs with constant degree).

Given a unique game with optimal value 1 − ε, our algorithm finds an
assignment of value 1 −O(ε/λ), where λ ∈ [0,2] is the spectral gap of the
constraint graph.

In contrast to previous approximation algorithms for Unique Games, the
approximation guarantee of this algorithm does not degrade with the size of
the alphabet or the number of variables of the unique game.

3.1. Main Result

Let U be a unique game with vertex set V = [n] and alphabet Σ = [k]. Let
λ ∈ [0,2] be the spectral gap of the constraint graph of U. In this section,
we present an efficient algorithm that can satisfy a constant fraction of the
constraints of U if λ is significantly larger than the fraction of constraints
violated in an optimal assignment for U. The algorithm is based on the
standard semidefinite relaxation for Unique Games (see Relaxation 2.7). In
the following, we denote this relaxation by SDP(U) and its optimal value by
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sdp(U). (We refer to the optimal value of the relaxation SDP(U) sometimes as
the semidefinite value of U.) For the convenience of the reader, we restate the
relaxation SDP(U).

Given a unique game U with vertex V and alphabet Σ, find a collection of
vectors {ui}u∈V ,i∈Σ ⊆Rd for some d ∈N so as to

SDP(U) : maximize E
(u,v,π)∼U

〈ui ,vπ(i)〉 (3.1)

subject to
∑
i∈Σ
‖ui‖2 = 1 (u ∈ V ) , (3.2)

〈ui ,uj〉 = 0 (u ∈ V ,i , j ∈ Σ) . (3.3)

Theorem 3.1. Given a unique game U with spectral gap λ and semidefinite value
sdp(U) > 1− ε, we can efficiently compute an assignment x for U of value U(x) >
1−O(ε/λ).

The main component of the above theorem is a simple (randomized) round-
ing algorithm that given a solution for SDP(U) of value 1 − ε, outputs an
assignments x for U of value U(x) > 1−O(ε/λ).

A solution for SDP(U) consists of a vector ui ∈ Rd for every vertex u ∈ V
and label i ∈ Σ. To round this solution, we first pick a random “pivot vertex”
w ∈ V and choose a “seed label” s ∈ Σ for w according to the probability
distribution given by the weights ‖w1‖2, . . . ,‖wk‖2. Next, we propagate this
initial choice in one step to every other vertex u ∈ V : Roughly speaking, we
assign label i ∈ Σ to vertex u if the vector ui is “closest” to ws.

We remark that unlike previous rounding algorithms for semidefinite re-
laxations, this rounding is not based on random projections of the solution
vectors. (Previous projection-based algorithms in fact cannot achieve the
approximation in Theorem 3.1.)

In the following, we give a more precise description of the rounding al-
gorithm used for Theorem 3.1. For any two vertices u,v ∈ V , the algorithm
defines a distance ∆(u,v), which measures the similarity of the two vector
collections {ui}i∈Σ and {vi}i∈Σ (similar to the so called earth mover’s distance).
These distances will play an important role in the analysis of the rounding
algorithm.

Algorithm 3.2. (Propagation Rounding)
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Input: Vector solution {ui}u∈V ,i∈Σ for the relaxation SDP(U).

Output: Distribution over k ·n assignments for the unique game U.

The distribution is specified by the following randomized algorithm:

– For every vertex u ∈ V , let Du be the distribution over Σ which outputs
label i ∈ Σ with probability ‖ui‖2.

– For any two vertices u,v ∈ V , let

∆(u,v) def= min
σ∈SΣ

∑
i∈Σ

1
2‖ui −vσ (i)‖2

and let σv←u be a permutation of Σ, for which the minimum ∆(u,v) is
attained.

– Pivot vertex: Sample a vertex w ∈ V .

– Seed label: Sample a label s ∼Dw.

– Propagation: For every vertex u ∈ V , set xu := σu←w(s) and output the
assignment x ∈ ΣV .

We will show that starting from a solution for SDP(U) of value 1 − ε, Al-
gorithm 3.2 computes an assignment x that violates at most O(ε/λ) of the
constraints of U in expectation. (It is easy to derandomize Algorithm 3.2,
because the number of choices for the pivot vertex w and the seed label s is
at most k ·n. Thus, we could modify the algorithm such that it outputs a list
of k · n assignments x(w,s) for U. One of these assignments x(w,s) has value at
least 1−O(ε/λ) for U.)

Let us consider a constraint (u,v,π) in U. The following lemma relates the
probability that this constraint is violated to three distance terms. The first
term is exactly the (negative) contribution of the constraint (u,v,π) to the
value of our solution for SDP(U). The remaining terms are averages of the
distance ∆(u,w) and ∆(v,w) over all choices of vertices w ∈ V . We will prove
this lemma in the next section (§3.2).

Lemma 3.3 (Propagation Rounding). For every constraint (u,v,π) of U,

P
x

{
xv , π (xu)

}
6 3

∑
i∈Σ

1
2‖ui −vπ(i)‖2 + 3 E

w∈V
∆(u,w) + 3 E

w∈V
∆(v,w) .
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To prove Theorem 3.1 using the lemma above, we need to bound the ex-
pected value of ∆(u,v) for two random vertices u,v ∈ V . It is easy to show
that for a random constraint (u,v,π) of U, the expectation of ∆(u,v) is at most
ε. We will show that the expansion of the constraint graph implies that the
typical value of ∆(u,v) for two random vertices u,v ∈ V cannot be much larger
than the typical value of ∆(u,v) for a random constraint (u,v,π) in U. Here,
the crux is that the distances ∆(u,v) can be approximated up to constant
factors by squared euclidean distances. (We defer the rather technical proof
of this fact to Section 3.3. Since the construction that establishes this fact is
somewhat mysterious and relies on tensor products of vectors, we refer to it
as “tensoring trick”.)

Lemma 3.4 (Tensoring Trick). There exist unit vectors X1, . . . ,Xn ∈Rn such that
for any two vertices u,v ∈ V ,

c ·∆(u,v) 6 ‖Xu −Xv‖2 6 C ·∆(u,v) .

Here, c and C are absolute constants. (We can choose c = 1/4 and C = 20).

The spectral gap λ of the constraint graph of U allows us to relate the
typical value of ‖Xu −Xv‖2 for two random vertices u,w ∈ V to the typical
value of ‖Xu −Xv‖2 for a constraint (u,v,π) in U,

λ 6 E
(u,v,π)∼U

‖Xu −Xv‖2/ E
u,v∈V

‖Xu −Xv‖2 .

Together with Lemma 3.4, we can show that in expanding constraint graphs,
local correlation implies global correlation. Here, local correlation refers to
the situation that ∆(u,v) is small for a typical constraint (u,v,π) of U. Global
correlation means that ∆(u,v) is small for two randomly chosen vertices u,v ∈
V .

Corollary 3.5 (Local Correlation =⇒ Global Correlation).

E
u,v∈V

∆(u,v) 6 (C/cλ) E
(u,v,π)∼U

∆(u,v) .

By combining Lemma 3.3 and Corollary 3.5, we show in the next lemma
that the assignment computed by Algorithm 3.2 satisfies 1 −O(ε/λ) of the
constraints of U in expectation. Theorem 3.1 is implied by this lemma.

Lemma 3.6. The assignment x computed by Algorithm 3.2 given a solution for
SDP(U) of value 1− ε satisfies

E
x
U(x) > 1−O(ε/λ) .
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Proof. Using Lemma 3.3 (Propagation Rounding) and the fact that we have a
solution for SDP(U) of value 1− ε, the expected value of the assignment x is
at least

E
x
U(x) > 1− 3 E

(u,v,π)∼U

[∑
i

1
2‖ui − vπ(i)‖2 − 3 E

w∈V
∆(u,w)− 3 E

w∈V
∆(v,w)

]
= 1− 3ε − 6 E

u,v∈V
∆(u,v) .

(Here, we also used that the constraint graph of U is regular.) From Corol-
lary 3.5 (Local Correlation =⇒ Global Correlation), it follows that

E
u,v∈V

∆(u,v) 6 (C/cλ) E
(u,v,π)∼U

∆(u,v) 6 (C/cλ) E
(u,v,π)∼U

∑
i

1
2‖ui − vπ(i)‖2 = (C/cλ)ε .

We conclude that

E
x
U(x) > 1− 3ε − 6(C/cλ)ε = 1−O(ε/λ) .

3.2. Propagation Rounding

In this section, we will prove Lemma 3.3, which we used to analyze Algo-
rithm 3.2 in the previous section (§3.1). Let us quickly recall some details
of this algorithm. For every vertex pair u,v ∈ V , the algorithm defines a
permutation σv←u of Σ. The algorithm outputs an assignment x defined as
xu = σu←w(s), where w is a random vertex and s is a random label drawn from
the probability distribution Dw given by the weights ‖w1‖2, . . . ,‖wk‖2. For
u,v ∈ V and σ ∈ SΣ, we introduce the following notation

∆(u,v,σ ) def=
∑
i∈Σ

1
2‖ui −vσ (i)‖2 .

With this notation, Lemma 3.3 asserts the following bound on the probability
that x does not satisfy a constraint (u,v,π) of U,

P
x
{xv , π(xu)} 6 3∆(u,v,π) + E

w∈V
3∆(w,v,σv←w) + E

w∈V
3∆(w,u,σu←w) . (3.4)

The following lemma implies (3.4) (and therefore Lemma 3.3) by averaging
over w ∈ V and setting σ = σu←w and σ ′ = σv←w.
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w

u v

σ σ ′

π

Figure 3.1.: Illustration of Lemma 3.7. The permutation π maps labels from
vertex u to vertex v. The permutations σ and σ ′ map labels from
vertex w to vertices u and v, respectively.

Lemma 3.7. For any vertices u,v,w ∈ V and permutations π,σ ,σ ′ of Σ,

P
s∼Dw

{
σ ′(s) , π ◦ σ (s)

}
6 3∆(u,v,π) + 3∆(w,u,σ ′) + 3∆(w,v,σ ) .

Proof. For simplicity, assume that σ and σ ′ are the identity permutation.
(We can achieve this situation by reordering the vector collections {ui}i∈Σ
and {vj}j∈Σ and changing π accordingly.) Since the vectors w1, . . . ,wk are pair-
wise orthogonal, we have ‖ws −ws′‖2 = ‖ws‖2 + ‖ws′‖2 for s , s′ ∈ Σ. Therefore,

P
s∈Dw

{
s , π(s)

}
=

∑
s∈Σ

1
2‖ws −wπ(s)‖2 .

By the triangle inequality (and Cauchy–Schwarz),

‖ws −wπ(s)‖2 6
(
‖ws −us‖+ ‖us −vπ(s)‖+ ‖vπ(s) −wπ(s)‖

)2

6 3‖ws −us‖2 + 3‖us −vπ(s)‖2 + 3‖vπ(s) −wπ(s)‖2 .

Taking these bounds together,

P
s∈Dw

{
s , π(s)

}
6 3

∑
s

1
2‖ws −us‖2 + 3

∑
s

1
2‖us −vπ(s)‖2 + 3

∑
s

1
2‖vπ(s) −wπ(s)‖2

= 3∆(w,u, id) + 3∆(u,v,π) + 3∆(w,v, id) .

3.3. Tensoring Trick

In this section, we prove Lemma 3.4, which allowed us in Section 3.1 to relate
the approximation guarantee of Algorithm 3.2 on a unique game U to the
spectral gap of the constraint graph of U.
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Lemma (Restatement of Lemma 3.4). There exist unit vectors X1, . . . ,Xn ∈ Rn
such that for any two vertices u,v ∈ V ,

c ·∆(u,v) 6 ‖Xu −Xv‖2 6 C ·∆(u,v) .

Here, c and C are absolute constants. (We can choose c = 1/4 and C = 20).

For a vertex u ∈ V , we choose Xu as (weighted) sum of high tensor-powers
of the vectors u1, . . . ,uk,

Xu :=
∑
i

‖ui‖ū⊗ti .

Here, t ∈N is a large enough odd integer (say t = 5), ūi is the unit vector in
direction of ui , and ū⊗ti is the t-fold tensor product1 of ūi with itself. The
vectorXu has unit norm, because the vectors u1, . . . ,uk are pairwise orthogonal
and

∑
i‖ui‖2 = 1.

We remark that the constructed vectors X1, . . . ,Xn are elements of Rn
t
. How-

ever, it is straight-forward to find vectors in Rn with the same pairwise dis-
tances and norms (e.g., by passing to the n-dimensional subspace spanned by
the vectors X1, . . . ,Xn).

Consider two arbitrary vertices u,v ∈ V . Let A = (Aij) be the k-by-k matrix
of inner products between the vectors u1, . . . ,uk and v1, . . . ,vk,

Aij := 〈ūi , v̄j〉 .

Let p,q ∈Rk be the (nonnegative) unit vectors

p :=
(
‖u1‖, . . . ,‖uk‖

)
, q :=

(
‖v1‖, . . . ,‖vk‖

)
.

With these notations, ‖Xu −Xv‖2 and ∆(u,v) satisfy the following identities,

1
2‖Xu −Xv‖

2 = 1−
∑
ij

piA
t
ijqj , (3.5)

∆(u,v) = 1−max
σ∈SΣ

∑
i

piAiσ (i)qσ (i) . (3.6)

To simplify notation, we will prove Lemma 3.4 in this more general setting of
matrices A and unit vectors p and q.

1The tensor product of two vectors x,y ∈Rd is a vector x⊗ y ∈Rd×d with (x⊗ y)i,j = xiyj .
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It is enough for the matrix A to satisfy the following property,

∀j.
∑
i

A2
ij 6 1 , and ∀i.

∑
j

A2
ij 6 1 . (3.7)

(In the setting of Lemma 3.4, this property holds, because by orthogonality∑
i〈ūi , v̄j〉2 6 ‖v̄j‖2 = 1 and

∑
j〈ūi , v̄j〉2 6 ‖ūi‖2 = 1.)

We describe how to prove Lemma 3.4 using the lemmas in the rest of the
section. The first two lemmas are simple technical observations, which are
used in the proofs of the main lemmas, Lemma 3.10 and Lemma 3.11. On the
one hand, Lemma 3.10 shows that for any permutation σ ,

(1−
∑
ij piA

t
ijqj) 6 4t(1−

∑
i piAiσ (i)qσ (i)) ,

which implies ‖Xu −Xv‖2 6 4t∆(u,v). On the other hand, Lemma 3.11 shows
that there exists a permutation σ such that

(1−
∑
i piAiσ (i)qσ (i)) 6 2

∑
ij piA

t
ijqj /(1− 2−(t−3)/2) ,

which means ∆(u,v) 6 2‖Xu −Xv‖2/(1− 2−(t−3)/2). Together, these two lemmas
imply Lemma 3.4.

Lemma 3.8. Let p,q ∈ Rk be two unit vectors and A ∈ Rk×k be a matrix with
property (3.7). Suppose that for γ > 0 and s ∈N with s > 2,∑

i

piA
s
iiqi = 1−γ .

Then, ∑
i,j

|piAsijqj | 6 γ .

Proof. Since s > 2 and A satisfies (3.7), every row and column sum of the
matrix B = (|Aij |s) is bounded by 1. It follows that the largest singular value of
B is at most 1. Hence,

∑
ij |piAsijqj | 6 ‖p‖‖q‖ = 1, which implies the lemma. For

the convenience of the reader, we give a direct proof that
∑
ij |piAsijqj | 6 1,∑

ij

|piAsijqj | 6
∑
ij

|Asij | ·
(

1
2p

2
i + 1

2q
2
j

)
= 1

2

∑
i

p2
i

∑
j

|Asij |+
1
2

∑
j

q2
i

∑
i

|Asij | 6
1
2

∑
i

p2
i + 1

2

∑
j

q2
i = 1 .
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Lemma 3.9. Let p,q ∈ Rk be two unit vectors and A ∈ Rk×k be a matrix with
property (3.7). Let I+ be the set of indices i such that piAiiqi > 0. Suppose that for
γ > 0 and an odd number s ∈N,∑

i∈I+

piA
s
iiqi = 1−γ . (3.8)

Then, ∑
i

piA
s
iiqi > 1− 2γ .

Proof. Note that since s is odd, piA
s
iiqi has the same sign as piAiiqi for every

index i. From (3.8) and the fact that |Aii | 6 1, it follows that
∑
i∈I+ |piqi | >

1−γ . On the other hand,
∑
i |piqi | 6 ‖p‖ · ‖q‖ = 1 by Cauchy–Schwarz. Hence,∑

i<I+ |piqi | 6 γ . We conclude that∑
i

piA
s
iiqi >

∑
i∈I+

piA
s
iiqi −

∑
i<I+

|piqi | > 1− 2γ .

Lemma 3.10. Let p,q ∈ Rk be two unit vectors and A ∈ Rk×k be a matrix with
property (3.7). Suppose that for γ > 0,∑

i

piAiiqi = 1−γ . (3.9)

Then, ∑
ij

piA
t
ijqj > 1− 4tγ .

Proof. By Lemma 3.8, it is enough to show∑
i

piA
t
iiqi > 1− 2tγ . (3.10)

As in Lemma 3.9, let I+ be the set of indices i such that piAiiqi > 0. Note that
since t is odd, piA

t
iiqi has the same sign as piAiiqi . By the convexity of x 7→ xt

on R+,∑
i∈I+

piA
t
iiqi =

∑
i∈I+

|piqi | |Aii |t >
(∑
i∈I+

|piqi ||Aii |
)t (3.9)
> (1−γ)t > 1− tγ . (3.11)

(For the first inequality, we also used that
∑
i |piqi | 6 ‖p‖ · ‖q‖ = 1, by Cauchy–

Schwarz.) By Lemma 3.9, the bound on
∑
i∈I+ piA

t
iiqi in (3.11) implies (3.10)

as desired.
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Lemma 3.11. Let p,q ∈ Rk be two unit vectors and A ∈ Rk×k be a matrix with
property (3.7). Suppose that for γ > 0,∑

ij

piA
t
ijqj = 1−γ . (3.12)

Then, there exists a permutation σ such that∑
ij

piAiσ (i)qσ (i) > 1− 2γ/(1− 2−(t−3)/2) .

Proof. Since A satisfies (3.7), every row and column contains at most one entry
larger than

√
1/2 in absolute value. Hence, there exists a permutation σ such

that j = σ (i) for any two indices i, j with a2
ij > 1/2. By reordering the columns

of A, we can assume σ = id. Now, A satisfies a2
ij 6 1/2 for all indices i , j.

As in Lemma 3.9, let I+ be the set of indices i with piAiiqi > 0. Note that
sign(piAiiqi) = sign(piA

3
iiqi) = sign(piA

t
iiqi) (because t is odd).

Choose η > 0 such that 1 − η =
∑
i∈I+ piA

3
iiqi . From Lemma 3.8, it follows

that
∑
i,j |piA3

ijqj | 6 η . Therefore, the contribution of the off-diagonal terms to
(3.12) is at most∑

i,j

piA
t
ijqj 6max

i,j
|Aij |t−3 ·

∑
i,j

|piA3
ijqj | 6 2−(t−3)/2︸   ︷︷   ︸

αt

·η . (3.13)

Combining (3.12) and (3.13) yields∑
i∈I+

piA
t
iiqi >

∑
ij

piA
t
ijqj −

∑
i,j

piA
t
ijqj > 1−γ −αtη .

On the other hand, ∑
i∈I+

piA
t
iiqi 6

∑
i∈I+

piA
3
iiqi = 1− η .

Together these two bounds on
∑
i∈I+ piA

t
iiqi imply η 6 γ/(1−αt). We conclude

that ∑
i∈I+

piAiiqi >
∑
i∈I+

piA
t
iiqi > 1−γ/(1−αt) ,

which, by Lemma 3.9, implies that
∑
i piAiiqi > 1− 2γ/(1−αt) as desired.
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3.4. Notes

The material presented in this chapter is based on the paper “Unique Games
on Expanding Constraints Graphs is Easy” [AKK+08], joint with Sanjeev Arora,
Subhash Khot, Alexandra Kolla, Madhur Tulsiani, and Nisheeth Vishnoi. A
preliminary version of the paper appeared at STOC 2008.

Tensoring Trick

The “tensoring trick” presented in §3.3 originates from a construction in
Khot and Vishnoi’s influential work [KV05] on integrality gaps in the context
of the Unique Games Conjecture. The result presented in Chapter 8 is a
continuation of their work. Again the tensoring trick plays an important role
in the constructions presented in Chapter 8.

We remark that the conference version of the paper [AKK+08] only estab-
lishes a weaker version of Lemma 3.4 (which leads to an additional logarithmic
factor in the bound of Theorem 3.1). The proof of the tighter bound is only
slightly more involved than the proof of the weaker bound presented in
[AKK+08].

Propagation Rounding

Algorithm 3.2 (Propagation Rounding) is related to one of Trevisan’s algo-
rithms for Unique Games [Tre05]. Trevisan’s algorithm fixes a spanning tree of
the constraint graph of the unique game and propagates labels along the edges
of this tree (as in Algorithm 3.2 the propagation is according to a solution
of an SDP relaxation). In contrast to Trevisan’s algorithms, our algorithm
propagates labels in one step to every vertex in the graph. (In other words,
the propagation is according to a star graph, a spanning tree of the complete
graph with radius 1.)

Some ingredients of the analysis of Algorithm 3.2 are inspired by Trevisan’s
analysis (especially, parts of the proof of Lemma 3.7).

Subsequent Work

Makarychev and Makarychev [MM09] established the following improvement
of Theorem 3.1. Let U be a unique game with optimal value 1− ε. Suppose
the spectral gap λ of the constraint graph of U satisfies λ � ε. Then, the
algorithm in [MM09] efficiently finds an assignment for U of value at least
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1−O(ε/Φ). Since Φ > λ (and in fact, Φ can be as large as Ω(
√
λ)), their bound

is an improvement over the bound in Theorem 3.1. However, it is important
to note that their result only applies to instances for which the algorithm
in Theorem 3.1 finds an assignment with constant value, say value at least
1/2. Hence, in the context of the Unique Games Conjecture, the algorithm in
[MM09] does not increase the range of “easy instances” for Unique Games.

[AIMS10] and independently [RS10] extended the results in the current
chapter to “small-set expanders”. The precise notion of small-set expanders in
these two works are quantitatively similar, but strictly speaking incomparable.
(Surprisingly, the techniques are quite different except for the common root
in the results of this chapter.)

Kolla and Tulsiani [KT07] found an alternative proof of (a quantitatively
weaker version of) Theorem 3.1. The interesting feature of their proof is that it
avoids explicit use of semidefinite programming and instead relies on enumer-
ating certain low-dimensional subspaces (suitably discretized). Kolla [Kol10]
noted that this algorithm also works (in slightly super-polynomial time) on
interesting instances of Unique Games whose constraint graphs do not have
large enough spectral gaps, especially the Khot–Vishnoi instances [KV05].
(The spectral gap of the constraint graphs of these instances is too small for the
bound in Theorem 3.1 to be non-trivial.) The results presented in Section 5.2
(Subspace Enumeration) are inspired by the works [KT07] and [Kol10].
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Games

Proofs of inapproximability results similar to the Unique Games Conjecture
are frequently based on hardness-amplifying self-reductions. A simple exam-
ple is Max Clique. To approximate the maximum size of a clique in a graph
G within a factor α < 1, it is enough to approximate the maximum size of a
clique in the tensor-product graph G⊗t within a factor αt. In this sense, the
tensor-product operation amplifies the hardness of Max Clique.

In the context of Unique Games, a natural candidate for a hardness-
amplifying self-reduction is parallel repetition. (Using parallel repetition,
Raz [Raz98] showed that the analog of the Unique Games Conjecture is true
for Label Cover, a more general problem than Unique Games.)

4.1. Main Result

Let U be a unique game with vertex set V = [n] and alphabet Σ = [k]. In this
section, we lower bound the optimal value opt(U`) of the repeated game in
terms of the value of the semidefinite relaxation SDP(U). (See Section 2.3 for
the definition of parallel repetition.)

Theorem 4.1. There exists an algorithm that given a parameter ` ∈N and a unique
game U with semidefinite value sdp(U) > 1− ε and alphabet size k, computes in
time poly(n`) an assignment x for the repeated game U` of value

U`(x) > 1−O
(√
`ε logk

)
.

Before describing the proof, we record two consequence of this theorem.
The first consequence is an approximation algorithm for parallel repeated
unique games with the following approximation guarantee:
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Corollary 4.2. Suppose W is an `-fold repeated unique game with alphabet size K
and opt(W) > 1− η. Then, using the algorithm in Theorem 4.1, we can efficiently
compute an assignment x for W of value

W(x) > 1−O
(√
η`−1 logK

)
. (4.1)

For non-repeated games (` = 1), this algorithm achieves the best known
approximation [CMM06a] (up to constants in the O(·)-notation). For suf-
ficiently many repetitions (` � 1), the algorithm provides strictly better
approximations than [CMM06a]. (Independent of the number of repetitions,
the algorithm of [CMM06a] only guarantees to satisfy 1−O(

√
η logK) of the

constraints.)
Let us briefly sketch how Theorem 4.1 implies the above approximation

algorithm (Corollary 4.2). Suppose that W = U`. Since U has alphabet size
k, the alphabet of W has size K = k`. By a result of Feige and Lovász [FL92],
sdp(W) = sdp(U)`. Therefore, (in the relevant range of parameters) sdp(U) >
1−O(η/`). It follows that the assignment obtained via Theorem 4.1 satisfies
the desired bound (4.1).

The second consequence of Theorem 4.1 is a tight relation between the
amortized value of a unique game and its semidefinite value.

Corollary 4.3.

sdp(U)O(logk) 6 sup
`∈N

opt(U)1/` 6 sdp(U) .

The proof of Theorem 4.1 uses an intermediate relaxation, denoted SDP+(U)
(defined in Section 4.2). The optimal value of this relaxation, sdp+(U), is sand-
wiched between opt(U) and sdp(U). Furthermore, the relaxation satisfies
sdp+(U`) > sdp+(U)` for every ` ∈N. (Note that both opt(U) and sdp(U) have
the same property.) In Section 4.2, we will show that the approximation guar-
antee of the intermediate relaxation SDP+(U) is independent of the alphabet
size. (In contrast, the approximation guarantee of SDP(U) degrades with
growing alphabet size.)

Theorem 4.4. Given a solution to SDP+(U) of value 1 − γ , we can efficiently
compute an assignment x for U of value

U(x) > 1−O(
√
γ) .
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We remark that it is not clear whether optimal solutions for the relaxation
SDP+(U) can be computed efficiently (in fact, if the Unique Games Conjecture
is true, then this task is NP-hard). To prove Theorem 4.1, we will approximate
SDP+(U) using the standard semidefinite relaxation SDP(U). (See Section 4.3
for a proof of Theorem 4.5.)

Theorem 4.5. There exists a polynomial-time algorithm that given a unique game
U with alphabet size k and semidefinite value sdp(U) = 1− ε, computes a solution
for SDP+(U) of value at least 1−O(ε logk).

Assuming the previous two theorems (Theorem 4.4 and Theorem 4.5), we
can prove Theorem 4.1.

Proof of Theorem 4.1. Since sdp(U) = 1− ε, Theorem 4.5 allows us to compute
a solution for SDP+(U) of value 1−O(ε logk). By taking tensor products, we
obtain a solution for SDP+(U`) of value (1−O(ε logk))` > 1 −O(` logk) (see
Section 4.2). Using Theorem 4.4 (on the unique game U`), we can round this
solution for SDP+(U`) to an assignment x of valueU`(x) > 1−O(` logk)1/2.

4.2. Rounding Nonnegative Vectors

In this section, we introduce the intermediate relaxation SDP+(U) of a unique
game U and prove Theorem 4.4 (restated below).

Relaxation 4.6 (Nonnegative Relaxation for Unique Games).
Given a unique game U with vertex set V and alphabet Σ, find a collection
of nonnegative functions {fu,i}u∈V ,i∈Σ ⊆ L2(Ω) for some finite probability
space (Ω,µ) so as to

SDP+(U) : maximize E
(u,v,π)∼U

〈fu,i , fv,π(i)〉 (4.2)

subject to
∑
i∈Σ
‖fu,i‖2 = 1 (u ∈ V ) , (4.3)

〈fu,i , fu,j〉 = 0 (u ∈ V ,i , j ∈ Σ) . (4.4)

An important property of the solutions for Relaxation 4.6 is that for every
vertex u ∈ V , the functions fu,1, . . . , fu,k have disjoint support sets. In particular,
for every pointω ∈Ω, there exists at most one label such that fu,i(ω) is positive.
This property is the crucial difference from the relaxation SDP(U), which
allows to prove Theorem 4.4.
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As in the previous section §4.1, let U be a unique game with vertex set
V = [n] and alphabet Σ = [k].

Theorem (Restatement of Theorem 4.4). Given a solution to SDP+(U) of value
1−γ , we can efficiently compute an assignment x for U of value

U(x) > 1−O(
√
γ) .

Let {fu,i} ⊆ L2(Ω) be a solution for SDP+(U) of value α = 1 − γ . Let M be
an upper bound on the values of the functions f 2

u,i . The running time of the
algorithm for Theorem 4.4 will depend polynomially on M. It is straight-
forward to ensure that M is polynomial in n, the number of vertices of U.

We remark that for the purpose of proving Theorem 4.4, the reader can
replace the function ϕ(z) = (1− z)/(1 + z) that appears in the next lemmas by
the lower bound ϕ(z) > 1−2z. (See Figure 4.1 for a comparison of the two func-
tions.) The more precise bounds show that our rounding for SDP+(U) gives
non-trivial guarantees for all α > 0 (whereas the bound stated in Theorem 4.4
is non-trivial only for α close enough to 1).

The first step in the proof of Theorem 4.4 is to construct a distribution
over partial assignments A : V → Σ∪ {⊥} for U. If a vertex is not labeled by a
partial assignment A (i.e., A assigns the null symbol ⊥ to this vertex), then all
constraints containing this vertex count as unsatisfied. The following lemma
lower bounds the probability that a constraints is satisfied (normalized by the
fraction of labeled vertices) in terms of L1-distances of the functions f 2

u,i .

Lemma 4.7. There is a polynomial-time randomized algorithm that samples a
partial assignment A : V → Σ∪ {⊥} such that for every constraint (u,v,π) of U,

P
A

{
A(u) = π

(
A(v)

) ∣∣∣∣ A(u) ,⊥∨A(v) ,⊥
}
> ϕ

(
1
2
∑
i‖f 2

u,i − f
2
v,π(i)‖1

)
,

where ϕ(z) = (1− z)/(1 + z). Furthermore, PA {A(u) ,⊥} = 1/M for u ∈ V .

Proof. Sample ω ∼Ω and t ∈ [0,M]. Put A(u) = i if f 2
u,i(ω) > t and A(u) =⊥ if

fu,j(ω) 6 t for all j ∈ Σ. (Note that since fu,1, . . . , fu,k have pairwise disjoint sup-
ports, there is at most one label i ∈ Σ with f 2

u,i(ω) > t.) The partial assignment
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A satisfies the constraint (u,v,π) of U with probability

P
A

{
A(v) = π

(
A(u)

)
∈ Σ

}
=

∑
i
P
A

{
A(u) = i ∧A(v) = π(i)

}
=

∑
i
E
ω∼Ω

1
M min

{
f 2
u,i(ω), f 2

v,π(i)(ω)
}

= 1
M −

1
2M

∑
i
‖f 2
u,i − f

2
v,π(i)‖1 .

On the other hand, we can bound the probability that A assigns a label to one
of the vertices u and v,

P
A

{
A(u) ,⊥∨A(v) ,⊥

}
= E
ω∼Ω

1
M max

{∑
i
f 2
u,i(ω),

∑
i
f 2
v,π(i)(ω)

}
= 1
M + 1

2M

∥∥∥∑
i
f 2
u,i −

∑
i
f 2
v,π(i)

∥∥∥
1
6 1
M + 1

2M
∑
i
‖f 2
u,i − f

2
v,π(i)‖1 .

Combining these bounds,

P
A

{
A(u) = π

(
A(v)

) ∣∣∣∣ A(u) ,⊥∨A(v) ,⊥
}
>

1− 1
2
∑
i‖f 2

u,i − f
2
v,π(i)‖1

1 + 1
2
∑
i‖f 2

u,i − f
2
v,π(i)‖1

.

The next step in the proof of Theorem 4.4 uses correlated sampling to obtain
a distribution over (total) assignments x ∈ ΣV for U.

Lemma 4.8. We can efficiently sample an assignment x ∈ Σ for U such that

E
x
U(x) > ϕ

(
E(u,v,π)∼U

1
2
∑
i‖f 2

u,i − f
2
v,π(i)‖1

)
,

where ϕ(z) = (1− z)/(1 + z) as before.

Proof. Let {A(r)}r∈N be an infinite sequence of partial assignments indepen-
dently sampled according to Lemma 4.7. (We will argue at the end of the
proof that a small number of samples suffices in expectation.) For every ver-
tex u ∈ V , let r(u) be the smallest index r such that A(r)(u) , ⊥. Assign the
label xu = A(r(u))(u) to vertex u. (Note that r(u) is finite for every vertex with
probability 1.) Consider a constraint (u,v,π) of U. We claim

P
x
{xv = π(xu)} > P

x,r
{xv = π(xu)∧ r(v) = r(u)}

= P
A

{
A(v) = π

(
A(u)

) ∣∣∣∣ A(u) ,⊥∨A(v) ,⊥
}
> ϕ

(
1
2
∑
i‖fu,i − fv,π(i)‖1

)
.

51



4. Parallel Repeated Unique Games

For the equality, we use that the partial assignments {A(r)} are sampled inde-
pendently. Therefore, we can condition, say, on the event min{r(u), r(v)} = 1
without changing the probability. But this event is the same as the event
A(1)(u) ,⊥∨A(1)(v) ,⊥. The second inequality follows from Lemma 4.7.

Using the convexity of the function ϕ(x) = (1− x)/(1 + x), we can bound the
expected value of the assignment x,

E
x
U(x) = E

(u,v,π)∼U
P
x
{xv = π(xu)} > E

(u,v,π)∼U
ϕ

(
1
2
∑
i‖fu,i − fv,π(i)‖1

)
> ϕ

(
E(u,v,π)∼U

1
2
∑
i‖fu,i − fv,π(i)‖1

)
.

To argue about the efficiency of the construction, we can estimate the expecta-
tion of maxu∈V r(u). (In this way, we bound the expected number of partial
assignments we need to sample.) Since PA {A(u) ,⊥} = 1/M for every vertex
u ∈ V , the expectation of maxu∈V r(u) is at most M ·n.

In the final step of the proof of Theorem 4.4, we relate L1-distances of the
functions f 2

u,i to the objective value α of our solution for SDP+(U).

Lemma 4.9.

E
(u,v,π)∼G

1
2

∑
i

‖f 2
u,i − f

2
v,π(i)‖1 6 (1−α)1/2(1 +α)1/2 .

Proof. By Cauchy–Schwarz,

E
(u,v,π)∼G

1
2

∑
i

‖f 2
u,i − f

2
v,π(i)‖1 = E

(u,v,π)∼G
1
2

∑
i

〈
|fu,i − fv,π(i)|, |fu,i + fv,π(i)|

〉
6

 E
(u,v,π)∼G

1
2

∑
i

‖fu,i − fv,π(i)i‖2


1/2  E
(u,v,π)∼G

1
2

∑
i

‖fu,i + fv,π(i)‖2


1/2

.

This bound proves the lemma, because E(u,v,π)∼G
1
2
∑
i‖fu,i − fv,π(i)i‖2 = 1 − α

and E(u,v,π)∼G
1
2
∑
i‖fu,i + fv,π(i)i‖2 = 1 +α.

Theorem 4.4 follows by combining the previous lemmas (Lemma 4.8 and
Lemma 4.9).

Proof of Theorem 4.4. Using Lemma 4.8, we can sample an assignment x with

E
x
U(x) > ϕ

(
E(u,v,π)∼U

1
2
∑
i‖f 2

u,i − f
2
v,π(i)‖1

)
.
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z

y

y = 1− 2z

y = ϕ(z) = 1−z
1+z

Figure 4.1.: Comparison of 1− 2z and (1− z)/(1 + z)

According to Lemma 4.9,

E(u,v,π)∼U
1
2
∑
i‖f 2

u,i − f
2
v,π(i)‖1 6 (1−α)1/2(1 +α)1/2

Since α = 1−γ , we have (1−α)1/2(1 +α)1/2 6
√

2γ . By monotonicity of ϕ(z) =
(1−z)/(1+z), we get ExU(x) > ϕ(

√
2γ) > 1−2

√
2γ . Using standard arguments

(independently repeated trials), we can efficiently obtain an assignment x
with value U(x) > 1−O(

√
γ) with high probability.

4.3. From Arbitrary to Nonnegative Vectors

As in the previous sections, let U be a unique game with vertex set V = [n]
and alphabet Σ = [k].

In this section, we show how to obtain approximate solutions for the non-
negative relaxation SDP+(U) from an optimal solution to the semidefinite
relaxation SDP(U).

Theorem (Restatement of Theorem 4.5). There exists a polynomial-time algo-
rithm that given a unique game U with alphabet size k and semidefinite value
sdp(U) = 1− ε, computes a solution for SDP+(U) of value at least 1−O(ε logk).

Before describing the general construction, we first illustrate the theorem
by proving the following special case.
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Proof of Theorem 4.5 for k = 2. Let {ui}u∈V ,i∈{1,2} ⊆ Rd be solution for SDP(U)
of value 1− ε. Consider an orthonormal basis e1, . . . , ed of Rd . Let (Ω,µ) be the
uniform distribution over {1, . . . ,d}. For u ∈ V and i ∈ {1,2}, define a function
fu,i ∈ L2(Ω) as follows

fu,i(r) =


√
d ·

(
〈er ,ui〉 − 〈er ,u3−i〉

)
if 〈er ,ui〉 > 〈er ,u3−i〉 ,

0 otherwise.

(Note that 3 − i is just the label in {1,2} distinct from i.) The construction
ensures that fu,1 and fu,2 have disjoint support and are nonnegative for every
vertex u ∈ V . Since u1 and u2 are orthogonal, the construction also preserves
the total mass

‖fu,1‖2 + ‖fu,2‖2 =
d∑
r=1

(
〈er ,u1〉 − 〈er ,u2〉

)2
= ‖u1‖2 + ‖u2‖2 − 2〈u1,u2〉︸    ︷︷    ︸

0

= 1 .

Next, we show that the construction approximately preserves distances. Con-
sider a constraint (u,v,π) of U. Put u = u1 − u2 and v = vπ(1) − vπ(2). Let
I+ be the set of indices r such that sign〈er ,u〉 = sign〈er ,v〉, and let I− be the
complement of I+. Then,∑

i={1,2}
‖fu,i − fv,π(i)‖2 =

∑
r∈I+

〈er ,u−v〉2 +
∑
r∈I−

(
〈er ,u〉2 + 〈er ,v〉2

)
6 ‖u−v‖2 .

(In the last step, we used that 〈er ,u〉〈er ,v〉 < 0 for r ∈ I−.) By the triangle in-
equality, ‖u−v‖ 6

∑
i∈{1,2}‖ui −vπ(i)‖. We conclude that

∑
i∈{1,2}‖fu,i −fv,π(i)‖2 6

2
∑
i∈{1,2}‖ui −vπ(i)‖2, which implies that the value of the constructed solution

{fu,i} for SDP+(U) is at least 1− 2ε.

For larger alphabets, the proof of Theorem 4.5 proceeds in two steps. In
the first step, we construct a nearly feasible solution for SDP+(U). This step
loses the factor O(logk) that appears in the bound of Theorem 4.5. In the
second step, we show how to repair a nearly feasible solution of SDP+(U)
while approximately preserving the objective value. The construction for this
step is quite delicate, but resembles the simple construction for k = 2 to some
extent.
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4.3.1. Constructing Nearly Feasible Solutions

We say a collection of nonnegative functions {fu,i}u∈V ,i∈Σ ⊆ L2(Ω) is γ-infeasible
for SDP+(U) if for every vertex u ∈ V ,∑

i

‖fu,i‖2 = 1 , (4.5)∑
i,j

〈fu,i , fu,j〉 6 γ . (4.6)

In the following, we show that if sdp(U) = 1 − ε, then one can efficiently
compute a 1/10-infeasible solution for SDP+(U) of value 1 −O(ε logk). (The
bound stated in the theorem is more general.)

Theorem 4.10. If sdp(U) = 1− ε, then for every t > 1 we can efficiently compute
a k · 2−t-infeasible solution for SDP+(U) of value at least 1−O(t) · ε.

Let {ui}u∈V ,i∈Σ be a solution for SDP(U) of value 1− ε. The proof of Theo-
rem 4.10 has two steps. First, we construct nonnegative functions fu,i over the
space Rd (equipped with the d-dimensional Lebesgue measure). These func-
tions will have all the desired properties (nearly feasible and high objective
value). Then, we discretize the space and obtain functions defined on a finite
probability space, while approximately preserving the desired properties.
(The second step is quite tedious and not very interesting. We omit its proof.)

The crux of the proof of Theorem 4.10 is the following mapping from Rd to
nonnegative functions in L2(Rd),

Mσ (x) def= ‖x‖
√
Tx̄φσ . (4.7)

Here, x̄ = ‖x‖−1x is the unit vector in direction x, Th is the translation
operator on L2(Rd), so that Thf (x) = f (x − h), and φσ ∈ L2(Rd) is the density
of the d-dimensional Gaussian distribution N (0,σ2)d with respect to the
Lebesgue measure λd on Rd ,

φσ (x) def= 1

(σ
√

2π)d
e−‖x‖

2/2σ2
.

Since
∫
φσ dλd = 1 (and the measure λd is invariant under translation), the

mapping Mσ is norm-preserving, so that ‖Mσ (x)‖ = ‖x‖ for every x ∈Rd .
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The mapping Mσ approximately preserves inner products (and thereby
distances). The trade-off between the approximation of two scales will be
relevant. On the one hand, orthogonal unit vectors are mapped to unit vectors
with inner product 2−Ω(σ−2). On the other hand, the squared distance of
vectors is stretched by at most a factor σ−2.

Lemma 4.11. For any two vectors x,y ∈Rd ,

〈Mσ (x),Mσ (y)〉 = ‖x‖‖y‖e−‖x̄−ȳ‖
2/8σ2

. (4.8)

In particular, ‖Mσ (x)−Mσ (y)‖2 6 ‖x − y‖2/4σ2 (for σ 6 1/2).

Proof. The following identity implies (4.8) (by integration)√
Tx̄φσ · Tȳφσ = e−‖x̄−ȳ‖

2/8σ2
T 1

2 (x̄+ȳ)φσ .

To verify the bound ‖Mσ (x) −Mσ (y)‖2 6 ‖x − y‖2/4σ2, we first show a corre-
sponding bound for the unit vectors x̄ and ȳ,

‖Mσ (x̄)−Mσ (ȳ)‖2 = 2− 2e−‖x̄−ȳ‖
2/8σ2
6 ‖x̄ − ȳ‖2/4σ2 .

Using that the mapping Mσ is norm-preserving, we can show the desired
bound

‖Mσ (x)−Mσ (y)‖2 =
(
‖x‖ − ‖y‖

)2
+ ‖x‖‖y‖ · ‖Mσ (x̄)−Mσ (ȳ)‖2

6
(
‖x‖ − ‖y‖

)2
/4σ2 + ‖x‖‖y‖ · ‖Mσ (x̄)−Mσ (ȳ)‖2/4σ2 = ‖x − y‖2/4σ2 .

(The inequality uses the assumption σ 6 1/2.)

To prove Theorem 4.10, we map the vectors ui of the solution for SDP(U)
to nonnegative functions fu,i := Mσ (ui) (with σ2 ≈ 1/t). Lemma 4.11 shows
that the functions fu,i form a k · 2−t-infeasible solution for SDP+(U) of value
1−O(t) · ε.

Proof of Theorem 4.10. Let {ui}u∈V ,i∈Σ be a solution for SDP(U) of value 1 −
ε. Put fu,i = Mσ (ui) (we fix the parameter σ later). First, we verify that
{fu,i}u∈V ,i∈Σ is k · e−1/4σ2

-infeasible. Since Mσ is norm-preserving, we have
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∑
i∈Σ‖fu,i‖2 = 1 for every vertex u ∈ V . On the other hand, since the vectors
{ui}i∈Σ are pairwise orthogonal, Lemma 4.11 shows that∑

i,j

〈fu,i , fu,j〉 = e−1/4σ2
((∑

i
‖ui‖

)2
− 1

)
6 k · e−1/4σ2

.

(Here, we used Cauchy–Schwarz to bound
∑
i‖ui‖.) The objective value of the

functions fu,i is at least 1− ε/4σ2, because Lemma 4.11 implies that for every
constraint (u,v,π) of U,∑

i

‖fu,i − fv,π(i)‖2 6
∑
i

‖ui −vπ(i)‖2/4σ2 .

If we choose σ2 = 1/(4t ln2), we obtain a k ·2−t-infeasible solution for SDP+(U)
of value 1−O(t)ε, as desired.

4.3.2. Repairing Nearly Feasible Solutions

In the following, we show how to repair nearly feasible solutions for SDP+(U)
while approximately preserving the objective value.

Theorem 4.12. Given a 1/10-infeasible solution for SDP+(U) of value 1− ε′, we
can efficiently compute a (feasible) solution for SDP+(U) of value 1−O(ε′).

The proof of Theorem 4.12 is quite technical and basically boils down to
a careful truncation procedure (which we refer to as “soft truncation”, see
Lemma 4.13). A significantly simpler truncation procedure shows that given
a γ-infeasible solution of value 1− ε′, one can efficiently compute a feasible
solution of value 1−O(ε′ +γ). Due to this additive decrease of the objective
value, this simpler truncation is not enough to show Theorem 4.5 (SDP(U)
vs. SDP+(U)). However, it suffices to establish the following slightly weaker
result: If SDP(U) = 1− ε, we can efficiently compute a solution for SDP+(U) of
value 1−O(ε log(k/ε)).

Theorem 4.12 follows from the following lemma (which asserts the existence
of a mapping that we can use to transform a 1/10-feasible solution for SDP+(U)
to a feasible solution with roughly the same objective value).

Lemma 4.13 (Soft Truncation). There exists an efficiently computable mapping
Q : L2(Ω)k→ L2(Ω)k with the following properties: Let f1, . . . , fk and g1, . . . , gk be
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u1

u2

v1

v2

0

Figure 4.2.: Illustration of the construction for Theorem 4.10. With each
vector u1,v1,u2,v2 we associate a Gaussian distribution centered
at that vector (depicted as disc in the figure). The infeasibility of
the solution for the SDP+ relaxation corresponds to the overlap of
discs with the same color.
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nonnegative functions in L2(Ω) such that
∑
i‖fi‖2 =

∑
i‖gi‖2 = 1 and

∑
i,j〈fi , fj〉+∑

i,j〈gi , gj〉 6 γ. Suppose (f ′1 , . . . , f
′
k ) =Q(f1, . . . , fk) and (g ′1, . . . , g

′
k) =Q(g1, . . . , gk).

Then, for every permutation π of [k],∑
i

‖f ′i − g
′
π(i)‖

2 6 32
1−4γ

∑
i

‖fi − gπ(i)‖2 .

Furthermore,
∑
i‖f ′i ‖

2 =
∑
i‖g ′i‖

2 = 1 and supp(f ′i ) ∩ supp(f ′j ) = supp(g ′i ) ∩
supp(g ′j) = ∅ for all i , j.

Proof. The mapping Q is the composition of two mappings Q(1) and Q(2). The
first mapping Q(1) ensures that the output functions have disjoint support,

Q(1) : L2(Ω)k→ L2(Ω)k , (f1, . . . , fk) 7→ (f ′1 , . . . , f
′
k ) , (4.9)

f ′i (x) =

fi(x)−maxj,i fj(x) if fi(x) >maxj,i fj(x) ,
0 otherwise.

(4.10)

The purpose of the second mapping Q(2) is to renormalize the function (so
that the squared L2 norms sum to 1),

Q(2) : L2(Ω)k→ L2(Ω)k , (4.11)(
f1, . . . , fk

)
7→

(
1
λf1, . . . ,

1
λfk

)
, (4.12)

where λ2 =
∑
i‖fi‖2 . (4.13)

Let f1, . . . , fk and g1, . . . , gk be nonnegative functions in L2(Ω) satisfying the
conditions of the current lemma, i.e.,

–
∑
i,j〈fi , fj〉+

∑
i,〈gi , gj〉 6 γ

–
∑
i‖fi‖2 =

∑
i‖gi‖2 = 1.

Let (f (1)
1 , . . . , f (1)

k ) =Q(1)(f1, . . . , fk) and (f (2)
1 , . . . , f (2)

k ) =Q(2)(f (1)
1 , . . . , f (1)

k ). Similarly,
let (g (1)

1 , . . . , g
(1)

k ) = Q(1)(g1, . . . , gk) and (g (2)
1 , . . . , g

(2)

k ) = Q(2)(g (1)
1 , . . . , g

(1)

k ). Next, we
establish two claims about the effects of the mappingsQ(1) andQ(2) (Claim 4.14
and Claim 4.15). The current lemma (Lemma 4.13) follows by combining
these two claims.

Claim 4.14 (Properties of Q(1)). 1. For every permutation π of [k],∑
i

‖f (1)

i − g
(1)

π(i)‖
2 6 8

∑
i

‖fi − gπ(i)‖2 .
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2. For all i , j,
supp(f (1)

i )∩ supp(f (1)

j ) = ∅ .

3.
1 >

∑
i

‖f (1)

i ‖
2 > 1− 2γ .

Proof. Item 2 holds, since by construction supp(f (1)

i ) = {x | fi(x) >maxj,i fj(x)}.
To prove Item 3, we observe that f (1)

i (x)2 > fi(x)2−2
∑
j,i fi(x)fj(x) and therefore

as desired ∑
i

∥∥∥f (1)

i

∥∥∥2
>

∑
i

∥∥∥fi∥∥∥2 − 2
∑
i,j

〈
fi , fj

〉
> 1− 2γ .

To prove Item 1, we will show that for every x ∈Ω,∑
i

(
f (1)

i (x)− g (1)

π(i)(x)
)2
6 8

∑
i

(
fi(x)− gπ(i)(x)

)2
. (4.14)

Since Q(1) is invariant under permutation of its inputs, we may assume π is
the identity permutation. At this point, we can verify (4.14) by an exhaus-
tive case distinction. Fix x ∈ Ω. Let if be the index i that maximizes fi(x).
(We may assume the maximizer is unique.) Let jf be the index such that
fjf (x) = maxj,if fj(x). Similarly, define ig and jg such that gig (x) = maxi gi(x)
and gjg (x) = maxj,ig gj(x). We may assume that if = 1 and jf = 2. Further-
more, we may assume ig , jg ∈ {1,2,3,4}. Notice that the sum on the left-hand
side of (4.14) has at most two non-zero terms (corresponding to the indices
i ∈ {if , ig} ⊆ {1, . . . ,4}). Hence, to verify (4.14), it is enough to show

max
i∈{1,...,4}

∣∣∣f (1)

i (x)− g (1)

i (x)
∣∣∣ 6 4 max

i∈{1,...,4}

∣∣∣fi(x)− gi(x)
∣∣∣ . (4.15)

Put ε = maxi∈{1,...,4}|fi(x)−gi(x)|. Let qi(a1, . . . , a4) := max{ai −maxj,i aj ,0}. Note

that f (1)

i (x) = qi
(
f1(x), . . . , f4(x)

)
and g (1)

i (x) = qi
(
g1(x), . . . , g4(x)

)
. The functions

qi are 1-Lipschitz in each of their four inputs. It follows as desired that for
every i ∈ {1, . . . ,4},∣∣∣∣f (1)

i (x)− g (1)

i (x)
∣∣∣∣ =

∣∣∣∣qi(f1(x), . . . , f4(x)
)
− qi

(
g1(x), . . . , g4(x)

)∣∣∣∣ 6 4ε .

Claim 4.15 (Properties of Q(2)). 1. For every permutation π of [k],∑
i

‖f (2)

i − g
(2)

π(i)‖
2 6 4

1−4γ

∑
i

‖f (1)

i − g
(1)

π(i)‖
2 .
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2. For all i ∈ Σ,
supp(f (2)

i ) = supp(f (1)

i ) .

3. ∑
i

‖f (2)

i ‖
2 = 1 .

Proof. Again Item 2 and Item 3 follow immediately by definition of the
mapping Q(2). To prove Item 1, let λf ,λg > 0 be the multipliers such that
f (2)

i = f (1)

i /λf and g (2)

i = g (1)

i /λg for all i ∈ [k]. Item 1 of Claim 4.14 shows that
λ2
f and λ2

g lie in the interval [1−2γ,1]. We estimate the distances between f (2)

i

and g (2)

π(i) as follows,∑
i

∥∥∥f (2)

i − g
(2)

π(i)

∥∥∥2
=

∑
i

∥∥∥∥ 1
λf

(
f (1)

i − g
(1)

π(i)

)
+
(

1
λf
− 1
λg

)
g (1)

i

∥∥∥∥2

6 2
λ2
f

∑
i

∥∥∥f (1)

i − g
(1)

π(i)

∥∥∥2
+ 2

(
1
λf
− 1
λg

)2∑
i

∥∥∥g (1)

i

∥∥∥2

(using ‖a+ b‖2 6 2‖a‖2 + 2‖b‖2)

6 2
1−2γ

∑
i

∥∥∥f (1)

i − g
(1)

π(i)

∥∥∥2
+ 2

(
1
λf
− 1
λg

)2
(using

∑
i

‖g (1)

i ‖
2 6 1) .

It remains to upper bound the second term on the right-hand side, (1/λf −1/λg)2.
Since the function x 7→ 1/x is 1/a2-Lipschitz on an interval of the form [a,∞), we
have∣∣∣ 1

λf
− 1
λg

∣∣∣ 6 1
1−2γ

∣∣∣λf −λg ∣∣∣
= 1

1−2γ

∣∣∣∣∣(∑i‖f
(1)

i ‖
2
)1/2
−
(∑

i‖g
(1)

π(i)‖
2
)1/2

∣∣∣∣∣
6 1

1−2γ

(∑
i

(
‖f (1)

i ‖ − ‖g
(1)

π(i)‖
)2

)1/2
(using triangle inequality)

6 1
1−2γ

(∑
i
‖f (1)

i − g
(1)

π(i)‖
2
)1/2

(using triangle inequality) .

Combining the previous two estimates, we get as desired∑
i

∥∥∥f (2)

i − g
(2)

π(i)

∥∥∥2
6

(
2

1−2γ + 2
(1−2γ)2

)∑
i

∥∥∥f (1)

i − g
(1)

π(i)

∥∥∥2
.
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4.4. Notes

The material presented in this chapter is based on the paper “Rounding Par-
allel Repetitions of Unique Games”[BHH+08], joint with Boaz Barak, Moritz
Hardt, Ishay Haviv, Anup Rao, and Oded Regev, and on the paper “Improved
Rounding for Parallel-Repeated Unique Games” [Ste10b]. A preliminary ver-
sion of the first paper appeared at FOCS 2008. The second paper appeared in
preliminary form at RANDOM 2010.

Related Works

The techniques in this chapter are natural generalizations of ideas in Raz’s
counterexample to strong parallel repetition [Raz08].

Before discussing the connections, we first describe Raz’s result and his
construction. He showed that for every ε > 0, there exists a unique game
U (Max Cut on an odd cycle of length 1/ε) that satisfies opt(U) 6 1− ε and
opt(U`) > 1 −O(

√
` ε). To construct the assignment for the repeated game

U`, he assigned to every vertex of U a distribution over assignments for the
unique game U. To every vertex of the repeated game U`, he assigned the
corresponding product distribution. Finally, he obtained an assignment for
U` using Holenstein’s correlated sampling protocol [Hol09].

In retrospect, we can interpret Raz’s construction in terms of techniques
presented in this chapter. The distributions he assigns to the vertices of
the unique game U correspond to a solution to the intermediate relaxation
SDP+(U). His construction shows that sdp+(U) > 1−O(ε2). (In fact, his con-
struction roughly corresponds to the proof of the special case of Theorem 4.5
for k = 2 that we presented in the beginning of §4.3.) The distributions he
considers for the repeated gameU` roughly correspond to a (product) solution
for the relaxation SDP+(U`), demonstrating that sdp+(U`) > 1−O(`ε2). Finally,
he rounds these distributions to an assignment for U`, roughly corresponding
to the proof Theorem 4.4 presented in §4.2.

In this light, the main technical contribution of the works [BHH+08] and
[Ste10b] is the general construction of solutions to the intermediate relaxation
SDP+(U) based on a solution to the relaxation SDP(U). (Raz’s construction of
a solution to SDP+(U) relies on the specific structure of the unique games he
considers.)

We note that Kindler et al. [KORW08] extended Raz’s construction to the
continuous case, leading to a construction of high-dimensional foams with
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4. Parallel Repeated Unique Games

surprisingly small surface area. Alon and Klartag [AK09] unified the results
of Raz [Raz08] and Kindler et al. [KORW08] and generalized them further.

Correlated Sampling

In the proof of Theorem 4.4 (see §4.2), we used a technique called “corre-
lated sampling” to construct an assignment for a unique game from a suit-
able distribution over partial assignments. This technique was first used by
Broder [Bro97] for sketching sets. In the context of rounding relaxations, this
technique was introduced by Kleinberg and Tardos [KT02].

Later, Holenstein [Hol09] used this technique in his proof of the Parallel
Repetition Theorem. In the context of rounding relaxations of Unique Games,
this technique was used by [CMM06b] and [KRT08].
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Algorithms

Impagliazzo, Paturi, and Zane [IPZ01] showed that many NP-hard problems
require strongly exponential running time — time 2Ω(n) — assuming 3-Sat
requires strongly exponential time. Similarly, efficient PCP construction (the
latest one by Moshkovitz and Raz [MR08]) show that, under the same assump-
tion, achieving non-trivial approximation guarantees1 for problems like Max

3-Lin and Label Cover requires running time 2Ω(n1−o(1)).
In this chapter, we show that for Unique Games, non-trivial approxima-

tion guarantees can be achieved in subexponential time, demonstrating that
Unique Games is significantly easier to approximate than problems like Max

3-Lin and Label Cover. Concretely, we give an algorithm for Unique Games

that achieves a (1−ε, ε)-approximation in time exponential in k ·nO(ε1/3), where
n is the number of vertices and k is the alphabet size.

This algorithm for Unique Games is inspired by a (similar, but somewhat
simpler) algorithm for Small-Set Expansion with the following approximation
guarantee for every β > 0: Given a graph G containing a vertex set S with
volume µ(S) = δ and expansion Φ(S) = ε, the algorithm finds in time exp(nβ/δ)
a vertex set S ′ with volume close to δ and expansion Φ(S ′) 6O(

√
ε/β).

5.1. Main Results

In this section, we describe subexponential approximation algorithms for
Small-Set Expansion and Unique Games. In the following, we use exp(f ) for
a function f to denote a function that is bounded from above by 2C·f for some
absolute constant C ∈N.

Our algorithm for Small-Set Expansion achieves the following trade-off

1 Here (as for all of this thesis), we are interested in approximation guarantees independent
of the instance size. For Max 3-Lin, a (1− ε,1/2 + ε)-approximation for some constant ε > 0
is non-trivial. For Label Cover, a (1, ε)-approximation for some constant ε is non-trivial.
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5. Subexponential Approximation Algorithms

between running time and approximation guarantee. (See §5.1.1 for the
proof.)

Theorem 5.1 (Subexponential Algorithm for Small-Set Expansion).
There exists an algorithm that given a graph G on n vertices containing a vertex
set with volume at most δ and expansion at most ε, computes in time exp(nβ/δ) a
vertex set S with volume µ(S) 6 (1 +γ)δ and expansion Φ(S) 6O(

√
ε/βγ9). Here,

β is a parameter of the algorithm that can be chosen as small as loglogn/ logn.

We remark that for β,γ > Ω(1) (say β = γ = 0.001), the approximation
guarantee of our algorithm for Small-Set Expansion matches up to constant
factors the approximation guarantee of Cheeger’s bound for Sparsest Cut.

Our algorithm for Unique Games achieves the following trade-off between
running time and approximation guarantee.

Theorem 5.2 (Subexponential Algorithm for Unique Games).
There exists an algorithm that given a unique game U with n vertices, alphabet
size k, and optimal value opt(U) > 1−ε, computes in time exp(knβ) an assignment
x of value U(x) > 1−O(

√
ε/β3 ). Here, β is a parameter of the algorithm that can

be chosen as small as loglogn/ logn.

An immediate consequence of the above theorem is that we can compute
in time exponential in nÕ(ε1/3) an assignment that satisfies a constant fraction
(say, 1/2) of the constraints ofU (whereU is as in the statement of the theorem).
See §5.1.2 for a proof of this special case of Theorem 5.2. (Section 5.5 contains
the proof of the general case of Theorem 5.2.)

Both algorithms rely on the notion of threshold rank of a matrix (and the
related notion of soft threshold rank). For a symmetric matrix A and τ > 0,
we define the threshold rank of A at τ , denoted rankτ(A), as the number of
eigenvalues of A larger than τ in absolute value. The threshold rank at 0
coincides with the usual notion of rank. In general, the threshold rank at τ
satisfies

rankτ(A) = min
‖B‖6τ

rank(A−B) ,

where B is a symmetric matrix with the same dimension as A and ‖B‖ denotes
the spectral norm of B (the largest eigenvalue in absolute value).

The algorithm for Small-Set Expansion is significantly simpler than the
algorithm for Unique Games, but it contains the main ideas.
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5.1.1. Small Set Expansion

Let G be a graph with vertex set V = [n]. For simplicity, assume that G is
regular. We identify G with its stochastic adjacency matrix. For η ∈ [0,1),
let Uη denote the subspace of L2(V ) spanned by the eigenfunctions of G
with eigenvalue larger than 1 − η. Note that dimUη = rank1−η/2(1

2 + 1
2G) 6

rank1−η(G).
The next lemma formalizes the following idea: Suppose G contains a set

with low expansion. Then, given the projection of the indicator function of
this set onto Uη (for appropriate η), we can reconstruct a set with roughly the
same volume and expansion. (For the reconstruction, we just try all level sets
of the projection.) The lemma also asserts that the reconstruction is robust,
i.e., it succeeds even given a function in Uη close to the true projection.

Lemma 5.3. Let ε,δ,η > 0 such that ε/η is sufficiently small. Suppose the graph G
contains a vertex set with volume at most δ and expansion at most ε. Then, every
ε/100-net of the subspace Uη contains a function with a level set S ⊆ V satisfying
µ(S) 6 1.1δ and Φ(S) 6O(ε).

(A subset N ⊆ U is an ε-net of (the unit ball of) a subspace U if for every
vector x ∈U with norm ‖x‖ 6 1, the net contains a vector y ∈N with ‖x−y‖ 6 ε.)

An immediate consequence of the previous lemma is an approximation
algorithm for Small-Set Expansion with running time exponential in dimUη .
(Here, we use that for a subspace of dimension d, one can construct ε-nets of
size (1/ε)O(d).)

The next lemma shows how to find small sets with low expansion when
the dimension of Uη is large. In this case, there exists a vertex and number
of steps t such that one can find a set with small volume and low expansion
among the level sets of the probability distribution given by the t-step lazy
random walk started at this vertex.

Lemma 5.4. Suppose dimUη > n
β/δ for nβ sufficiently large. Then, there exist a

vertex i ∈ V and a number t ∈ {1, . . . ,η−1 logn} such that a level set S of (1
2I+

1
2G)t1i

satisfies µ(S) 6 δ and Φ(S) 6O(
√
η/β).

Theorem 5.1 (Subexponential Algorithm for Small-Set Expansion) follows
by combining the previous lemmas.

Proof of Theorem 5.1. Let η = O(ε/γ9). If dimUη > nβ/δ, then, using
Lemma 5.4, we can efficiently find a vertex set S with µ(S) 6 δ and Φ(S) 6
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O(
√
η/β) =O(

√
ε/βγ9). Otherwise, if dimUη < n

β/δ, we construct an ε/100-net

N of Uη of size (1/ε)O(nβ /δ) and enumerate all level sets of functions in N .
Since the given graph G contains a vertex set with volume at most δ and
expansion at most ε, by Lemma 5.3, one of enumerated level sets S satisfies
µ(S) 6 (1 +γ)δ and Φ(S) 6O(

√
ε/γ9).

5.1.2. Unique Games

Related to the notion of threshold rank, we define the soft-threshold rank of a
symmetric matrix A at τ as

rank∗τ(A) def= inf
t∈N

TrA2t/τ2t .

The soft-threshold rank upper bounds the threshold rank, rank∗τ(A) >
rankτ(A), because TrA2t > τ2t · rankτ(A) for all t ∈N.

The following theorem gives an algorithm for Unique Games that achieves
a good approximation in time exponential in the alphabet size and the soft-
threshold rank of the constraint graph (for appropriate threshold value).

Theorem 5.5. Given η > 0 and a regular unique game U with n vertices, alphabet
size k, constraint graph G, and optimal value opt(U) = 1− ε, we can compute in
time exp(k · rank∗1−η(G)) an assignment x of value U(x) > 1−O(ε/η).

For a regular graphG and a vertex subsetA, letG[A] denote the “regularized
subgraph” induced by A, i.e., we restrict G to the vertex set A and add self-
loops to each vertices in A so as to restore its original degree.

The following theorem shows that by changing only a small fraction of its
edges, any regular graph can be turned into a vertex disjoint union of regular
graphs with few large eigenvalues.

Theorem 5.6 (Threshold rank decomposition). There exists a polynomial-time
algorithm that given parameters η,β > 0 and a regular graph G with n vertices,
computes a partition P of the vertices of G such that rank∗1−η(G[A]) 6 nβ for all
A ∈P and at most an O(

√
η/β3) fraction of the edges of G does not respect the

partition P .

Theorem 5.2 (Subexponential algorithm for Unique Games) follows by
combining Theorem 5.5 and Theorem 5.6.
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Proof of Theorem 5.2 (special case). LetU be a regular unique game with vertex
set V = [n], alphabet size k, and optimal value opt(U) = 1 − ε. Let x be an
optimal assignment for U so that U(x) = 1− ε. Let η > 0 (we determine this
parameter later). Apply Theorem 5.6 to the constraint graph G of U and P =
{A1, . . . ,Ar} be the resulting partition of V . We replace every constraint that
does not respect the partition P by two self-loops with identity constraints
(each of the new constraints has weight half). After replacing constraints that
do not respect P in this way, the unique game U decomposes into vertex
disjoint unique games U1, . . . ,Ur with vertex sets A1, . . . ,Ar , respectively. The
constraint graph of Ui is G[Ai] (the regularized subgraph of G induced by Ai).
It holds that

∑
i µ(Ai)Ui(x) >U(x) (since self-loops with identity constraints

are always satisfied) and therefore∑
i

µ(Ai)opt(Ui) > 1− ε . (5.1)

By Theorem 5.6, we have rank∗1−η(G[Ai]) 6 nβ for every i ∈ [r]. Hence, using
Theorem 5.5, can compute in time poly(n)exp(nβ) assignments x(1), . . . ,x(r) for
U1, . . . ,Ur such that Ui(x(i)) > 1−εi/η, where εi > 0 is such that opt(Ui) = 1−εi .
From (5.1) it follows that

∑
i µ(Ai)εi 6 ε and thus,

∑
i µ(Ai)Ui(x(i)) > 1−ε/η. Let

x′ be the concatenation of the assignments x(1), . . . ,x(r). Since at most O(
√
η/β3 )

of the constraints of U do not respect the partition {A1, . . . ,Ar}, the value of
the computed assignment x′ is at least U(x′) > 1− ε/η −O(

√
η/β3 ). Hence, in

order to satisfy a constant fraction, say 0.9, of the constraints, we can choose
η =O(ε) and β =O(ε1/3). In this case, the total running time of the algorithm
is exponential in nO(ε1/3).

5.2. Subspace Enumeration

In this section, we prove Lemma 5.3 (see §5.2.1) and Theorem 5.5 (see §5.2.2).
Before, we prove a general theorem (Theorem 5.7), which we use in the proof
of Theorem 5.5 and which also implies a quantitatively weaker version of
Lemma 5.3.

For a regular graph G (again identified with its stochastic adjacency matrix)
and η ∈ [0,1), define rank+

1−η(G) as the number of eigenvalues of G larger
than 1− η (in contrast to rank1−η(G), we only consider positive eigenvalues).
Clearly, rank+

1−η(G) 6 rank1−η(G). We can express rank+
1−η(G) in terms of the
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usual threshold rank, for example

rank+
1−η(G) = rank1−η/2

(
1
2I + 1

2G
)
.

Most lemmas and theorems in this section use rank+
1−η(G) instead of

rank1−η(G).
The next theorem shows that given a regular graph and a parameter η, we

can compute a list of vertex sets of length exponential in the threshold rank
of the graph at 1− η such that every vertex set with expansion significantly
smaller than η is close to one of the sets in the list.

Theorem 5.7. Given a parameter η > 0 and a regular graph G with vertex
set V = [n], we can compute a list of vertex sets S1, . . . ,Sr ⊆ V with r 6
exp(rank+

1−η(G) logn) such that for every vertex set S ⊆ V , there exists an in-
dex i ∈ [r] with

µ(S∆Si)
µ(S)

6 8Φ(S)/η .

(The computation is efficient in the output size.)

Proof. Let Uη be the subspace of L2(V ) spanned by the eigenfunctions of G
with eigenvalue at least 1− η. Note dimUη = rank+

1−η(G). Construct a 1/99n-
net N for (the unit ball of) Uη of size exp(dimUε · logn). Compute S1, . . . ,Sr
by enumerating the level sets of the functions in N .

To verify the conclusion of the theorem, consider a vertex set S with expan-
sion Φ(S) = ε. Let L = I −G be the Laplacian of G and let Pη be the projector
onto Uη . On the one hand, 〈1S ,L1S〉 = ε‖1S‖2. On the other hand,

〈1S ,L1S〉 = 〈Pη1S ,L(Pη1S)〉+ 〈1S − Pη1S ,L(1S − Pη1S)〉 > η‖1S − Pη1S‖2 .

(The inequality uses that 1S − Pη1S is orthogonal to Uη and thus in the span
of the eigenfunctions of L with eigenvalue larger than η.) It follows that
‖1S −Pη1S‖2 6 (ε/η)‖1S‖2. Since N is a 1/99n-net of Uη , it contains a function
f ∈N such that ‖1S − f ‖2 < (ε/η)‖1S‖2 + 1/8n. Consider the index i ∈ [r] such
that Si is the level set Si = {j ∈ V | f (j) > 1/2}. We bound the volume of the
symmetric difference of S and Si ,

µ(S∆Si) 6 P
j∈V

{
|1S(j)− f (j)| > 1/2

}
6 4‖1S − f ‖2 < 4(ε/η)‖1S‖2 + 1/2n.

It follows that µ(S∆Si) is at most 8(ε/η)µ(S). (Strictly speaking, we assume
here 4(ε/η)‖1S‖2 > 1/2n. However, otherwise, we get µ(S∆Si) < 1/n, which
means that S = Si and thus µ(S∆Si) = 0.)
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Remark 5.8. For simplicity, the proof of the theorem used a net of width
1/ poly(n). For interesting range of the parameters, a net of constant, say η,
width is enough. In this case, the length of the list (and essentially the running
time) is bounded by n · exp(rank+

1−η(G) log(1/η)).

5.2.1. Small-Set Expansion

Let G be a regular graph with vertex set V = [n]. For η ∈ [0,1], let Uη ⊆ L2(V )
be the subspace spanned by the eigenfunctions of G with eigenvalue larger
than 1− η.

Recall the spectral profile of G (see §2.2) ,

Λ(δ) = min
f ∈L2(V )
‖f ‖216δ‖f ‖

2

〈f ,Lf 〉
〈f , f 〉

,

where L = I −G is the Laplacian of G.
The next lemma shows the following: Suppose Λ(δ) = ε (which is the case if

the given graph G contains a vertex set with volume at most δ and expansion
at most ε). Then, given a fine-enough net of the unit ball of Uη for η� ε, one
can efficiently reconstruct a function h that demonstrates that Λ(4/3δ) =O(ε).
The constant hidden by the O(·)-notation depends on the ratio of η and ε
(denoted by β in the statement of the lemma). Here, the constant 4/3 can be
replaced by any constant larger than one (leading to larger constants in the
O(·)-notation).

Lemma 5.9. Let β,γ > 0 be sufficiently small with γ >
√
β. Suppose Λ(δ) = ε and

let η = ε/β. Then for every ε/100-net N of Uη , there exists a function g ∈N and
a threshold value τ such that the function h = max{g − τ,0} ∈ L2(V ) satisfies

〈h,Lh〉 6 (ε/βγ)〈h,h〉 ,
µ(supp(h)) 6 (1 + 16γ1/3)δ .

Proof. Let f be a minimizer for the spectral profile Λ(δ), so that 〈f ,Lf 〉 =
ε‖f ‖2 and ‖f ‖21 6 δ‖f ‖2. We may assume f > 0 and ‖f ‖2 = 1. Let Pη be the
projector onto Uη . Then, ‖f − Pηf ‖2 6 ε/η. (Same argument as in the proof
of Theorem 5.7.) Hence, N contains a function g such that ‖f − g‖2 6 2ε/η.
Since g ∈Uη , we have 〈g,Lg〉 6 η‖g‖2. Therefore, the function h also satisfies
〈h,Lh〉 6 η‖g‖2.
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For a threshold value τ , we can upper bound the volume of the support of
h by roughly 1/τ2. (Later we choose τ ≈ 1/

√
δ, so that the support has volume

roughly δ.) For α = (ε/η)1/3/2 6 1/2,

µ(supp(h)) = P {gi > τ} 6 P {|fi − gi | > ατ}+P {fi > (1−α)τ}

6 1
α2τ2 ‖f − g‖2 + 1

(1−α)2τ2 ‖f ‖2 6
(
1 + 4α + 2ε/η

α2

)
· 1
τ2 =

(
1 + 10(ε/η)1/3

)
1
τ2 . (5.2)

On the other hand, we can lower bound the L2-mass of h in terms of the
L2-mass of the function h′ = max{f − τ,0}

‖h‖2 = E
i

max{gi−τ,0}2 > E
i

max{fi−τ,0}2−2E
i

max{fi−τ,0} |fi−gi |−E
i
(fi−gi)2

> ‖h′‖2 − 2‖h′‖‖f − g‖ − ‖f − g‖2 > ‖h′‖2 − 5
√
ε/η . (5.3)

(Here, the first inequality holds for every vertex i ∈ V . The second inequality
uses Cauchy–Schwarz. For the third inequality, we use ‖h′‖ 6 ‖f ‖ = 1 and
‖f − g‖ 6

√
2ε/η.) If we choose τ = (1− 2γ1/3)2/

√
δ, then Lemma 5.10 asserts

that ‖h′‖2 > 8γ . Combined with (5.3), we get ‖h‖2 > 3γ . (Recall that γ >
√
ε/η.)

We can now verify that h has the desired properties. On the one hand,

〈h,Lh〉
〈h,h〉

6
η‖g‖2

3γ
6 η/γ .

On the other hand, using (5.2),

µ(supp(h)) 6 (1 + 10(ε/η)1/3) 1
τ2 6 (1 + 16γ1/3)δ .

(The second inequality uses that 1/τ2 6 (1+6γ1/3)δ for sufficiently small γ .)

The following technical lemma is used in the proof of the previous lemma.

Lemma 5.10. Let (Ω,µ) be a finite probability space. For a nonnegative func-
tion f ∈ L2(Ω) and a threshold value τ 6 (1 − ε)2‖f ‖2/‖f ‖1, consider g =
max{f − τ,0}. Then,

‖g‖2 > ε3‖f ‖2

Proof. For u = ε2, let A ⊆ Ω be the set of points ω ∈ Ω such that g(ω)2 >
uf (ω)2 and let B = Ω \ A be its complement. For every point ω ∈ B, the
function f satisfies (f (ω)− τ)2 6 uf (ω)2 and thus (1− ε)f (ω) 6 τ . Then,

‖g‖2 > u〈1A, f 2〉 = u
(
‖f ‖2 − 〈1Bf , f 〉

)
> u

(
‖f ‖2 − ‖f ‖1 · τ/(1− ε)

)
(The last inequality uses that 1Bf 6 τ/(1− ε) pointwise.) The claimed lower
bound on ‖g‖2 follows from the assumption about τ .

71



5. Subexponential Approximation Algorithms

The following lemma follows by combining Lemma 5.9 and Lemma 2.2
(local Cheeger bound).

Lemma 5.11. Let β > 0 and γ > 16β1/6 be small enough. Suppose Φ(δ) = ε. Then
for η = ε/β, every ε/100-net of the unit ball of Uη contains a function with a level
set S that satisfies

µ(S) 6 (1 +γ)δ ,

Φ(S) 6O
(√
ε/βγ3

)
.

In the above lemma, a convenient parameter choice is β = (γ/16)6. In this
case, the vertex set S has expansion Φ(S) 6O(

√
ε/γ9).

5.2.2. Unique Games

Let U be a unique game with vertex set V = [n] and alphabet Σ = [k]. Let G =
G(U) be the constraint graph of U (see §2.3 for a definition).

The label-extended graph Ĝ = Ĝ(U) is defined as follows (also see §2.3): The
vertex set V̂ of Ĝ consists of all pairs of vertices u ∈ V and labels i ∈ Σ. For
ease of notation, we denote such a pair by ui . The edge distribution of Ĝ is
generated as follows: Sample a constraint (u,v,π) ∼U. Sample a label i ∈ Σ.
Output an edge between ui and vπ(i).

For η ∈ [0,1), let Ûη be the subspace of L2(V̂ ) spanned by the eigenfunctions
of Ĝ with eigenvalue larger than 1 − η. The dimension of Ûη is equal to
rank+

1−η(Ĝ).
The algorithms described in this subsection run in time exponential in the

(positive) threshold rank of the label-extended graph. The following lemma
allows us to upper bound (soft-)threshold rank of the label extended graph Ĝ
by k times the soft-threshold rank of the constraint G.

Lemma 5.12. For every t ∈N,

Tr Ĝt 6 kTrGt .

Proof. Let ui ∈ V̂ be a label-extended vertex. The diagonal entry of Ĝt corre-
sponding to ui is equal to the probability that the t-step random walk in Ĝ
started at ui returns to ui . The projection of this random walk corresponds

72



5. Subexponential Approximation Algorithms

to the t-step random walk in the constraint graph G started at u. Hence, the
probability that the random walk in Ĝ returns to ui is at most the probability
that the random walk in G return to u. It follows that

(Ĝt)ui ,ui 6
∑
j∈Σ

(Ĝt)ui ,uj = (Gt)u,u ,

which implies Tr Ĝt 6 kTrGt as desired.

Lemma 5.13. Let β > 0 be sufficiently small. Suppose opt(U) = 1 − ε and let
η = ε/β. Then every ε/100-net N of the unit ball of Ûη , contains a function g ∈N
such that the function h ∈ L2(V̂ ) defined by h(ui) = max{g(ui)−maxj,i g(uj),0}
has squared norm at least 1/2 and satisfies

〈h, L̂h〉 6 16(ε/β)〈h,h〉 ,

where L̂ = I − Ĝ is the Laplacian of the label-extended graph Ĝ.

Proof. The proof is similar to the proof of Lemma 5.9. The construction of h
is related to the smooth nonnegative orthogonalization in §4.3.2.

Let x be an assignment such that U(x) = 1 − ε. Consider f ∈ L2(V̂ ) such
that f (ui) = k if xu = i and f (ui) = 0 otherwise (i.e., f is k times the indicator
function of the assignment x). The function f satisfies 〈f ,Lf 〉 = ε〈f , f 〉 and
‖f ‖2 = 1. Following the argument in Lemma 5.9, the net N contains a func-
tion g such that ‖f − g‖2 6 2ε/η. Since g is in the unit ball of the subspace
Ûη , it satisfies 〈g, L̂g〉 6 η = ε/β. The analysis of the smooth nonnegative
orthogonalization in §4.3.2 shows that

〈h, L̂h〉 6 8〈g, L̂g〉 .

It remains to lower bound the squared norm of h. It is enough to show that h
is close to the function f (which implies that the squared norm of h cannot be
much smaller than the squared norm of f ). Consider the (non-linear) operator
Q on L2(V̂ ) that maps g to h (extended to all of L2(V̂ ) in the natural way).
Notice that Qf (ui) = max{f (ui)−maxi,j f (uj),0} = f (ui) (the operator Q maps
f to itself), since f has only one non-zero among the points u1, . . . ,uk. Hence,
we can estimate the distance h and f in terms of the Lipschitz constant LQ of
the operator Q,

‖h− f ‖2 = ‖Qg −Qf ‖2 6 L2
Q‖g − f ‖

2 6 L2
Q · 2β .
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It is straight-forward to verify that the Lipschitz constant LQ is an absolute
constant (see the analysis in §4.3.2 for details). It follows that ‖h‖2 > ‖f ‖2 −
O(‖f − h‖) > 1 −O(β)1/2. Since β is assumed to be sufficiently small, we get
‖h‖2 > 1/2.

The next lemma follows by combining the previous lemma and Lemma 2.2
(local Cheeger bound). If we apply the local Cheeger bound to the function h
in the previous lemma, the resulting vertex set in the label-extended graph
corresponds to a partial assignment. (The transformation used to construct h
in fact ensures that the support of h is a partial assignment.)

Lemma 5.14. Let β > 0 be sufficiently small. Suppose opt(U) = 1 − ε and let
η = ε/β. Then, in time poly(n) (1/ε)O(dimUη ), we can compute a partial assignment
x ∈ (Σ∪ {⊥})V with Pu {xu ,⊥} = α > 0 that satisfies

U(x) > (1−O(
√
ε/β)) ·α .

Here, one can also ensure α > 1/4.

5.3. Threshold Rank vs. Small-Set Expansion

In this section we prove Lemma 5.4 (restated below). The general goal is to
establish a relation between the threshold rank and the expansion profile of
graphs.

Let G be a regular graph with vertex set V = [n]. Let L = I −G be the Lapla-
cian of G. (Recall that we identify G with its stochastic adjacency matrix.) For
η ∈ [0,1), let Uη denote the subspace of L2(V ) spanned by the eigenfunctions
of G with eigenvalue larger than 1− η.

Lemma (Restatement of Lemma 5.4). Suppose dimUη > n
β/δ for nβ sufficiently

large. Then, there exist a vertex i ∈ V and a number t ∈ {1, . . . ,η−1 logn} such that
a level set S of (1

2I + 1
2G)t1i satisfies µ(S) 6 δ and Φ(S) 6O(

√
η/β).

An important ingredient of the proof of Lemma 5.4 (and other results in
this section) is the following local variant of Cheeger’s inequality. (The lemma
follows directly from Lemma 2.2 in Chapter 2.)

Lemma 5.15 (Local Cheeger Bound). Suppose f ∈ L2(V ) satisfies ‖f ‖21 6 δ‖f ‖2
and 〈f ,Lf 〉 6 ε‖f ‖2. Then, for every γ > 0, there exists a level set S of f such that
µ(S) 6 δ/(1−γ) and Φ(S) 6

√
2ε /γ .
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Since dimUη = rank1−η/2(1
2I + 1

2G) 6 rank∗1−η/2(1
2I + 1

2G), the following
lemma combined with Lemma 5.15 (Local Cheeger Bound) implies Lemma 5.4.
Note that 1

2I + 1
2G = I −L/2.

Lemma 5.16. Suppose rank∗1−η/2(I −L/2) > nβ/δ for η > 0 small enough and nβ

large enough. Then, there exist a vertex i ∈ V and a number t ∈ {0, . . . , (β/η) logn}
such that the function f = (I −L/2)t1i satisfies ‖f ‖21 6 δ‖f ‖2 and 〈f ,Lf 〉/〈f , f 〉 6
5η/β.

Proof. Let ft,i = (I − L/2)t1i and T = b(β/2η) lnnc. Since I − L/2 is symmetric
stochastic, the L1-norm of ft,i is decreasing in t, so that ‖ft,i‖1 6 ‖f0,i‖1 = 1/n (in
fact, equality holds). The lower bound on the soft-threshold rank of I − L/2
implies for every t ∈N (in particular, for t = T ),

(1− η/2)2t ·nβ/δ 6 Tr(I −L/2)2t = n
∑
i

〈1i , (I −L/2)2t1i〉 = n
∑
i

‖ft,i‖2 .

By our choice of T , we have (1− η/2)2T nβ > 1 (using that η is small enough).
Therefore, there exists a vertex i ∈ V such that ‖fT ,i‖2 > 1/δn2. The following
claims imply the current lemma:

(1) for every t ∈ {0, . . . ,T }, it holds that ‖ft,i‖21 6 δ‖ft,i‖2, and

(2) there exists t ∈ {0, . . . ,T − 1} such that 〈ft,i ,Lft,i〉 6 ε for ε = 5η/β.

The first claim holds because on the one hand, ‖ft,i‖1 6 ‖f0,i‖1 = 1/n2 and
on the other hand, ‖ft,i‖2 > ‖fT ,i‖2 > 1/δn2. (Here, we use that the matrix
I −L/2, being symmetric stochastic, decreases both L1-norms and L2-norms.)
It remains to verify the second claim. Since ‖fT ,i‖2 > 1/δn2 = ‖f0,i‖2/δn, there
exists t ∈ {0, . . . ,T − 1} such that ‖ft+1,i‖2 > (δn)−1/T ‖ft,i‖2. By our choice of T ,
we have (δn)−1/T > 1−ε/2 for ε = 5η/β (using that n is large enough). It follows
that

(1− ε/2)‖ft,i‖2 6 ‖ft+1,i‖2 = 〈ft,i , (I −L/2)2, ft,i〉 6 〈ft,i , (I −L/2)ft,i〉

(Here, we use that (I − L/2)2 − (I − L/2) = L/2 − L2/4 is positive semidefinite,
because the eigenvalues of L/2 lies in [0,1].)
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5.4. Low Threshold Rank Decomposition

The goal of this section is to prove Theorem 5.6.

Theorem (Restatement of Theorem 5.6). There exists a polynomial-time al-
gorithm that given parameters η,β > 0 and a regular graph G with n vertices,
computes a partition P of the vertices of G such that rank∗1−η(G[A]) 6 nβ for all
A ∈P and at most an O(

√
η/β3) fraction of the edges of G does not respect the

partition P .

Recall that G[A] denote the “regularized subgraph” induced by A, i.e., we
restrict G to the vertex set A and add self-loops to each vertices in A so as to
restore its original degree.

The main ingredient of the proof of Theorem 5.6 is the following conse-
quence of Lemma 5.16 (and Lemma 5.15, the local Cheeger bound).

Lemma 5.17. There exists a polynomial-time algorithm that given parameters
η,β > 0, a regular graph G, and a vertex set K of G such that rank∗1−η(G[A]) >
nβ, computes a vertex set S ⊆ K with volume µ(S) 6 µ(A)/nΩ(β) and expansion
ΦG[K](S) 6O(

√
η/β) in the graph G[K].

We remark that the condition rank∗1−η(G[A]) > nβ in general does not imply
the condition rank∗1−η(1

2I + 1
2G[A]) > nβ required for Lemma 5.16 (in case G[A]

has negative eigenvalues). However, it holds that rank∗1−η(G[A]) 6 rank∗1−η(1
2I+

1
2G[A]) + rank∗1−η(1

2I −
1
2G[A]). Furthermore, Lemma 5.16 also works under

the condition that rank∗1−η(1
2I −

1
2G[A]) is large (same proof).

The proof of Theorem 5.6 follows by iterating the previous lemma.

Proof of Theorem 5.6. We decompose the given graph G using the following
iterative algorithm. As long as G contains a connected component K ⊆ V (G)
with rank∗1−η(G[A]) > nβ , do the following steps:

1. Apply Lemma 5.17 to the component K to obtain a vertex set S ⊆ K with
volume µ(S) 6 µ(A)/nΩ(β) and expansion Φ(S) 6O(

√
η/β). (Since K is a

connected component of G, the vertex set S ⊆ K has the same expansion
in the graphs G and G[K].)

2. Replace every edge leaving S by two self-loops on the endpoints of the
edge. (Each self-loop has weight half.)
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The algorithm terminates after at most n iterations (in each iteration the num-
ber of connected components increases by at least one). When the algorithm
terminates, every connected component satisfies the desired bound on the
soft-threshold rank.

It remains to bound the fraction of edges changed by the algorithm. Con-
sider the following charging argument. When we replace the edge leaving
a vertex set S, we charge cost Φ(S) to every vertex in S. Let cost(i) be total
cost charged to vertex i until the algorithm terminates. The fraction of edges
changed by the algorithm is no more than Ei∼V (G) cost(i). How often can we
charge the same vertex? If we charge a vertex t times, then the volume of its
connected component K is at most µ(K) 6 n−Ω(tβ). It follows that every vertex
is charge at most O(1/β) times. Hence, we can bound the total cost charged
to a vertex i by cost(i) 6O(

√
η/β3), which implies the desired bound on the

fraction of edges changed by the algorithm.

5.5. Putting things together

In this section, we prove the general case of Theorem 5.2 (restated below).

Theorem (Restatement of Theorem 5.2). There exists an algorithm that given a
unique game U with n vertices, alphabet size k, and optimal value opt(U) > 1− ε,
computes in time exp(knβ) an assignment x of value U(x) > 1−O(

√
ε/β3 ). Here,

β is a parameter of the algorithm that can be chosen as small as loglogn/ logn.

Proof. To prove the theorem it is enough to show how to compute in the
desired running a partial assignment x with value U(x) > (1 −O(

√
ε/β3))α,

where α > 0 is the fraction of vertices labeled by x. (We can then extend this
partial assignment to a total one by iterating the algorithm for the remaining
unlabeled vertices. After at most n iterations, all vertices are labeled. It is
straight-forward to verify that the approximation guarantee does not suffer
computing an assignment in this iterative fashion.)

To compute the desired partial assignment, we first decompose the con-
straint graph G of the unique game U using Theorem 5.6. In this way, we ob-
tain a partition P = {A1, . . . ,Ar} of the vertex set such that rank∗1−η(G[Ai]) 6 nβ

for all i ∈ [r] and at most a 1−O(
√
η/β3) fraction of the constraints of U do

not respect the partition P . Here, we choose the parameter η > 0 as η =O(ε)
(for a sufficiently large constant in the O(·)-notation).
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From the unique game U, we construct unique games U1, . . . ,Ur with vertex
sets A1, . . . ,Ar , respectively. (We replace every constraint of U that does not
respect the partition by two identity constraints on the endpoints of weight
half.) In this way, the constraint graph ofUi is the graphG[Ai] (the regularized
subgraph of G induced by Ai).

An averaging argument shows that there exists i ∈ [r] such that opt(Ui) >
1− 2ε and ΦG(Ai) =O(

√
η/β3).

Using Lemma 5.14, we can compute partial assignments x(i) for the unique
game Ui that labels an α fraction of the vertices in Ai such that Ui(x(i)) >
(1−O(

√
ε))α (using that ε/η is sufficiently small). Furthermore, αi > 1/4. How

good a partial assignment is x(i) for the original unique game U? Since x(i) is a
partial assignment for the vertex set Ai , we have

U(x(i)) > µ(Ai)Ui(x
(i))−Φ(Ai)µ(Ai)

(using the fact we replaced the constraints leaving Ai by identity constraints).
Since α > 1/4, it holds that

U(x(i)) > (1−O(
√
ε)− 4Φ(Ai))αµ(Ai) .

Since x(i) labels an αµ(Ai) fraction of the vertices of U and Φ(Ai) 6O(
√
ε/β3),

the partial assignment x(i) has the required properties,

U(x(i)) > (1−O(
√
ε/β3 )) P

u∼U

{
x(i)
u ,⊥

}
.

5.6. Notes

The material presented in this chapter is based on the paper “Subexponential
Algorithms for Unique Games and Related Problems” [ABS10], joint with
Sanjeev Arora and Boaz Barak. A preliminary version of the paper appeared
at FOCS 2010.

Subspace Enumeration

Some of the material presented in Section 5.2 (Subspace Enumeration) is
inspired by the works of Kolla and Tulsiani [KT07] and Kolla [Kol10]. In
[KT07], the authors present an alternative proof of a quantitatively slightly
weaker version of Theorem 3.1, the main theorem of Chapter 3 (Unique
Games with Expanding Constraint Graph). To find a good assignment for
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a unique game, their algorithm enumerates a suitably discretized subspace
of real-valued functions on the label-extended graph of the unique game (as
in Section 5.2.2). They show that if a unique game with alphabet size k has
an assignment with value close to 1 and its constraint graph is an expander,
then the label-extended graph has at most k eigenvalues close to 1. (We
omit the precise quantitative trade-offs for this discussion.) Furthermore,
they show that any good assignment for the unique game corresponds to a
function close to the subspace spanned by the eigenfunctions of the label-
extended graph with eigenvalue close to 1. It follows that by enumerating
this subspace (suitably discretized) one finds a function from which one
can recover a good assignment for the unique game. (The running time is
exponential in the dimension of this subspace, which is bounded by k in this
case.) Their recovering procedure roughly corresponds to the construction
in the proof of Theorem 5.7 (though we establish this theorem in the more
general context of graph expansion). In (the proof of) Lemma 5.14 we give
a more sophisticated recovering procedure which has quantitatively better
approximation guarantees.

Kolla [Kol10] noted that several unique games considered in the literature
(in particular, the ones in [KV05]) have label-extended graphs with only few
(say polylogn) eigenvalues close to 1 (even though their constraint graphs
are not good enough expanders). Since the algorithm in [KT07] runs in time
exponential in the number of eigenvalues of the label-extended graph that
are close to 1, it follows that for the unique games in [KV05] the algorithm
of [KT07] runs in quasi-polynomial time. (Since the unique games in [KV05]
have no good assignments, the algorithm of [KT07] will certify that indeed
no good assignments exists.) Furthermore, Kolla [Kol10] showed that if
the constraint graph of a unique game has only few large eigenvalues, then
also the label-extended graph has few large eigenvalues assuming that the
eigenfunctions of the constraint graph are “well-spread” (in the sense that
the L∞ and the `2 norm are proportional). It follows that the algorithm of
[KT07] applies to all unique games whose constraint graphs satisfy these
properties (which includes the unique games in [KV05]). In this chapter, we
use Lemma 5.12 to related the eigenvalues of the constraint graph to the
eigenvalues of the label-extended graph. The advantage of Lemma 5.12 is that
it does not assume additional properties of eigenfunctions of the constraint
graphs (which are hard to control in general). The proof of Lemma 5.12 is not
very involved. It follows by comparing the behavior of random walks on the
label-extended graph to random walks on the constraint graph.
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Decomposition Approach for Unique Games

Our subexponential algorithm for Unique Games works by decomposing
a general instance into a collection of (independent) “easy instances”. In
the context of Unique Games, this divide-and-conquer strategy has been
investigated by two previous works, which we discuss in the following.

One of Trevisan’s algorithms [Tre05] removes a constant fraction of the
constraints in order to decompose a general unique game into a collection
of disjoint unique games whose constraint graphs have spectral gap at least
1/ polylogn. His algorithm gives a non-trivial approximation guarantee if the
value of the unique game is at least 1− 1/ polylogn.

Arora et al. [AIMS10] studied a variation of Trevisan’s approach (combined
with the results in Chapter 3). Here, the idea is to remove a constant fraction
of constraints in order to decompose a general unique game with n vertices
into disjoint instances that are either small (containing at most n/2Ω(1/ε) ver-
tices) or their constraint graph has spectral gap at least ε. (A decomposition
with precisely these guarantees is not achieved in [AIMS10]. However, the al-
gorithms works as if these guarantees were achieved. We refer to [AIMS10] for
details.) For small instances, one can find good assignments in time 2n/2

Ω(1/ε)

(using brute-force enumeration) and for instances whose constraint graph
has spectral gap ε, one can use the algorithm for Unique Games presented in
Chapter 3. The algorithm of [AIMS10], given a unique game with value 1− ε,
find an assignment with value at least 1/2 in time
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Unique Games Conjecture

A major shortcoming of the current knowledge about the Unique Games Con-
jecture (compared to many other conjectures in complexity theory) is that only
few consequences of a refutation of the conjecture are known. For example,
the following scenario is not ruled out: There is a polynomial time algorithm
refuting the Unique Games Conjecture and, at same time, no polynomial
time algorithm — or even subexponential time algorithm — has a better ap-
proximation ratio for Max Cut than the Goemans–Williamson algorithm. (In
contrast, a refutation of the conjecture that 3-Sat has no polynomial time
algorithms implies that every problem in NP has a polynomial time algorithm.
Similarly, a refutation of the Exponential Time Hypothesis [IPZ01] — 3-Sat
has no 2o(n) time algorithm — implies surprising algorithms for a host of other
problems.) The lack of surprising consequences of a refutation of the UGC
is one of main reasons why no consensus regarding the truth of the conjec-
ture has been reached among researchers (whereas many other complexity
conjectures have a strong consensus among researchers).

Prior to this work, the only known non-trivial consequence of an algorithmic
refutation of the Unique Games Conjecture is an improved approximation
algorithm for Unique Games itself. Rao [Rao08] showed that if there exists
a polynomial time algorithm refuting the Unique Games Conjecture, then
there exists an algorithm that given a unique game with value 1− ε, finds in
polynomial time an assignment of value 1−C

√
ε. (The constant C > 1 and the

degree of the polynomial for the running time of this algorithm depend on
the guarantees of the algorithm assumed to refute the UGC.)

In this work, we demonstrate the first non-trivial consequence of an algo-
rithmic refutation of the Unique Games Conjecture for a problem different
that Unique Games. This problem, called Small-Set Expansion, is a natural
generalization of Sparsest Cut, one of the most fundamental optimization
problems on graphs (see e.g. [LR99, ARV09]). We give a reduction from
Small-Set Expansion to Unique Games. An alternative formulation of our
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result: If Small-Set Expansion is NP-hard to approximate (in a certain range
of parameters), then the Unique Games Conjecture holds true.

6.1. Main Results

To state our results we introduce the following hypothesis about the approx-
imability of Small-Set Expansion (restated from §1.4).

Hypothesis 6.1 (Small Set-Expansion (SSE) Hypothesis). For every ε > 0, there
exists δ > 0 such that the following promise problem is NP-hard: Given a graph G,
distinguish between the cases,

YES: some vertex set of volume δ has expansion at most ε.

NO: no vertex set of volume δ has expansion less than 1− ε.

We remark the best known polynomial-time approximation algorithms for
Small-Set Expansion [RST10a] (based on a basic SDP relaxation) fail to refute
this conjecture. The conjecture also holds in certain hierarchies of relaxations
(see Chapter 8).

In this work, we show relations of this hypothesis to the approximability of
Unique Games. First, we show that the Unique Games Conjecture is true if
the Small-Set Expansion Hypothesis holds.

Theorem 6.2. The Small-Set Expansion Hypothesis implies the Unique Games
Conjecture.

The proof of this theorem is based on a reduction from Small-Set Expansion

to Unique Games (the composition of Reduction 6.5 and Reduction 6.14). We
prove the theorem at the end of this section.

Second, we show that the Small-Set Expansion Hypothesis is true if the
following stronger variant of the Unique Games Conjecture holds. (The
results in the following chapter (Chapter 7) imply that this variant of the
Unique Games Conjecture is in fact equivalent to the Small-Set Expansion
Hypothesis.)

Hypothesis 6.3 (Unique Games Conjecture on Small-Set Expanders). For
every η > 0, there exists δη > 0 such that for every ζ > 0, the following promise
problem is NP-hard for some R = Rη,ζ : Given a unique game U with alphabet size
R, distinguish between the cases,
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YES: the optimal value of U satisfies opt(U) > 1− η,

NO: the optimal value of U satisfies opt(U) 6 ζ and every vertex set of volume δη
in the constraint of U has expansion at least 1− η.

We remark that this variant of the Unique Games Conjecture holds in certain
hierarchies of SDP relaxation (using results from Chapter 7 and Chapter 8).

The following theorem is based on a reduction from Unique Games to Small-

Set Expansion (Reduction 6.20 in §6.4). It follows directly from Theorem 6.21
in §6.4.

Theorem 6.4. Hypothesis 6.3 (Unique Games Conjecture on Small-Set Expanders)
implies the Small-Set Expansion Hypothesis.

6.1.1. Proof of Theorem 6.2

Our reduction from Small-Set Expansion to Unique Games (used to prove
Theorem 6.2) naturally decomposes into two parts. First, we reduce Small-Set

Expansion to Partial Unique Games (partial assignments are allowed). See
Reduction 6.5 and Theorem 6.6 in §6.2. Then, we show how to reduce Partial

Unique Games to Unique Games. See Reduction 6.14 and Theorem 6.15 in
§6.3. Theorem 6.2 follows by instantiating Theorem 6.6 and Theorem 6.15
with an appropriate choice of parameters.

6.2. From Small-Set Expansion to Partial Unique
Games

Reduction 6.5 (From Small-Set Expansion to Partial Unique Games).

Input: A regular graph G with vertex set V and parameters ε > 0 and R ∈N
(satisfying εR ∈N).

Output: A unique game U = UR,ε(G) with vertex set V R′ and alphabet Σ =
[R′] for R′ = (1 + ε)R.

The unique game U corresponds to the following probabilistic verifier for an
assignment F : V R′ → [R′]:

1. Sample R random vertices a1, . . . , aR ∼ G.

84



6. Graph Expansion and the Unique Games Conjecture

2. Sample two random neighbors bi ,b′i ∼ G(ai) for every i ∈ [R]. (Here, the
notation b ∼ G(a) means that b is a random neighbor of a in G.)

3. Sample 2εR random vertices bR+1,b
′
R+1, . . . , bR+εR,b

′
R+εR ∼ V .

4. Let A = (a1, . . . , aR) ∈ V R and B = (b1, . . . , bR′ ), B′ = (b1, . . . ,b
′
R′ ) ∈ V

R′ .

5. Sample two random permutation π,π′ ∈ S[R′].

6. Verify that π−1(F(π.B)) = (π′)−1F(π′.B′). (Here, π.B refers to the tuple ob-
tained by permuting the coordinates of B according to the permutation π.
See for a formal definition.) (End of Reduction 6.5)

Reduction 6.5 has the following approximation guarantees.

Theorem 6.6. Given a regular graph G with n vertices and parameters R ∈N and
ε > 0, Reduction 6.5 computes in time poly(nR) a unique game U =UR,ε(G) such
that the following assertions hold (for all ε′ > ε):

Completeness: If the graph G contains a vertex set with volume δ = 1/2R and
expansion at most ε, then the unique game U has α-partial value optα(U) >
1− 5ε, where α > 0.1.

Soundness I: If every vertex set of G with volume δ = 1/2R has expansion at
least 1 − ε, then for all α > 0.1, the unique game U has α-partial value
optα(U) 6O(ε1/5).

Soundness II: If every vertex set of G with volume between Ω(ε2/R) and
O(1/ε2R) has expansion at least ε′ and half of the edges of every vertex
of G are self-loops, then for all α > 0.1, the unique game U has α-partial
value at most optα(U) 6 1− ε′/4.

Remark 6.7. All properties of the reduction would essentially be preserved if
we would modify step 3 of the reduction as follows: For every i ∈ [R], with
probability ε, replace bi by a random vertex in V (do the same with b′1, . . . ,b

′
R,

independently). In step 4, one would set B = (b1, . . . , bR) and B′ = (b1, . . . , bR).

6.2.1. Completeness

Let G be a regular graph with vertex set V = {1, . . . ,n}. Note that the size of
the unique game U = Uε,R(G) produced by Reduction 6.5 is nO(R) and thus
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polynomial in the size of the graph G for every R =O(1). (Also the running
time of the reduction is nO(R).)

The following lemma shows that Reduction 6.5 is complete, that is, if the
graph G contains a set with a certain volume and expansion close to 0, then
the unique game obtained from Reduction 6.5 has a partial assignment that
satisfies almost all constraints with labeled vertices.

Lemma 6.8 (Completeness). For every set S ⊆ V with µ(S) = δ and Φ(S) = η,
there exists a partial assignment F = FS for the unique game U = UR,ε(G) (as
defined in Reduction 6.5) satisfying

U(F) > (1− ε − 4η)α ,

where α > (1 − R′δ)R′δ is the fraction of vertices of U labeled by the partial
assignment x.

Proof. We may assume that R′ 6 1/δ, because the lemma is trivial otherwise.
Consider the following partial assignment F for the unique game U,

F : V R′ → [R′]∪ {⊥} ,

X = (x1, . . . ,xR′ ) 7→

i if {i} = {i′ ∈ [R′] | xi ∈ S},
⊥ otherwise.

We compute the fraction of vertices of U labeled by F,

α = P
X∼V R′

{
F(X) ,⊥

}
=

(
R′

1

)
(1− δ)R

′−1δ = ((1− δ)R
′−1)R′δ > (1−R′δ)R′δ ,

Next, we estimate the fraction of constraints satisfied by F inU. Sample tuples
of vertices A, B, B′ as specified by Reduction 6.5. Note that the assignment
F behaves nicely when permuting coordinates, F(π.X) = π(F(X)) for every
permutation π of [R′] and every X ∈ V R′ such that F(X) ,⊥. Hence,

U(F) = P
A,B,B′

{
F(B) = F(B′) ∈ [R′]

}
.

(Here, we also use that a constraint is considered to be satisfied by a partial
assignment only if both vertices of the constraint are labeled.) We bound the
fraction of satisfied constraints from below

P
A,B,B′

{
F(B) = F(B′) ∈ [R′]

}
> P
A,B,B′

{
F(B) = F(B′) ∈ [R]

}
= P
X∼V R′

{F(X) ∈ [R]} P
A,B,B′

{
F(B′) = F(B) | F(B) ∈ [R]

}
.
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The inequality is almost tight, because the event F(X) ∈ [R′] \ [R] is very
unlikely (even relative to the event F(X) ∈ [R′]),

P
X∼V R′

{F(X) ∈ [R]} = P
X∼V R′

{
F(X) ∈ [R′]

}
/(1 + ε) > (1− ε)α .

Next, we relate the probability of the event F(B) = F(B′) conditioned on
F(B) ∈ [R] to the expansion of the set S. It turns out that this probability is
most directly related to the expansion of S in the graph G2 (instead of G). Let
η′ = Pa∼V , b,b′∼G(a) {b′ < S | b ∈ S} be the expansion of S in G2. Then,

P
A,B,B′

{
F(B′) = F(B) | F(B) ∈ [R]

}
= P
A,B,B′

{
F(B′) = 1 | F(B) = 1

}
= (1− η′)(1− η′δ/(1− δ))R−1

> 1−
(
1 + 1−1/R

1−δ Rδ
)
η′ > 1− 2η′ .

Here, we again use the symmetry of F and we also use that
Pa∼V , b,b′∼G(a) {b′ ∈ S | b < S} = η′δ/(1 − δ) (the expansion of V \ S in G2). The
last inequality uses that R′ 6 1/δ and therefore 1− 1/R 6 1− δ and Rδ 6 1.

It remains to relate η′ (the expansion of S in G2) to η (the expansion of S in
G).

η′δ = P
a∼V , b,b′∼G(a)

{
b ∈ S ∧ b′ < S

}
6 P
a∼V , b,b′∼G(a)

{
(b ∈ S ∧ a < S)∨ (a ∈ S ∧ b′ < S)

}
6 P
a∼V , b∼G(a)

{b ∈ S ∧ a < S}+ P
a∼V , b′∼G(a)

{
a ∈ S ∧ b′ < S

}
= 2δη .

Combining the previous bounds shows the desired lower bound on the frac-
tion of constraints satisfied by F in U,

U(F) = P
A,B,B′

{
F(B) = F(B′) ∈ [R′]

}
> P
X∼V R′

{F(X) ∈ [R]} P
A,B,B′

{
F(B′) = 1 | F(B) = 1

}
> (1− ε)α · (1− 4η) > (1− ε − 4η)α .

6.2.2. Soundness

Let F : V R′ → [R′] ∪ {⊥} be a partial assignment for the unique game U =
UR,ε(G) obtained by applying Reduction 6.5 to a regular graph G with vertex
set V = {1, . . . ,n}.
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For a tuple U ∈ V R′−1 and a vertex x ∈ V , let f (U,x) be the probability that
F selects the coordinate of x after we place it a random position of U and
permute the tuple randomly,

f (U,x) def= P
i∈[R′], π∈SR′

{
F(π.(U +i x)) = π(i)

}
.

Here, U +i x denotes the tuple obtained from U by inserting x as the i-th
coordinate (and moving the original coordinates i, . . . ,R′ −1 of U by one to the
right). (The above experiment wouldn’t change if we fixed i = R′, because the
permutation π is random.)

For U ∈ V R−1, define the function fU : V → [0,1],

fU (x) def= E
W∼G⊗(R−1)(U ), Z∈V εR

f (W,Z,x) . (6.1)

(Here, G⊗(R−1) refers to the (R − 1)-fold tensor product of the graph G, and
W ∼ G⊗(R−1)(U ) means thatW is a random neighbor of the vertexU in G⊗(R−1).
Note that for U = (u1, . . . ,uR−1), the distribution G⊗(R−1)(U ) is the product of
the distributions G(u1), . . . ,G(uR−1).)

The following properties of the functions {fU } are straightforward to verify.

Lemma 6.9. Let α = PX∼V R′ {F(X) ,⊥} be the fraction of vertices of U labeled by
the partial assignment F.

1. The typical L1-norm of fU equals EU∼V R−1‖fU‖1 = α
R′ .

2. For every U ∈ V R−1, the L1-norm of fU satisfies ‖fU‖1 6 1
εR .

3. The typical squared L2-norm of GfU relates to the fraction of constraints
satisfied by F in U as follows,

E
U∼V R−1

‖GfU‖2 > 1
R′ (U(F)− 1

εR ) .

(Here, we identify the regular graph G with its stochastic adjacency matrix.)

Proof. Item 1: The typical L1-norm of fU evaluates to

E
U∼V R

‖fU‖1 = P
U∼V R, W∼G⊗(R−1)(U ), Z∼V εR, x∼V , π∈SR′

i∈{1,...,R′}

{
F
(
π.

(
(W,Z) +i x

))
= π(i)

}
= P
X∼V R′ , π∈SR′
i∈{1,...,R′}

{
F(π.X) = π(i)

}
= 1
R′ P
X∼V R′

{F(X) ,⊥} .
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The second step uses that the joint distribution (W,Z) +i x and i is the same
as the joint distribution of X and i. The last step uses that the distribution of
π(i) is uniformly random in [R′] even after conditioning on X and π (and thus
F(π.X)).

Item 2: For fixed U ∈ V R−1, the L1-norm of fU evaluates to

‖fU‖1 = P
W∼G⊗(R−1)(U ), Z∼V εR, x∼V , π∈SR′

i∈{R,R+1,...,R′}

{
F
(
π.

(
(W,Z) +i x

))
= π(i)

}
= P
W∼G⊗(R−1)(U ), Z ′∼V εR+1, π∈SR′

i∈{R,R+1,...,R′}

{
F
(
π.

(
W,Z ′

))
= π(i)

}
= 1
εR+1 P

W∼G⊗(R−1)(U ), Z ′∼V εR+1, π∈SR′

{
π−1

(
F
(
π.(W,Z ′)

))
∈ {R,R+ 1, . . . ,R′}

}
6 1
εR+1 .

In contrast to the proof of item 1, we insert x in a random coordinate among
{R,R+1, . . . ,R′} (as opposed to completely random coordinate). The experiment
as a whole does not change because π is a random permutation. The second
step uses that (i, (U,Z) +i x) has the same distribution as (i, (U,Z ′)).

Item 3: Sample tuples A,B,B′ as specified by Reduction 6.5. Note that B and
B′ are distributed independent and identically conditioned on A. We denote
this conditional distribution by B | A. The fraction of constraints satisfied by
F in U evaluates to

U(F) =
∑
r∈[R′]

P
A,B,B′

π,π′∈SR′

{
F(π.B) = π(r) ∧F(π′.B′) = π′(r)

}
=

∑
r∈[R′]

E
A∼V R

(
P
B|A
π∈SR′

{
F(π.B) = π(r)

})2
.

For every A ∈ V R and any r, r ′ ∈ {R+ 1, . . . ,R′}, it holds that

P
B|A,
π∈SR′

{
F(π.B) = π(r)

}
= P

B|A,
π∈SR′

{
F(π.B) = π(r ′)

}
.

Here, we use that all coordinates br of B with r ∈ {R+ 1, . . . ,R′} are distributed
identically (even conditioned on A). It follows that for every r ∈ {R+ 1, . . . ,R′},

P
B|A
π∈SR′

{
F(π.B) = π(r)

}
6 1
εR .
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Next, consider r ∈ [R]. For B = (b1, . . . ,bR) ∈ V R′ , let B−r ∈ V R′−1 denote the
tuple obtained from B by removing the rth coordinate br . Then,

P
B|A,
π∈SR′

{
F(π.B) = π(r)

}
= P

B|A,
π∈SR′

{
F(π.(B−r +r br)) = π(r)

}
= E
B|A
f (B−r ,br) .

Since r ∈ [R], the vertex br is distributed as a random neighbor of ar (the
corresponding coordinate in A). It follows that

E
B|A
f (B−r ,br) = E

br∼G(ar )
fA−r (br) = GfA−r (ar) .

Recall that we identify the graph G with its stochastic adjacency matrix.
Hence, GfAr−1 denotes the function on V obtained by applying the linear
operator G to the function fA−r . (Here, A−r ∈ V R−1 is the tuple obtained from
A by removing the rth coordinate ar .) Combining the previous bounds, we get

U(F) 6
∑
r∈[R]

E
A∼V R

(
GfA−r (ar)

)2
+ εR ·

(
1
εR

)2
= R E

U∼V R−1
‖GfU‖2 + 1

εR ,

which implies the desired bound on the typical squared L2-norm of GfU .

The following lemma is a consequence of the previous lemma (Lemma 6.9)
and a simple Markov-type inequality. The lemma shows that given a good par-
tial assignment for unique game U =UR,ε(G) (as specified in Reduction 6.5),
one can extract a function f : V → [0,1] such that ‖f ‖1 ≈ 1/R and, at the same
time, the squared L2-norm of Gf is comparable to the L1-norm of f . In a later
lemma (Lemma 6.11), we will see that given such a function we can find a
non-expanding set for the graph G2 with volume roughly 1/R.

Lemma 6.10. Let F be a partial assignment for the unique game U = UR,ε(G)
(as specified in Reduction 6.5). Suppose α = PX∼V R′ {F(X) ,⊥} is the fraction of
vertices of U labeled by F. Then, for every β > 0, there exists U ∈ V R−1 such that
the function fU : V → [0,1] (as defined in (6.1)) satisfies

‖GfU‖2 > (U(F)/α − β − 1
αεR )‖fU‖1 ,

αβ
R′ 6 ‖fU‖1 6

1
εR .

Proof. Since ‖GfU‖2 6 ‖fU‖1 for every U ∈ V R−1 (using that G is regular
and 0 6 fU 6 1), we can lower bound the expected square L2-norm of GfU
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conditioned on ‖fU‖1 > αβ/R′,

E
U∼V R−1

‖GfU‖21{‖fU ‖1>αβ/R′} = E
U∼V R−1

‖GfU‖2 − E
U∼V R−1

‖GfU‖21‖fU ‖16αβ/R′

> E
U∼V R−1

‖GfU‖2 −αβ/R′

> α
R′

(
U(F)/α − 1

αεR − β
)
.

In the last step, we use that EU∼V R−1‖GfU‖2 > (U(F) − 1
εR )/R′ (Lemma 6.9,

item 3). Since EU∼V R−1‖fU‖1 = α/R′ (Lemma 6.9, item 1), there exists a tuple
U ∈ V R−1 such that

‖GfU‖21{‖fU ‖1>αβ/R′} >
(
U(F)/α − 1

αεR − β
)
‖fU‖1 .

This function fU satisfies both ‖fU‖1 > αβ/R′ and ‖GfU‖2 > (U(F)/α − β −
1
αεR )‖fU‖1. (Note that we may assume 1− η − β − 1

αεR is nonnegative, because
otherwise the lemma is trivial.) On the other hand, fU also satisfies ‖fU‖1 6
1/εR (by Lemma 6.9, item 2).

The spirit of the following lemma is similar to Cheeger’s inequality. Given
a function f on the vertex set V with values between 0 and 1, we can find a
vertex set S with volume roughly ‖f ‖1 and expansion roughly 1− ‖Gf ‖2/‖f ‖1
in the graphG2. The proof of the lemma is much simpler than the construction
for Cheeger’s inequality. It is enough to analyze the distribution over vertex
sets S obtained by including x in S with probability f (x) independently for
every vertex x ∈ V . Later, we will apply this lemma to the function obtained
by the previous lemma (Lemma 6.10).

Lemma 6.11. Suppose f : V → R satisfies 0 6 f (x) 6 1 for every vertex x ∈ V .
Then, for every β > 0, there exists a set S ⊆ V such that

β‖f ‖1 6 µ(S) 6 1
β ‖f ‖1 ,

ΦG2(S) 6 1− ‖Gf ‖
2

‖f ‖1
+ 2β + β/(n‖f ‖1) .

Proof. Consider the following distribution over level sets S ⊆ V of f : For
every vertex x ∈ V , include x in S with probability f (x) (independently for
every vertex).

The expected volume of S is ES µ(S) = ES‖1S‖1 = ‖f ‖1. The expectation of
the square of the volume satisfies ES µ(S)2 6 ‖f ‖21 + 1/n. On the other hand,
we can lower bound typical squared L2-norm of G1S by ES‖G1S‖2 > ‖Gf ‖2.
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Next, we lower bound the expected squared L2-norm of G1S conditioned on
the event β 6 µ(S)/‖f ‖1 6 1/β,

E
S
‖G1S‖21{β6µ(S)/‖f ‖161/β} > E

S
‖G1S‖2 −E

S
µ(S)1µ(S)>‖f ‖1/β −ES

µ(S)1µ(S)<β‖f ‖1

> ‖Gf ‖2 −E
S
βµ(S)2/‖f ‖1 − β‖f ‖1

> ‖Gf ‖2 − 2β‖f ‖1 − β/(n‖f ‖1).

It follows that there exists a set S∗ ⊆ V with β 6 µ(S∗)/‖f ‖1 6 1/β such that

‖G1S∗‖2

‖1S∗‖1
>
ES‖G1S‖21{β6µ(S)/‖f ‖161/β}

ES‖1S‖1
>
‖Gf ‖2 − 2β‖f ‖1 − β/(n‖f ‖1)

‖f ‖1
.

The quantity 1− ‖G1S∗‖2/‖1S∗‖1 is the expansion of S∗ in the graph G2.

If we combine the two previous lemmas (Lemma 6.10 and Lemma 6.11),
we can show that a good partial assignment for the unique game U =UR,ε(G)
(obtained by applying Reduction 6.5 to the graph G) implies that the graph G2

contains a set with low expansion and volume roughly 1/R.
Eventually, we want a vertex set with low expansion in the graph G. The

following lemmas describe how to reduce this problem to the problem of
finding vertex sets with low expansion in G2.

We first consider the case that there exists a partial assignment for the
unique game U that satisfies a fraction of constraints bounded away from 0.
In this case, we show how to construct a set with volume 1/R and expansion
bounded away from 1 in G.

Lemma 6.12 (Soundness close to 0). Suppose there exists a partial assignment F
for the unique game U =UR,ε(G) (as defined in Reduction 6.5) with U(F) > ηα,
where α is the fraction of vertices of U labeled by F. Then, there exists a set S∗ ⊆ V
with µ(S∗) = α/R and Φ(S∗) 6 1−O(εη4). Here, we make the (mild) assumptions
that 1/αεη� R� αηn.

Proof. Let β > 0. (We determine the best choice for β later in the proof.) By
Lemma 6.10, there exists U ∈ V R−1 such that the function fU (as defined in
(6.1)) satisfies the following conditions

‖GfU‖2 > (η − β − 1
αεR )‖fU‖1 ,

αβ
R′ 6 ‖fU‖1 6

1
εR .
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Using Lemma 6.11 we round the function fU to a vertex set S ⊆ V with the
following properties,

αβ2

R′ 6 µ(S) 6 1
βεR ,

ΦG2(S) 6 1− η + β + 1
αεR + 2β + R′

nα .

If we choose β significantly smaller than η (say β = η/10) and use our assump-
tions on R, the expansion of S in G2 is at most 1− η/2.

Next, we want to construct a set with expansion bounded away from 1 in
the graph G and with roughly the same volume as S. Consider the set S ′

of all vertices x with Py∼G(x) {y ∈ S} > γ . (We determine a good choice for
γ > 0 later.) The volume of S ′ cannot be much larger than the volume of S.
Concretely, µ(S ′) 6 µ(S)/γ . On the other hand, we can relate the fraction of
edges between S and S ′ to the expansion of S in G2,

(1−ΦG2(S))µ(S) = P
x∼V , y,y′∼G(x)

{
y ∈ S, y′ ∈ S

}
= µ(S ′) P

x∼V , y,y′∼G(x)

{
y ∈ S, y′ ∈ S | x ∈ S ′

}
+µ(V \ S ′) P

x∼V , y,y′∼G(x)

{
y ∈ S, y′ ∈ S | x < S ′

}
6 µ(S ′) P

x∼V , y∼G(x)

{
y ∈ S | x ∈ S ′

}
+γ ·µ(V \ S ′) P

x∼V , y∼G(x)

{
y ∈ S | x < S ′

}
= (1−γ)µ(S ′) P

x∼V , y∼G(x)

{
y ∈ S | x ∈ S ′

}
+γ ·µ(S) .

It follows that G(S,S ′) > (1−ΦG2(S)−γ)µ(S). Therefore, for S ′′ = S ∪ S ′,

1−ΦG(S ′′) >
G(S,S ′)
µ(S ∪ S ′)

>
(
η
2 −γ

)
·

µ(S)
µ(S ∪ S ′)

>
(
η
2 −γ

)
· γ2 .

Choosing γ = η/4, we obtain ΦG(S ′′) 6 1 − η2/32. On the other hand, the
volume of S ′′ satisfies

Ω

(
αη2

R

)
6 µ(S ′′) 6O

(
1

η2εR

)
To obtain a set S∗ with the desired volume α/R, we either pad the set S ′′ with
the desired number of vertices or we take a random subset of S ′′ with the
desired cardinality. In either case, we obtain a set S∗ with volume α/R and
expansion at most 1−O(εη4).
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In the next lemma, the goal is to find vertex sets in G with certain volume
and expansion close to 0. It turns out that in this case it is convenient to
apply Reduction 6.5 not to G itself but to the graph 1

2I + 1
2G (obtained by

adding a self-loop of weight half to every vertex). A random step in the graph
1
2I + 1

2G stays at the same vertex with probability 1/2 and goes to a random
neighbor in G with the remaining probability. The following lemma shows
that if the unique gameU =UR,ε(

1
2I+ 1

2G) (obtained by applying Reduction 6.5
to the graph 1

2 + 1
2G) has a partial assignment that satisfies almost as many

constraints as possible, then we can find a vertex set in G with volume roughly
1/R and expansion close to 0. The proof is similar to the proof of the previous
lemma (Lemma 6.12).

Lemma 6.13 (Soundness close to 1). Suppose there exists a partial assignment
x for the unique game U = UR,ε(

1
2I + 1

2G) (as defined in Reduction 6.5) with
U(x) > (1− η)α, where α is the fraction of vertices of U labeled by x. Then, there
exists a set S ⊆ V with Ω(αη2/R) 6 µ(S) 6 O(1/εηR) and Φ(S) 6 4η. Here, we
make the (mild) assumptions that 1/αεη� R� αηn.

Proof. Let β > 0. (We choose this parameter later in the proof.) Let G	 =
1
2I + 1

2G. Combining Lemma 6.10 and Lemma 6.11, we obtain a set S with the
following properties,

αβ2

R′ 6 µ(S) 6 1
βεR ,

ΦG2
	

(S) 6 η + β + 1
αεR + 2β + R′

nα .

If we choose β significantly smaller than η and use our assumptions on R, the
expansion of S in G2

	 is at most 2η. We compare the expansion of S in G2
	 to

its expansion in G,

〈1S ,G2
	1S〉 = 1

4〈1S , I1S〉+
1
2〈1S ,G1S〉+

1
4〈1S ,G

21S〉 6 1
2‖1S‖

2 + 1
2〈1S ,G1S〉 .

It follows that ΦG2
	

(S) >ΦG(S)/2, as desired.

6.3. From Partial Unique Games to Unique Games

Reduction 6.14 (From Partial Unique Games to Unique Games).

Input: A unique game U with vertex set V and alphabet Σ, and a parameter
c ∈N.
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Output: A unique game U′ = Ψc(U) with vertex set V ′ = V c and alphabet
Σ′ = [c]×Σ.

The unique game U′ corresponds to the following probabilistic verifier for an
assignment F : V ′→ Σ′:

1. Sample c random vertices u1, . . . ,uc ∼ V .

2. Sample two random constraints (ur ,vr ,πr), (ur ,v′r ,π
′
r) ∼U | ur for every

r ∈ [c]. (Recall that U | ur denotes the uniform distribution over con-
straints of U that contain vertex ur .)

3. Let (r, j) = F(v1, . . . , vc) and (r ′, j ′) = F(v′1, . . . , v
′
c).

4. Verify that r = r ′ and that j = πr(i) and j ′ = π′r ′ (i) for some label i ∈ Σ.
(Note that there can be at most one label i ∈ Σ satisfying this condition.)
(End of Reduction 6.14)

Reduction 6.14 has the following approximation guarantees.

Theorem 6.15. Given a parameter c ∈ N and a unique game U with n vertices,
Reduction 6.14 computes in time poly(nc) a unique game U′ = Ψc(U) such that
the following assertions hold (for all α,η,η′,ζ > 0):

Completeness: If the unique gameU has α-partial value at least optα(U) > 1−η,
then the unique game U′ has value at least opt(U′) > 1− 4η − 2e−αc.

Soundness I: If the unique gameU has 1/2c-partial value less than opt1/2c(U) < ζ,
then the unique game U′ has value less than opt(U′) < 8ζ.

Soundness II: If the unique game U has 1/2c-partial value less than opt1/2c(U) <
1−η′ and half of the constraints of every vertex are trivial identity constraints,
then the unique game U′ has value less than opt(U′) < 1− η′/32.

The α-partial value of a unique game is the maximum value of an α-partial
assignment normalized by the fraction of labeled vertices. See (2.1) in Sec-
tion 2.3 for the formal definition. We restate (2.1) below (out of context).

optα(U) def= max
{

1
Pu∼V {xu,⊥}

U(x)

∣∣∣∣∣∣ x ∈ (Σ∪ {⊥})V , P
(u,v,π)∼U

{xu ,⊥} > α
}
.
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6.3.1. Completeness

LetU be a unique game with vertex set V = {1, . . . ,n} and alphabet Σ = {1, . . . , k}.
Recall that optα(U) is the optimal value of an α-partial assignment for the

unique game U. (See (2.1) in Section 2.3 for more details.)
The following lemma shows that Reduction 6.14 is complete, that is, given

a unique game U with optα(U) > 1 − η for some constant α, then for c =
O(log(1/η)), the unique game U′ = Ψc(U) obtained by applying Reduction 6.14
has value opt(U′) > 1−O(η).

Lemma 6.16. If the unique game U has α-partial value at least optα(U) > 1− η,
then the unique game U′ has value at least opt(U′) > 1− 4η − 2e−αc.

Proof. Let f : V → Σ be an optimal α-partial assignment for U. We may
assume Pu∼V {f (u) ,⊥} = α and thus, U(f ) > (1 − η)α. To lower bound
the value of the unique game U′, we consider the following partial assign-
ment F : V c→ [c]×Σ∪ {⊥},

F(u1, . . . ,uc) =

(r, i) if f (u1) = . . . = f (ur−1) =⊥ and f (ur) = i for r ∈ [c] ,
(1,1) if f (u1) = . . . = f (uc) =⊥.

In words, we determine the label of the vertex tuple (u1, . . . ,uc) according to
the first vertex ur that is labeled in the assignment f . If none of the vertices
ur are labeled, we assign the dummy label ⊥ to the tuple.

We claim that this partial assignment F satisfies at least 1 − 4η − 2e−αc of
the constraints of U′, which proves the lemma. (We could make this partial
assignment into a total assignment by replacing ⊥ by an arbitrary label, say
(1,1). This change can only increase the number of satisfied constraints.) To
establish this claim, it is enough to show that

P
(u1,v1,π1)∼U,

...,
(uc,vc,πc)∼U

{
∃r ∈ [c], i ∈ Σ. F(u1, . . . ,uc) = (r, i), F(v1, . . . , vc) = (r,πr(i))

}
> 1− 2η − e−αc . (6.2)

(In fact, the unique game U′ is the square of the unique game corresponding
to the verifier above.)

For our assignment F, the probability in (6.2) simplifies to the product of
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two probabilities p1 and p2,

P
(u1,v1,π1)∼U,

...,
(uc,vc,πc)∼U

{
∃r ∈ [c], i ∈ Σ. F(u1, . . . ,uc) = (r, i), F(v1, . . . , vc) = (r,πr(i))

}
= P

(u1,v1,π1)∼U,
...,

(uc,vc,πc)∼U

{∃r ∈ [c]. f (ur) ,⊥∨ f (vr) ,⊥}

· P
(u,v,π)∼U

{f (v) = π(f (u)) | f (u) ,⊥∨ f (v) ,⊥}

= p1 · p2 .

Since f is α-partial, the event f (u1) = . . . = f (uc) =⊥ has probability (1−α)c 6
e−αc. Hence, with probability at least 1− e−αc, one of the vertices u1, . . . ,uc is
labeled. Therefore, p1 > 1− e−αc.

Furthermore, we can lower bound the second probability p2 as follows

p2 = P
(u,v,π)∼U

{
f (v) = π(f (u))

∣∣∣∣ f (u) ,⊥∨ f (v) ,⊥
}

=
P(u,v,π)∼U {f (v) = π(f (u))}

P(u,v,π)∼U {f (u) ,⊥∨ f (v) ,⊥}

=
P(u,v,π)∼U {f (v) = π(f (u))}

2Pu∼V {f (u) ,⊥}−P(u,v,π)∼U {f (u) ∈ Σ, f (v) ∈ Σ}

>
(1− η)α

2α − (1− η)α
> 1− 2η .

We conclude that the probability in (6.2) is at least p1 · p2 > 1− 2η − e−αc, as
claimed.

6.3.2. Soundness

In the following, we show that Reduction 6.14 (from Partial Unique Games

to Unique Games) is sound, that is, given a good assignment for the unique
game U′ = Ψc(U) (obtained by applying Reduction 6.14 to the unique game
U), one can construct a good partial assignment for the original unique game
U.

Let F : V c → [c] × Σ be an assignment for the unique game U′ = Ψc(U).
(Recall that U is a unique game with vertex set V = {1, . . . ,n} and alphabet
Σ = {1, . . . , k}.)
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Based on the assignment F, we construct a collection {fU,r} of partial as-
signments for U. For U ∈ V c−1 and r ∈ {1, . . . , c}, define fU,r : V → Σ ∪ {⊥}
by

fU,r(x) def=

i if F(U +r x) = (r, i) ,
⊥ otherwise.

(Here, U +r x denotes the tuple (u1, . . . ,ur ,x,ur+1, . . . ,uc−1) in V c obtained by
inserting u in the r-th coordinate of U = (u1, . . . ,uc−1).)

We first show that one of the partial assignments fU,r has good value in the
unique game U2 (the square of U, obtained by sampling two constraints of U
with a common vertex and composing the permutations).

Lemma 6.17. Let β > 0. Then, there exists a partial assignment fU,r that labels at
least β/c of the vertices and has value at least

U2(fU,r) >
U′(F)− β

1− β
· P
x∼V

{
fU,r(x) ,⊥

}
,

where U2 denotes the square of the unique game U (obtained by sampling two
constraints of U with a common vertex and composing the permutations). In
particular, optβ/c(U

2) > (U(F)− β)/(1− β).

We compute the typical value of fU,r for the square of the unique game U
(obtained by sampling two constraints from U with a common vertex and
composing the permutations),

E
U∼V c−1, r∈[c]

U2(fU,r)

= P
U∼V c−1, r∈[c], u∼V , (u,v,π),(u,v′ ,π′)∼U|u

{
π−1(fU,r(v)) = (π′)−1(fU,r(v

′))
}

= 1
c U
′(F) .

For U ∈ V c−1 and r ∈ [c], define αU,r as the fraction of vertices labeled by the
partial assignment fU,r ,

αU,r
def= P

x∼V

{
fU,r(x) ,⊥

}
.

The typical value of αU,r is 1/c,

E
U∼V c−1, r∈[c]

αU,r = P
U∼V c−1, r∈[c], x∼V

{
fU,r(x) ,⊥

}
= 1
c .
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Since U2(fU,r) 6 αU,r , the contribution of assignments fU,r with αU,r 6 β/c to
the expected value U(fU,r) is at most

E
U∈V c−1, r∈[c]

U2(fU,r) ·1αU,r6β/c 6 β/c .

Therefore, we can lower bound the β/c-partial value of the unique game U2

as follows

optβ/c(U) >
EU∼V c−1, r∈[c] U

2(fU,r) ·1αU,r>β/c
EU∼V c−1, r∈[c] αU,r ·1αU,r>β/c

>
U′(F)/c − β/c

1/c − β/c
=
U′(F)− β

1− β
.

Using the previous lemma (Lemma 6.17) and basic relations between the
optimal value of a unique game and its square, we can show the following
lemmas.

Lemma 6.18 (Soundness close to 0). LetU′ = Ψc(U) be the unique game obtained
by applying Reduction 6.14 with parameter c ∈N to the unique game U. Suppose
the value of U′ is at least opt(U′) > ζ. Then, the 1/2c-partial value of U satisfies
opt1/2c(U) > ζ/8.

Let U	 be the unique game obtained by sampling with probability 1/2 a
random constraint fromU and sampling with the remaining probability a triv-
ial constraint (u,u, id). Note that U	(f ) = 1/2(α +U(f )) for every assignment
f : V → Σ∪ {⊥} that labels an α fraction of the vertices.

Lemma 6.19 (Soundness close to 1). Let U′ = Ψc(U	) be the unique game
obtained by applying Reduction 6.14 with parameter c ∈ N to the unique game
U	. Suppose the value of U′ is at least opt(U′) > 1 − η. Then, the 1/2c-partial
value of U satisfies opt1/2c(U) > 1− η/16.

6.4. From Unique Games to Small-Set Expansion

Reduction 6.20 (Reduction from Unique Games to Small-Set Expansion).

Input: A unique game U with vertex set V and alphabet Σ = {1, . . . ,R}, and
parameters q ∈N and ε > 0.

Output : A graph H =Hq,ε(U) with vertex set V × [q]R.

The edge distribution of H is obtained from the unique game U in the
following way:
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1. Sample a random vertex u ∼ V .

2. Sample a random point x ∈ [q]R.

3. Sample two random constraints (u,v,π), (u,v′,π′) ∼U | u. (Here,U |
u denotes the uniform distribution over constraints ofU containing
vertex u.)

4. Sample two random points y,y′ ∼ T1−ε(x). (Here, T1−ε is the usual
noise graph on [q]R with noise parameter 1− ε. See for a detailed
definition.).

5. Output an edge between (v,y) and (v′, y′).

(End of Reduction 6.20)

The running time of Reduction 6.20 is poly(|V |,qR). In particular, the
running time is polynomial if q =O(1) and R =O(logn).

The reduction Reduction 6.20 has the following approximation guarantee.

Theorem 6.21. For every ε > 0 and q ∈ N, there exist ηε > 0 and ζq,ε > 0 such
that if H =Hq,ε(U) is the graph obtained by applying Reduction 6.20 to a unique
game U, then the following two assertions hold:

Completeness: If the unique game U has value opt(U) > 1−ε, then the graph H
contains a vertex set with volume 1/q and expansion at most 4ε.

Soundness: If the unique game U has value opt(U) 6 ζq,ε and every vertex set of
volume 1/q in the constraint graph of U has expansion at least 1− ηε, then
every vertex set of volume 1/q has expansion 1− ε in H .

Remark 6.22. The completeness assertion of Reduction 6.20 is in fact stronger
than stated in Theorem 6.21. If the unique game U has value opt(U) > 1− ε,
then the graph H =Hq,ε allows a partition into q vertex sets, each of volume
1/q and with expansion at most 4ε.

6.4.1. Completeness

In the following, we show that Reduction 6.20 is complete, that is, we show
that if the unique game U has a good assignment (value 1− η), then the graph
H = Hq,ε(U) obtained by Reduction 6.20 contains a set with volume 1/q and
expansion O(ε+ η).

100



6. Graph Expansion and the Unique Games Conjecture

Lemma 6.23 (Completeness of Reduction 6.20). Suppose the unique game U
has optimal value opt(U) > 1 − η. Then, the graph H = Hq,ε(U) obtained from
Reduction 6.20 contains a vertex set S with volume µ(S) = 1/q and expansion
Φ(S) 6 2(η + ε).

Proof. Let F : V → [R] be an assignment for the unique game U. Suppose the
assignment F has value U(F) = 1− η. Consider the vertex subset S ⊆ V × [q]R

in the graph H =Hq,ε(U) (as specified in Reduction 6.20),

S
def=

{
(u,x) ∈ V × [q]R | xF(u) = 1

}
.

(We remark that the choice of 1 is arbitrary. The following proof would work
for any element of [q].)

The volume of S in the graph H equals µ(S) = 1/q. To determine the ex-
pansion of S, we compute H(S,S), the fraction of edge of H inside of S. Let
(u,x), (v,y), π, (v′, y′), π′ be distributed as in Reduction 6.20. Then,

H(S,S) = P
(u,x), (v,y), π, (v′ ,y′), π′

{
(π.y)F(v) = 1∧ (π′.y′)F(v′) = 1

}
> (1− ε)2 P

(u,x), (v,y), π, (v′ ,y′), π′

{
(π.x)F(v) = 1∧ (π′.x)F(v′) = 1

}
> (1− ε)2 P

(u,x), (v,y), π, (v′ ,y′), π′

{
xF(u) = 1∧F(v) = π(F(u))∧F(v′) = π′(F(u))

}
= (1− ε)2U2(F)/q > (1− ε)2(1− 2η)/q .

The first inequality uses that Py∼Tρ(x) {yr = xr} > ρ for every coordinate r ∈ [R].
For the second inequality, we use that one event logically implies the other
event. The notationU2(F) denotes the value of the assignment in the square of
the unique gameU. (The square of a unique game is obtained by sampling two
random constraints with a common vertex and composing the permutations.)

We conclude that, as desired, S satisfies

µ(S) = 1
q ,

Φ(S) 6 2ε+ 2η .

6.4.2. Soundness

In the following, we show that Reduction 6.20 is sound, that is, if the graph
H =Hq,ε(U) contains a vertex set S with small volume and expansion bounded
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away from 1, then either there exists a good assignment for the unique game
U or the constraint graph of U contains a vertex with small volume and
expansion bounded away from 1. (See Lemma 6.24 at the end of this section
for the formal statement.)

Let S ⊆ V × [q]R be a vertex subset of the graph H = Hq,ε(U) obtained by
applying Reduction 6.20 to a unique game U with vertex set V and alphabet
[R]. Let f = 1S be the indicator function of S.

For a vertex u ∈ V , we define fu : [q]R→ {0,1} by fu(x) := f (u,x). We define
gu : [q]R→ [0,1] by averaging the functions fv over the constraints (u,v,π) ∼
U | u,

gu(x) := E
(u,v,π)∼U|u

fv(π.x) .

(For a constraint (u,v,π), we identify the ith input coordinate of gu with the
π(i)th input coordinate of fv .)

The typical noise stability of the functions gu equals H(S,S), the fraction of
edges staying inside of S,

H(S,S) = E
u∼V , x∈[q]R

(
P

(u,v,π)∼U|u
y∼T1−ε(x)

{
(v,y) ∈ S

})2

= E
u∼V , x∈[q]R

T1−εgu(x)2 = E
u∼V
‖T1−εgu‖2 .

The invariance principle (Theorem 2.10) allows us to estimate the noise sta-
bility ‖T1−εgu‖2 = 〈gu ,T(1−ε)2gu〉 in terms of Gaussian noise stability bounds,
whenever the function gu has no influential coordinates. For the reader’s
convenience, we restate the invariance principle.

Theorem (Restatement of Theorem 2.10). For every finite probability space Ω
and constants ρ ∈ [0,1), η > 0, there exists constants τ,γ > 0 such that for every
function f ∈ L2(ΩR) with 0 6 f 6 1, either

〈f ,Tρf 〉 6 Γρ(Ef ) + η,

or Infi T1−γf > τ for some coordinate i ∈ [R].

Let η > 0 be sufficiently small (we determine this parameter later more pre-
cisely). By the invariance principle, there exists constants τ,γ > 0 (depending
on q, ε, and η) such that

H(S,S) = E
u∼V
‖T1−εgu‖2 6 E

u∼V
Γ(1−ε)2(Egu) + η + P

v∼V

{
max
i∈[R]

Infi T1−γgu > τ

}
.
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(Here, we also use that ‖T1−εgu‖2 6 1 since 0 6 gu 6 1.)
We use the following basic bound for the Gaussian noise stability. Let δ > 0

be sufficiently small (we determine this parameter later). Then,

Γ(1−ε)2(Egu) 6 Egu · (δε/2 +1Egu>δ) .

(If Egu 6 δ, then we can bound the noise stability by δε/2Egu . Otherwise, we
can use the trivial bound Γ(1−ε)2(Egu) 6 Egu .)

Influence decoding (Lemma 2.11) allows us to estimate the fraction of
vertices u such that T1−γgu has a coordinate with influence larger than τ .

Lemma (Restatement of Lemma 2.11). Let U be a unique game with vertex set
V and alphabet [R]. For some probability space Ω, let {fu}u∈V be a collections of
normalized functions in L2(ΩR). Consider functions gu in L2(ΩR) defined by

gu(x) = E
(u,v,π)∼U|u

fv(π.x) .

Then, for all γ,τ > 0, there exists cγ,τ > 0 (in fact, cγ,τ = poly(γ,τ)) such that

opt(U) > cγ,τ · P
u∼V

{
max
i∈[R]

Infi T1−γgu > τ

}
.

Combining Gaussian noise stability bounds and influence decoding, our
previous upper bound on H(S,S) simplifies to

H(S,S) 6 δε/2 ·µ(S) + η + opt(U)/cγ,τ + E
u∼V

1Egu>δEgu .

This bound asserts the following: IfH(S,S) is bounded away from δε/2 ·µ(S)+η
(meaning the expansion S is bounded away from 1), then either opt(U) is
bounded away from 0 or Eu∼V 1Egu>δEgu is bounded away from 0. To show
the soundness of Reduction 6.20, it remains to argue that the latter condition
implies that the constraint graph of the unique game U contains a vertex set
with small volume and expansion bounded away from 1.

To this end, we consider functions f̄ , ḡ : V → [0,1], obtained by averaging
the functions fu and gu over the hypercube [q]R,

f̄ (u) = E
x
fu(x) ,

ḡ(u) = E
x
gu(x) .
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The functions f̄ and ḡ satisfy the relation ḡ = Gf̄ , where G is the constraint
graph of the unique game U, because

Gf̄ (u) = E
(u,v,π)∼U|u

f̄ (v)

= E
(u,v,π)∼U|u

E
x∈[q]R

fv(x)

= E
x∈[q]R

E
(u,v,π)∼U|u

fv(π.x)

= E
x∈[q]R

gu(x) = ḡ(u) .

We can estimate Eu∼V 1Egu>δEgu in terms of the L2-norm of ḡ = Gf̄ ,

E
u∼V

1Egu>δEgu 6 Eu
ḡ(u)1ḡ(u)>δ 6 Eu

ḡ(u)2/δ = ‖Gf̄ ‖2/δ .

At this point, we can use the following lemma, which we used in the sound-
ness analysis of Reduction 6.20 earlier in this chapter.

Lemma (Restatement of Lemma 6.11). Suppose f : V →R satisfies 0 6 f (x) 6 1
for every vertex x ∈ V . Then, for every β > 0, there exists a set S ⊆ V such that

β‖f ‖1 6 µ(S) 6 1
β ‖f ‖1 ,

ΦG2(S) 6 1− ‖Gf ‖
2

‖f ‖1
+ 2β + β/(n‖f ‖1) .

Let β > 0 be sufficiently small (we determine this parameter later) and let
S ′ ⊆ V be the vertex set obtained by applying Lemma 6.11 to the function f̄ .
The set S ′ satisfies

βµ(S) 6 µG(S ′) 6 µ(S)/β

ΦG2(S ′) 6 1− ‖Gf̄ ‖2/µ(S) + 2β + β/(nµ(S)) .

We arrive at the following upper bound on the fraction of edges staying
inside the vertex set S (normalized by its volume),

H(S,S)
µ(S)

6 δε/2 + η
µ(S) + 1

cγ,τµ(S) opt(U) + 1
δ ·
G2(S ′,S ′)
µ(S ′)

+ 2β + β
nµ(S)

To simplify this bound further, we eliminate a few parameters. Choose δ such
that δε/2 � β and choose η such that η � βµ(S). Furthermore, we assume
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that µ(S)� 1/n (a very mild assumption). With these parameter choices, the
bound on H(S,S) simplifies to

H(S,S)
µ(S)

6 4β +Cβ,q,ε,µ(S) opt(U) + β−2/ε · G
2(S ′,S ′)
µ(S ′)

,

where Cβ,q,ε is some constant depending only on β, q, µ(S), and ε.
The last bound on H(S,S) implies the following lemma asserting the sound-

ness of Reduction 6.20. (Here, we also use the fact that a vertex set with
expansion bounded away from 1 in G2 implies a vertex set with roughly the
same volume and expansion bounded away from 1 in G.)

Lemma 6.24. For every q ∈N and ε,η > 0, there exists ζq,ε,η ,ζ′ε,η > 0 such that the
following holds: LetH =Hq,ε(U) be the graph obtained by applying Reduction 6.20
with parameters q and ε to the unique game U. Then, if H contains a vertex set
S with volume µH (S) = 1/q and expansion at most ΦH (S) 6 1 − η, then either
opt(U) > ζq,ε,η or the constraint graph G of U contains a vertex set S ′ with volume
µG(S ′) = 1/q and expansion at most ΦG(S ′) 6 1− ζ′ε,η .

6.5. Notes

The material presented in this chapter is based on the paper “Graph Expansion
and the Unique Games Conjecture” [RS10] joint with Prasad Raghavendra. A
preliminary version appeared at STOC 2010.
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Problems

We show that the SSE hypothesis implies quantitatively tight inapproximabil-
ity results for many graph expansion problems, in particular Sparsest Cut
and Balanced Separator. Concretely, our results imply that it is SSE-hard to
beat Cheeger’s inequality and achieve an (ε,o(

√
ε))-approximation for Sparsest

Cut. (We say a problem is SSE-hard if an efficient algorithm for the problem
implies that the SSE hypothesis is false.)

These are the first strong hardness of approximation results for Sparsest
Cut and Balanced Separator. (Even assuming the Unique Games Conjecture,
no strong hardness result for these problems were known. The best known
result was that one cannot achieve approximation ratios arbitrarily close to 1
unless 3-Sat has subexponential algorithms [AMS07].)

There is a strong parallel between this result and the known consequences
of the Unique Games Conjecture. The Unique Games Conjecture asserts a
qualitative inapproximability for Unique Games, which is generalization of
Max Cut. In turn, the conjecture implies tight quantitative inapproximability
results for Max Cut and similar basic problems. Similarly, the SSE hypothe-
sis asserts a qualitative inapproximability for Small-Set Expansion, which
generalizes Sparsest Cut. In turn, the hypothesis implies tight quantitative in-
approximability results for Sparsest Cut and other graph expansion problems.
The value of results of this kind is that they unify the question of improving
known algorithms for a class of problems to a question about the qualitative
approximability of a single problem.

These significant consequences of a confirmation of the SSE hypothesis
make it an interesting open question to prove or refute the hypothesis.

7.1. Main Results

We show that following general graph expansion problem is SSE-hard.
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Theorem 7.1. The following problem is SSE-hard for all constants ε,δ,η > 0:
Given a graph G distinguish between the cases,

YES: the graph G contains a vertex set with volume at most δ and expansion at
most ε+ η,

NO: every vertex set S in G satisfies

G(S,S) 6 Γ1−ε
(
µ(S)

)
+ η .

A corollary of this theorem is an essentially tight SSE-hardness for Sparsest
Cut. Concretely, given a graph G, it is SSE-hard for every ε > 0 to distinguish
between the cases ΦG 6 ε and ΦG >Ω(

√
ε). This hardness is essentially tight

because Cheeger’s inequality allows us to distinguish between ΦG 6 ε and
ΦG > O(

√
ε). (However, the constants hidden in the Ω(·)- and O(·)-notations

are not the same.)
The YES case in the above theorem can be strengthened in various ways

(leading to stronger hardness results). For example, we can assert that there
exists a distribution over vertex sets S such that

– with probability 1, the vertex set S has volume at most δ and expansion
at most ε,

– the distribution over vertex sets S uniformly covers essentially the whole
graph, in the sense that,

E
v∼G

∣∣∣∣∣PS {v ∈ S} −ES µ(S)
∣∣∣∣∣ 6 ηES µ(S) .

(The volume of S is also lower bounded by a function of η and δ.)

Such a distribution over vertex sets implies the existence of SDP solutions
with certain symmetry properties, leading to quantitatively tight integrality
gaps for Balanced Separator. (Using techniques in Chapter 8.)

Another consequence of such distributions is that one can extract vertex
sets with desired volume while maintaining the expansion up to a factor of 2.
(To extract the vertex set with the desired volume we use correlated sampling,
similar to §4.2 in Chapter 4.) This observation implies the corollary of the
previous theorem.

Theorem 7.2. The following problem is SSE-hard for all constants ε,δ,η > 0:
Given a graph G distinguish between the cases,
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YES: the graph G allows a partition of the vertex set into sets with volume equal
to δ and expansion at most 2ε+ η,

NO: every vertex set S in G satisfies

G(S,S) 6 Γ1−ε
(
µ(S)

)
+ η .

7.2. Reduction

The reduction in this section composes the input graph with certain other
graphs, in particular, noise graphs (see Section 2.4 for details about noise
graphs). Beyond noise graphs, the reduction uses the following kind of graphs
(which are related to noise graphs).

Let Ω be a finite probability space and let R ∈N. For w ∈ {⊥,>}R, let Mw be
the Markov operator on L2(ΩR) corresponding to the graph on ΩR with the
following edge distribution:

1. Sample x ∼ΩR.

2. For every coordinate r ∈ [R], put yr := xr if wr => and sample yr ∼Ω if
wr =⊥.

3. Output the pair xy as a random edge of Mw.

(The graph Mw also has a simple combinatorial description. It is a disjoint
union of cliques and two vertices x,y ∈ΩR are in the same clique if they agree
on the coordinates r with wr =>.)

Let {⊥,>}Rβ be R-fold product of the β-biased distribution on {⊥,>}. In other

words, {⊥,>}Rβ is the distribution over {⊥,>}R in which each coordinate equals
> with probability β (independently for each coordinate).

Averaging the graph Mw over w ∼ {⊥,>}Rβ yields the noise graph Tβ on ΩR,

E
w∼{⊥,>}Rβ

Mw = Tβ . (7.1)

Reduction 7.3.

Input: A regular graph G with vertex set V , and parameters R,q ∈ N
and ε,ρ,β ∈ (0,1).
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Output: A regular graph H =HR,q,ε,ρ,β(G) with vertex set V (H) = V R × [q]R ×
{⊥,>}Rβ .

The edge distribution of the graph H is obtained from G in the following way:

1. Sample a random R-tuple A ∼ V R of vertices.

2. Sample two random neighbors B,B′ ∼ (T1−εG)⊗R(A) of A in the graph
(T1−εG)⊗R. (Here, the graph T1−εG corresponds to first taking a random
step in G and then taking a random step in T1−ε, the usual noise graph
on V with parameter 1− ε. See for further details.).)

3. Sample two random permutations π,π′ ∈ SR.

4. Sample a random point (x,z) ∈ [q]R × {⊥,>}Rβ .

5. Sample a random neighbors (y,w), (y′,w′) ∼ T ⊗Rρ (x,z) of x in the graph
T ⊗Rρ . (Here, Tρ is the usual noise graph on graph on [q]× {⊥,>}β . See .).

6. Sample random neighbors (B̃, ỹ) ∼ Mw(B,y) and (B̃′, ỹ′) ∼ Mw′ (B′, y′).
(Here,Mw is the operator that corresponds to resampling the coordinates
i ∈ [R] with wi =⊥. See .)

7. Output an edge between π.(B̃, ỹ,w) and π′.(B̃′, ỹ′,w′).

(End of Reduction 7.3)

Reduction 7.3 has the following approximation guarantees.

Theorem 7.4. Given a graph G with n vertices and parameters R ∈ N, q ∈ N,
ε,ρ,β ∈ (0,1) with ρ > 0.1, Reduction 7.3 computes in time poly(nR,qR) a graph
H = HR,q,ε,ρ,β(G) such that the following assertions hold (for some constants
ζ = ζ(q,ε,ρ,β) > 0 and α > (1− ε)ε):

Completeness I: If G contains a vertex set with volume ε/βR and expansion at
most ε, then H contains q disjoint vertex sets T1, . . . ,Tq, each with volume
µ(Ti) = α/q and expansion at most Φ(Ti) 6 1− ρ2 +O(ε+ β).

Completeness II: If G contains αβR/ε disjoint vertex sets, each with volume
ε/βR and expansion at most ε, then there exists a distribution over q disjoint
vertex sets T1, . . . ,Tq such that

– with probability 1, each set Ti has volume and expansion as above,
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– a typical vertex v in H satisfies
∣∣∣PTi {v ∈ Ti} −α/q∣∣∣ 6 O(ε)α/q +

2−Ω(ε3βR) for every i ∈ [q] (which means that the sets Ti uniformly
cover all but a small fraction of the graph H).

Soundness: If every vertex set in G with volume ε/βR has expansion less than
1− ζ, then every vertex set T in H satisfies

H(T ,T ) 6 Γρ2

(
µ(T )

)
+ 3β1/3 .

Remark 7.5. The graph H obtained from Reduction 7.3 is the label-extended
graph of unique game. The second completeness assertion shows that this
unique game has a uniform cover of Ω(1)-partial assignments with value
close to 1 if G contains a vertex set with volume roughly ε/βR and small
expansion. Using correlated sampling (similar to the rounding in Chapter 4,
§4.2, such a distribution over partial assignments implies that the value of
the unique game is close to 1 (only a factor of two is lost in the closeness
to 1). This observation implies that the Small-Set Expansion Hypothesis
implies Hypothesis 6.3 (Unique Games Conjecture on Small-Set Expanders),
which establishes the equivalence of the two hypotheses (we showed the other
direction already in Chapter 6, §6.4).

7.2.1. Completeness

Let G be a regular graph with vertex set V = {1, . . . ,n}. Let H = HR,q,ε,ρ,β(G)
be the graph with vertex set V (H) = V R × [q]R × {⊥,>}Rβ obtained by apply-
ing Reduction 7.3 to G. The number of vertices of H is nR ·O(q)R (and the
running time of the reduction is polynomial in the size of H). In particular,
Reduction 7.3 is polynomial-time for R =O(1) and q =O(1).

The completeness of Reduction 7.3 asserts that if G contains a set of volume
roughly 1/βR and with small expansion, then a constant fraction of the graph
H can be partitioned into q sets, each with the same volume and expansion
roughly 1− ρ2.

Lemma 7.6 (Completeness I). If the graphG contains a vertex set of volume δ and
expansion at most η, then the graph H =HR,q,ε,ρ,β(G) obtained by Reduction 7.3
contains disjoint vertex set T1, . . . ,Tq, each of volume α/q and with expansion at
most 1− ρ2 +O(ε+ η + β/ρ+ βRδ) , where α > (1− βRδ)βRδ.

110



7. Reductions between Expansion Problems

Proof. Let S ⊆ V be a vertex subset of G with µ(S) = δ and Φ(S) = η. Similar
to the completeness proof of Reduction 6.5, we construct a partial assignment
F : V R × {⊥,>}Rβ → [R]∪ {⊥},

F(A,z) def=

r if {r} = {r ′ ∈ [R] | ar ′ ∈ S ∧ zr ′ =>} ,
⊥ otherwise.

(The difference to the construction in the completeness proof for Reduc-
tion 6.5 is the additional argument z ∈ {⊥,>}Rβ of F. Effectively, the partial
assignment F ignores all coordinates ar of A with zr = ⊥.) We compute the
fraction α of vertices labeled by F,

α := P
(A,z)∼V R×{⊥,>}Rβ

{F(A,z) ,⊥} =
(
R

1

)
(1− βδ)R−1βδ > βRδ(1− βRδ) .

Let S ′ = S × {>} ⊆ V × {⊥,>}β. Consider the graph G′ = (T1−εG)⊗ Tρ on V ×
{⊥,>}β . The set S ′ has volume βδ in the graph G′. Furthermore, the fraction
of edges of G′ staying inside of S ′ is

G′(S ′,S ′) = µ(S ′) · P
ar∼V , br∼T1−εG

{br ∈ S | ar ∈ S} · P
zr∼{⊥,>}β , wr∼Tρ(zr )

{wr => | zr =>}

= βδ
(
(1− ε)(1− η) + εδ

)
·
(
ρ+ (1− ρ)β

)
.

(Here, we use the notation ar ,br ,wr , zr only for consistency with the description
of Reduction 7.3. The index r plays no role at this point.) Hence, the expansion
of S ′ in the graph G′ equals

φ′ := 1−
(
(1− ε)(1− η) + εδ

)
·
(
ρ+ (1− ρ)β

)
6 (1− ρ) + ε+ η + β .

For every r ∈ [R], we have

P
A∼V R, z∼{⊥,>}Rβ , B∼(T1−εG)⊗R(A), w∼T ⊗Rρ (z)

{
F(B,w) = r | F(A,z) = r

}
= (1−φ′)

(
1−φ′ µ(S ′)

1−µ(S ′)

)R−1

> 1−φ′ −Rβδ .

Furthermore, for every r ∈ [R],

P
(y,w)∼T ⊗Rρ (x,z)

{xr = yr | wr =>, zr =>} > ρ/ P
wr∼Tρ(zr )

{wr => | zr =>}

> ρ/(ρ+ (1− ρ)β) > 1− 1−ρ
ρ β
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LetA,B,w,x,y,z be distributed as before (and as in Reduction 7.3), i.e., A ∼ V R,
B ∼ (T1−εG)⊗R, (x,z) ∼ [q]R×{⊥,>}Rβ , and (y,w) ∼ T ⊗Rρ (x,z). In addition, sample
B̃ ∼Mw(B) and ỹ ∼Mw(y) as in Reduction 7.3. Then, for every r ∈ [R],

ρ′ :=P
{
xF(A,z) = ỹF(B̃,w) | F(A,z) = r

}
> P

{
xr = ỹr ∧F(B̃,w) = r | F(A,z) = r

}
= P {xr = yr ∧F(B,w) = r | F(A,z) = r}

= P {F(B,w) = r | F(A,z) = r} · P {xr = yr | F(B,w) = r, F(A,z) = r}

> (1−φ′ −Rβδ) ·
(
1− 1−ρ

ρ β
)
> 1−φ′ −Rβδ − 1−ρ

ρ β .

The second step uses that (B̃, ỹ) and (B,y) agree on all coordinates r with
wr => (and that F(·,w) ignores coordinates with wr ,>).

For our final choice of parameters, ρ′ will be arbitrarily close to ρ (also note
that by symmetry of F, the expression used to define ρ′ does not depend on r.)

We define vertex subsets T1, . . . ,Tq ⊆ V (H) as follows

Ti =
{
(A,x,z) ∈ V R × [q]R × {⊥,>}Rβ | xF(A,z) = i

}
.

By symmetry, each set Ti has volume µ(Ti) = α/q in H . (Recall that α is the
fraction of V R × {⊥,>}Rβ labeled by the partial assignment F.) We claim that
the sets Ti have expansion at most 1− (ρ′)2 in the graph H . Note that the sets
T1, . . . ,Ti are invariant under permuting coordinates (using that F(π.(A,z)) =
π(F(A,z)) whenever F(A,z) , ⊥). Hence, in order to compute the expansion
of the sets, we can ignore the permutations π and π′ in the construction of H
(see steps 3 and 7 in Reduction 7.3). We can compute the fraction of edges of
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H staying in Ti as

H(Ti ,Ti) = P
((B̃,ỹ,w), (B̃′ ,ỹ′ ,w′))∼H

{
yF(B,y) = i ∧ y′F(B′ ,w′) = i

}
= E

(A,x,z)

(
P

(B̃,ỹ,w)|(A,x,z)

{
ỹF(B̃,w) = i

})2

> E
(A,x,z)

(
P

(B̃,ỹ,w)|(A,x,z)

{
xF(A,z) = i ∧ ỹF(B̃,w) = xF(A,z)

})2

= α
q E

(A,x,z)|F(A,z),⊥

(
P

(B̃,ỹ,w)|(A,x,z)

{
ỹF(B̃,w) = xF(A,z)

})2

> α
q

(
E

(A,x,z)|F(A,z),⊥
P

(B̃,ỹ,w)|(A,x,z)

{
ỹF(B̃,w) = xF(A,z)

})2

= α
q · (ρ

′)2 > α
q ·

(
ρ2 −O(ε+ η + β/ρ+ βRδ)

)
.

Remark 7.7 (Completeness II). The second completeness assertion for Reduc-
tion 7.3 follows from the proof of the previous lemma (which establishes the
first completeness assertion). If the graph G contains k = βR disjoint vertex
sets S1, . . . ,Sk, each with volume δ = ε/k and expansion η 6 ε, then we can
sample a random vertex set S ∈ {S1, . . . ,Sk} and apply the construction in pre-
vious the proof. In this way, we obtain a distribution over disjoint vertex sets
T1, . . . ,Tq satisfying the conditions of our second completeness assertion. To
verify the condition that the sets Ti uniformly cover all but a small fraction of
the graph H , it is enough to show the following the claim: Consider k random
vertices x1, . . . ,xk ∼ G. Then, in expectation, at least a (1 −O(ε))ε − 2−Ω(ε2k)

fraction of the vertex sets Sj contain exactly one of the vertices x1, . . . ,xk. (Note
that in expectation, at most an ε fraction of the vertex sets Sj contain at least
one of the vertices x1, . . . ,xk.) To verify the claim, let us condition on the event
that at least k′ = (1−ε)εk of the vertices x1, . . . ,xk fall into one of the vertex sets
Sj . We may assume that the first k′ vertices x1, . . . ,xk′ fall into one of the vertex
sets Sj . Each of these vertices xi (with i 6 k′) falls into a random set among
S1, . . . ,Sk. Let us imagine we distribute these vertices one-by-one among sets
Sj (in the order x1, . . . ,xk′ ). Then, the probability that xi falls into a set that
already contains one of the vertices x1, . . . ,xi−1 is at most k′/k 6 ε. Hence, we
expect that a 1−O(ε) fraction of the vertices x1, . . . ,xk′ fall into a unique set Sj ,
which demonstrates the claim. (End of Remark 7.7)
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7.2.2. Soundness

Let G be a regular graph with vertex set V = {1, . . . ,n}. Let H = HR,q,ε,ρ,β(G)
be the graph with vertex set V (H) = V R × [q]R × {⊥,>}Rβ obtained by applying
Reduction 7.3 to G.

In the following, we show that Reduction 7.3 is sound, that is, if H contains
a vertex set with volume δ = Ω(1/q) and expansion bounded away from
1−Γρ2(δ)/δ (the minimum expansion of vertex sets of volume δ in the Gaussian
noise graph Uρ2), then the graph H contains a vertex set of volume ε/βR and
expansion bounded away from 1.

Let Ω denote the product probability space [q] × {⊥,>}β of the uniform
distribution on [q] and the β-biased distribution on {⊥,>}. We can identify
the vertex set of H with V R ×ΩR.

Let T ⊆ V (H) be a vertex set in H . Let f : V R ×ΩR be its {0,1}-indicator
function. We consider the following two symmetrizations of f ,

f̄ (A,x,z) := E
π∈SR

f
(
π.(A,x,z)

)
, (7.2)

f̃ (A,x,z) := E
(Ã,x̃)∼Mz(A,x)

f̄ (Ã, x̃, z) . (7.3)

By the symmetries of the graph H , we have

〈f ,Hf 〉 = 〈f̄ ,Hf̄ 〉 = 〈f̃ ,Hf̃ 〉 .

We write f̃A(x,z) = f̃ (A,x,z). For all A ∈ V R, we define functions gA : ΩR →
[0,1] as the average of f̃B over the neighbors B of the vertex A in the product
graph G⊗R (with additional noise),

gA := E
B∼(T1−εG)⊗R(A)

f̃B .

The fraction of edges staying inside of T equals the typical noise stability of
gA in the graph Tρ on ΩR,

H(T ,T ) = E
A∼V R

E
(x,z)∼ΩR

(
E

B∼(T1−εG)⊗R(A)
E

(y,w)∼Tρ(x,z)
f̃B(y,w)

)2

= E
A∼V R

E
(x,z)∼ΩR

(
TρgA(x,z)

)2
= E
A∼V R

‖TρgA‖2 .

We can further upper bound H(T ,T ) by combining the soundness analysis
of Reduction 6.20 (in particular, the Invariance Principle and Influence De-
coding) with the soundness analysis of Reduction 6.5. Combining these tools
(which is non-trivial, but standard), establishes the following claim.
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Claim 7.8. There exists a constant ζ = ζ(q,ε,ρ,β) > 0 such that either

H(T ,T ) 6 E
A∼V R

Γρ2(EgA) + β .

or G contains a vertex set with volume ε/βR and expansion less than 1− ζ.

Next, we show that for most vertex tuples A ∈ V R, the expectation of the
function gA (over ΩR) roughly equals the expectation of the function f . (Since
f indicates the vertex set T , its expectation is the volume of T .) To this end,
we compare EA(EgA)2 to (Ef )2 in the following claim. (We remark that one
could derive upper bounds on EA(EgA)2 using properties of the graph G⊗R.
In fact, we followed this approach in the soundness proof of Reduction 6.20.
The key novelty of Reduction 7.3 is that we can control EA(EgA)2 without
further assumptions on the graph G⊗R.)

Claim 7.9.
E
A

(EgA)2 6 (Ef )2 + β‖f ‖2 .

Proof. Recall that gA is defined by averaging the function f̄ ,

gA(x,z) = E
B∼(T1−εG)⊗R(A)

E
(B̃,x̃)∼Mz(B,x)

f̄ (B̃, x̃, z) .

Using Cauchy–Schwarz, the typical value of the square of EgA is at most

E
A

(
EgA

)2
= E
A∼V R

(
E

(x,z)∼ΩR
E

B∼(T1−εG)⊗R(A)
E

(Ã,x̃)∼Mz(A,x)
f̄ (A,x,z)

)2

6 E
A∼V R, x∼[q]R

(
E

z∼{⊥,>}Rβ
E

(Ã,x̃)∼Mz(A,x)
f̄ (Ã, x̃, z)

︸                              ︷︷                              ︸
=:Mf̄ (A,x)

)2
= ‖Mf̄ ‖2 .

Notice that M (as defined above) is a linear operator from the space L2(V R ×
[q]R × {⊥,>}Rβ ) to the space L2(V R × [q]R).

To upper bound the norm ‖Mf̄ ‖, we consider the spectral decomposition of
the linear operator M∗M on L2(V R × [q]R × {⊥,>}Rβ ). Here, M∗ is the adjoint of

M, so that 〈Mh,g〉 = 〈h,M∗g〉 for any two functions h ∈ L2(V R × [q]R × {⊥,>}Rβ )
and g ∈ L2(V R × [q]R). One can verify that M∗M is a Markov operator. Its
largest eigenvalue is 1 and the constant functions form the corresponding
eigenspace.
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To show the claim, it is enough to verify that the second largest eigenvalue
of M∗M equals β, because

‖Mf̄ ‖2 = 〈f̄ ,M∗Mf̄ 〉 6 (E f̄ )2 + β‖f̄ −E f̄ ‖2 6 (Ef )2 + β‖f ‖2 .

(The first inequality uses that f̄ −E f̄ is orthogonal to the first eigenspace and
thus contributes at most β‖f̄ −E f̄ ‖2 to the inner product 〈f̄ ,M∗Mf̄ 〉. The
second inequality uses that f̄ is obtained from f by averaging, which implies
that E f̄ = Ef and ‖f̄ ‖2 6 ‖f ‖2.)

To compute the second largest eigenvalue ofM∗M, we note that this operator
has the same non-zero eigenvalues as the operatorMM∗ (which acts on L2(V R×
[q]R)). One can verify thatMM∗ corresponds to the noise graph Tβ on V R×[q]R.
(See also (7.1).) Hence, the second largest eigenvalue of M∗M equals β.

We conclude the soundness analysis of Reduction 7.3 by combining the
previous claims. Let γ > 0 be sufficiently small. Claim 7.9 allows us to upper
bound the fraction of vertex tuples A ∈ V R with EgA > Ef + γ . Concretely,
Chebyshev’s inequality implies

P
A∼V R

{
EgA > Ef +γ

}
6 E
A∼V R

(
EgA −Ef

)2
/γ2 6 β/γ2 .

Let us assume that G contains no vertex set with volume ε/βR and expansion
less than 1− ζ. Then, using Claim 7.8, the following upper bound on H(T ,T )
holds

H(T ,T ) 6 E
A∼V R

Γρ2(EgA) + β 6 Γρ2(Ef +γ) + β/γ2 + β 6 Γρ2(Ef ) + 2γ + 2β/γ2 .

(In the last step, we use that the function Γρ2 is 2-Lipschitz.) To achieve
the best upper bound on H(T ,T ), we choose γ = β1/3, which shows that
H(T ,T ) 6 Γρ2(Ef ) + 3β1/3.

To summarize, we established the following soundness guarantee of Reduc-
tion 7.3.

Lemma 7.10 (Soundness). There exists a constant ζ = ζ(q,ε,ρ,β) > 0 such that
if all vertex sets with volume ε/βR in G have expansion at least 1− ζ, then every
vertex set T in H =HR,q,ε,ρ,β(G) satisfies

H(T ,T ) 6 Γρ2(µ(T )) + 3β1/3
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7.3. Notes

The material of this chapter is based on an unpublished manuscript with
Prasad Raghavendra and Madhur Tulsiani, titled “Reductions between Expan-
sion Problems” [RST10b].
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Lower Bounds
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8. Limits of Semidefinite

Relaxations

Non-trivial consequences of a refutation of the Unique Games Conjecture (as
we showed in the Chapter 6) are some form of evidence for the truth of the
conjecture. Another form of evidence for the truth of the conjecture are lower
bounds for Unique Games in restricted models of computation.

In the context of approximation problems, it is natural to study models
of computations defined by hierarchies of relaxations (typically linear or
semidefinite relaxations). Such hierarchies contain relaxations with gradually
increasing complexity — from linear complexity to exponential complexity.
Relaxations with higher complexity provide better approximations for the
optimal value of optimization problems. (The relaxations with highest, i.e.,
exponential, complexity typically compute the optimal value exactly.)

Starting with the seminal work of Arora, Bollobás, and Lovász [ABL02],
lower bounds on the complexity of many approximation problems were
obtained in various hierarchies. In this chapter, we show the first super-
polynomial lower bound for Unique Games in a hierarchy that captures the
best known algorithms for all constraint satisfaction problems (see Chapter 8).
Previously known lower bounds for Unique Games, considered only relax-
ations with fixed polynomial complexity [KV05], or considered hierarchies
that do not capture current algorithms (in particular, the hierarchies provide
only trivial approximation for Max Cut) [CMM09].

Our lower bounds translate to corresponding lower bounds for all UG-hard
problems (via the known UG-hardness reductions). Even for specific UG-hard
problem like Max Cut such lower bounds were not known before.

8.1. Overview

In this chapter, we exhibit an integrality gap for certain strong SDP relaxations
of Unique Games. More precisely, we consider two strong hierarchies of SDP
relaxations {LHr}r∈N and {SAr}r∈N (see Section 8.3 for the definitions). We give
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rough definitions of these relaxations here for the convenience of the reader.
The rth level relaxation LHr consists of the following: 1) SDP vectors for every
vertex of the unique game, 2) All valid constraints on vectors corresponding
to at most r vertices. Equivalently, the LHr relaxation consists of SDP vectors
and local distributions µS over integral assignments to sets S of at most r
variables, such that the second moments of local distributions µS match the
corresponding inner products of SDP vectors.

The SAr relaxation is a strengthening of LHr with the additional constraint
that for two sets S,T of size at most r, the corresponding local distribution over
integral assignments µS ,µT must have the same marginal distribution over S∩
T . The SAr relaxation corresponds to simple SDP relaxation strengthened by
rth round of Sherali-Adams hierarchy [SA90]. Let LHr(Φ) and SAr(Φ) denote
the optimum value of the corresponding SDP relaxations on the instance Φ .
Further, let opt(Φ) denote the value of the optimum labeling for Φ . For the
LH and SA hierarchies, we show:

Theorem 8.1. For all constants η > 0, there exists a Unique Games instance Φ

on N vertices such that LHr(Φ) > 1− η and opt(Φ) 6 η for r =O(2(loglogN )
1
4 )

Theorem 8.2. For all constants η > 0, there exists a Unique Games instance Φ
on N vertices such that SAr(Φ) > 1− η and opt(Φ) 6 η for r =O((loglogN )

1
4 )

Demonstrated for the first time in [KV05], and used in numerous later
works [CMM09, STT07b, Tul09, Rag08, GMR08, MNRS08], it is by now well
known that integrality gaps can be composed with hardness reductions.

In particular, given a reduction Red from Unique Games to a certain prob-
lem Λ, on starting the reduction with a integrality gap instance Φ for Unique

Games, the resulting instance Red(Φ) is a corresponding integrality gap
for Λ. Composing the integrality gap instance for LHr or SAr relaxation
of Unique Games, along with UG reductions in [KKMO07, Aus07, Rag08,
GMR08, MNRS08, RS09b], one can obtain integrality gaps for LHr and SAr
relaxations for several important problems. For the sake of succinctness, we
will state the following general theorem:

Theorem 8.3. Let Λ denote a problem in one of the following classes:

– A Generalized Constraint Satisfaction Problem

– An Ordering Constraint Satisfaction Problem
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Let SDP denote the SDP relaxation that yields the optimal approximation ratio for
Λ under UGC. Then the following holds: Given an instance I of the problem Λ,
with SDP(I) > c and opt(I) 6 s, for every constant η > 0, there exists an instance
Ψη over N variables such that:

– LHr(Ψη) > c − η and opt(Ψη) 6 s+ η with r =O(2(loglogN )1/4
).

– SAr(Ψη) > c − η and opt(Ψη) 6 s+ η with r =O((loglogN )1/4).

The O notation in the number of rounds hides a constant depending on η.
The classes of problems for which the above result holds include Max

Cut [KKMO07], Max 2-Sat [Aus07], Grothendieck Problem [RS09b] k-way
Cut [MNRS08] and Maximum Acyclic Subgraph [GMR08]. Notable excep-
tions that do not directly fall under this framework are Vertex Cover and
Sparsest Cut.

Reductions from Unique Games to Sparsest Cut have been exhibited in
[KV05] and [CKK+06]. With the integrality gap for LHr relaxation of Unique

Games (Theorem 8.1), these reductions imply a corresponding LHr integrality
gap for Sparsest Cut. Integrality gaps for Sparsest Cut are directly related to
lower bounds for distortion required to embed a given metric into L1 metric.
Here the L1 metric consists of points in Rd for arbitrarily large d, and the
distance between two points (x,y) is ‖x − y‖1. An L2

2 metric consists of a set of
points in Rd such that the squares of the distances between them also form a
metric (satisfy triangle inequality). Restated in this language, the SDP vectors
of the Sparsest Cut integrality gap that we construct, yield the following
result:

Theorem 8.4. For some absolute constants γ,δ > 0, there exists an N -point L2
2

metric that requires distortion at least Ω(loglogN )δ to embedd into L1, while
every set of size at most O(2(loglogN )γ ) embedds isometrically into L1.

The Uniform Sparsest Cut problem is among the many important problems
for which no Unique Games reduction is known. In [DKSV06], the techniques
of [KV05] were extended to obtain an integrality gap for Uniform Sparsest

Cut for the SDP with triangle inequalities. Roughly speaking, the SDP gap
construction in [DKSV06] consists of the hypercube with its vertices iden-
tified by certain symmetries such as cyclic shift of the coordinates. Using
the techniques from this chapter, the following SDP integrality gap for the
Balanced Separator problem can be exhibited. The details of the proof of
this theorem are omitted from the thesis.
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Theorem 8.5. For some absolute constants γ,δ > 0, there exists an instance
G on N vertices of Balanced Separator such that the ratio opt(G)/LHr(G) >
Ω(loglogN )δ for r =O(loglogN )γ .

8.1.1. Techniques

In this section, we will present a brief overview of the techniques and a
roadmap for the rest of the chapter.

The overall strategy in this work to construct SDP integrality gaps is along
the lines of Khot–Vishnoi [KV05]. Let us suppose we wish to construct a SDP
integrality gap for a problem Λ (say Max Cut). Let RedΛ be a reduction from
Unique Games to the problemΛ. The idea is to construct a SDP integrality gap
Φ for Unique Games, and then execute the reduction RedΛ on the instance Φ ,
to obtain the SDP gap construction RedΛ(Φ). Surprisingly, as demonstrated
in [KV05], the SDP vector solution for Φ can be transformed through the
reduction to obtain the SDP solution for RedΛ(Φ).

Although this technique has been used extensively in numerous works
[CMM09, STT07a, Tul09, Rag08, GMR08, MNRS08] since [KV05], there is
a crucial distinction between [KV05] and later works. In all other works,
starting with an SDP gap Φ for Unique Games, one obtains an integrality
gap for an SDP relaxation that is no stronger. For instance, starting with
a integrality gap for 10-rounds of a SDP hierarchy, the resulting SDP gap
instance satisfies at most 10 rounds of the same hierarchy.

The surprising aspect of [KV05], is that it harnesses the UG reduction RedΛ
to obtain an integrality gap for a “stronger” SDP relaxation than the one which
it stared with. Specifically, starting with an integrality gap Φ for a simple SDP
relaxation of Unique Games, [KV05] exhibit an SDP gap for Max Cut which
obeys all valid constraints on 3 variables. The proof of this fact (the triangle
inequality) is perhaps the most technical and least understood aspect about
[KV05]. One of the main contributions of this chapter is to conceptualize and
simplify this aspect of [KV05]. Armed with the understanding of [KV05], we
then develop the requisite machinery to extend it to a strong SDP integrality
gap for Unique Games.

To obtain strong SDP gaps for Unique Games, we will apply the above strat-
egy on the reduction from Unique Games to E2Linq obtained in [KKMO07].
Note that E2Linq is a special case of Unique Games. Formally, we show the
following reduction from a weak gap instance for Unique Games over a large
alphabet to a integrality gap for a strong SDP relaxation of E2Linq.
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Theorem 8.6. (Weak Gaps for Unique Games =⇒ Strong gaps for E2Linq)
For a positive integer q, let RedE2Linq denote the reduction from Unique Games to
E2Linq. Given a (1− η,δ)-weak gap instance Φ for Unique Games, the E2Linq
instance RedE2Linq(Φ) is a (1− 2γ,1/qγ/2 + oδ(1)) SDP gap for the relaxation LHr
for r = 2O(1/η1/4). Further, RedE2Linq(Φ) is a (1−γ,δ) SDP gap for the relaxation
SAr for r =O(1/η1/4).

Using the weak gap for Unique Games constructed in [KV05], along with
the above theorem, implies Theorems 8.1 and 8.2. As already pointed out,
by now it is fairly straightforward to compose an r-round integrality gap for
Unique Games, with reductions to obtain a r round integrality gaps for other
problems. Hence, Theorem 8.3 is a fairly straightforward consequence of
Theorems 8.1 and 8.2.

8.1.2. Organization

In the next section, we present a detailed proof overview that describes the
entire integrality gap construction restricted to the case of Max Cut. The
formal definitions of the SDP hierarchies LHr ,SAr and their robustness are
presented in Section 8.3. We formally define weak gap instances for Unique

Games in Section 8.4. We also outline an alternate integrality gap for a very
minimal SDP relaxation of Unique Games in the same section. This section is
followed by the description of the integrality gap instance for E2Linq obtained
by reduction of Khot et al. [KKMO07]. In the rest of the chapter, we construct
SDP vectors and local distributions to show that this is an integrality gap for
the strong SDP relaxations – LHr and SAr . The two subsequent sections are
devoted to developing the requisite machinery of integral vectors, their tensor
products and local distributions for Unique Games. The SDP vectors and
local distributions for the integrality gap instance described in Section 8.5 are
exhibited in Sections Section 8.8 and Section 8.8.2.

8.2. Proof Sketch

For the sake of exposition, we will describe the construction of an SDP in-
tegrality gap for Max Cut. To further simplify matters, we will exhibit an
integrality gap for the basic Goemans-Williamson relaxation, augmented with
the triangle inequalities on every three vectors. While an integrality gap of
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this nature is already part of the work of Khot–Vishnoi [KV05], our proof will
be conceptual and amenable to generalization.

Let Φ be a SDP integrality gap for Unique Games on an alphabet [R]. For
each vertex B in Φ , the SDP solution associates R orthogonal unit vectors
B = {b1, · · · ,bR}. For the sake of clarity, we will refer to a vertex B in Φ and the
set of vectors B = {b1, . . . , bR} associated with it as a “cloud”. The clouds satisfy
the following properties:

– (Matching Property) For every two clouds A,B, there is a unique match-
ing πB←A along which the inner product of vectors between A and B
is maximized. Specifically, if ρ(A,B) = maxa∈A,b∈B〈a,b〉, then for each
vector a in A, we have 〈a,πB←A(a)〉 = ρ(A,B).

– (High objective value) For most edges e = (A,B) in the Unique Games

instance Φ , the maximal matching πA←B is the same as the permutation
πe corresponding to the edge, and ρ(A,B) ≈ 1.

Let Red
Max Cut

(Φ) be the Max Cut instance obtained by executing the reduc-
tion in [KKMO07] on Φ . The reduction Red

Max Cut
in [KKMO07] introduces

a long code (2R vertices indexed by {−1,1}R) for every cloud in Φ . Hence the
vertices of Red

Max Cut
(Φ) are given by pairs (B,x) where B is a cloud in Φ and

x ∈ {−1,1}R.
The SDP vectors we construct for the integrality gap instance resemble

(somewhat simpler in this work) the vectors in [KV05]. Roughly speaking, for
a vertex (B,x), we associate an SDP vector V B,x defined as follows:

V B,x =
1
√
R

∑
i∈[R]

xib
⊗t
i

The point of departure from [KV05] is the proof that the vectors form
a feasible solution for the stronger SDP. Instead of directly showing that
the inequalities hold for the vectors, we exhibit a distribution over integral
assignments whose second moments match the inner products. Specifically, to
show that triangle inequality holds for three vertices S = {(A,x), (B,y), (C,z)},
we will exhibit a µS distribution over {±1} assignments to the three vertices,
such that

E
{YA,x,Y B,y ,Y C,z}∼µS

[Y A,xY B,y] = 〈V A,x,V B,y〉

The existence of an integral distribution matching the inner products shows
that the vectors satisfy all valid inequalities on the three variables, including
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the triangle inequality. We shall construct the distribution µS over local
assignments in three steps,

Local Distributions over Labelings for Unique Games. For a subset of
clouds S within the Unique Games instanceΦ , we will construct a distribution
µS over labelings to the set S . The distribution µS over [R]S will be “consistent”
with the SDP solution to Φ . More precisely, if two clouds A and B are highly
correlated (ρ(A,B) ≈ 1), then when the distribution µS assigns label ` to A,
with high probability it assigns the corresponding label πB←A(`) to B. Recall
that ρ(A,B) was defined as maxa∈A,b∈B〈a,b〉.

Consider a set S where every pair of clouds A,B are highly correlated
(ρ(A,B) > 0.9). We will refer to such a set of clouds as Consistent. For a
Consistent set S ,assigning a label ` for a cloud A in S , forces the label of every
other cloud B to πB←A(`). Furthermore, it is easy to check that the resulting
labeling satisfies consistency for every pair of clouds in S . (see Lemma 8.39
for details) Hence, in this case, the distribution µS could be simply obtained
by picking the label ` for an arbitrary cloud in S uniformly at random, and
assigning every other cloud the induced label.

Now consider a set S which is not consistent. Here the idea is to decompose
the set of clouds S into clusters, such that each cluster is consistent. Given a
decomposition, for each cluster the labeling can be independently generated
as described earlier. In this chapter, we will use a geometric decomposition
to decompose the set of clouds S into clusters. The crucial observation is
that the correlations ρ(A,B) for clouds A,B ∈ S , can be approximated well
by a certain L2

2 metric. More precisely, for each cloud A, we can associate a
unit vector vA =

∑
a∈A a

⊗s such that the L2
2 distance between vA,vB is a good

approximation of the quantity 1− ρ(A,B).
By using t random halfspace cuts on this geometric representation, we

obtain a partition into 2t clusters. A pair of clouds A,B that are not highly
correlated (ρ(A,B) < 1− 1/16), are separated by the halfspaces with probability
at least 1−(3/4)t. Hence for a large enough t, all resulting clusters are consistent
with high probability. (see Lemma 8.42).

A useful feature of the geometric clustering is that for two subsets T ⊂ S , the
distribution over labelings µT is equal to the marginal of the distribution µS
on T . To see this, observe that the distribution over clusterings depends solely
on the geometry of the associated vectors. On the downside, the geometric
clustering produces inconsistent clusters with a very small but non-zero
probability. (see Corollary 8.44).
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The details of the construction of local distributions to Unique Games are
presented in 8.7.

Constructing Approximate Distributions. Fix a set S ⊆ S×{±1}R of vertices
in the Max Cut instance Red

Max Cut
(Φ). We will now describe the construction

of the local integral distribution µS .
In the reduction Red

Max Cut
, the labeling ` to a cloud B in the Unique

Games instance is encoded as choosing the `th dictator cut in the long code
corresponding to cloud B. Specifically, assigning the label ` to a cloud B
should translate into assigning x` for every vertex (B,x) in the long code of B.
Hence, a straightforward approach to define the distribution µS would be the
following:

– Sample a labeling ` : S → [R] from the distribution µS ,

– For every vertex (B,x) ∈ S , assign x`(B).

Although inspired by this, our actual construction of µS is slightly more
involved. First, we make the following additional assumption regarding the
Unique Games instance Φ :

Assumption: All the SDP vectors for the integrality gap instance Φ
are {±1}-vectors (have all their coordinates from {±1}).

The SDP gap instance for Unique Games constructed in [KV05] satisfies this
additional requirement. Furthermore, we outline a generic transformation
to convert an arbitrary Unique Games SDP gap into one that satisfies the
above property (see Observation 8.25). A {±1}-vector is to be thought of as a
distribution over {±1} assignments. It is easy to see that tensored powers of
{±1}-vectors yield {±1}-vectors. Let T denote the number of coordinates in the
vectors V B,x. The distribution µS is defined as follows,

– Sample a labeling ` : S → [R] from the distribution µS , and a coordinate
i ∈ [T ] uniformly at random.

– For every vertex (B,x) ∈ S, assign Y B,x to be the ith coordinate of the
vector x`(B)b

⊗t
`(B).

We will now argue that the first two moments of the local distributions
µS defined above, approximately match the corresponding inner products
between SDP vectors.
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Consider the inner product 〈V A,x,V B,y〉 of the SDP vectors corresponding
to some pair of vertices (A,x) and (B,y) in S. The inner product consists of R2

terms of the form 〈xia⊗ti , yjb
⊗t
j 〉. The crucial observation we will utilize is that

the inner product 〈V A,x,V B,y〉 is approximately determined by the R terms
corresponding to the matching πB←A. In other words, we have

〈V A,x,V B,y〉 ≈ 1
n

∑
`∈[R]

x`yπB←A(`)〈a⊗t` ,b
⊗t
πB←A(`)〉 6 ρ(A,B)t

(see Section 8.4.1 for details)
If ρ(A,B) < 0.9, then with high probability the clustering would place the

clouds A,B in different clusters. Hence the labels assigned to A,B would be
completely independent of each other, and so would the assignments to (A,x)
and (B,y). Hence, we would have E[Y A,xY B,y] = 0. On the other hand, by
the above inequality the inner product 〈V A,x,V B,y〉 6 0.9t ≈ 0. Therefore,
for clouds A,B that are not highly correlated, the inner product of vectors
V A,x,V B,y agree approximately with the distribution over local assignments.

At the other extreme, if ρ(A,B) ≈ 1, then with high probability the clustering
would not separate A from B. If A,B are not separated, then the distribution
µS over labelings will respect the matching between A and B. Specifically,
whenever A is assigned label ` by µS , with high probability B is assigned the
label πB←A(`). Consequently, in this case we have

E
µS

[Y A,xY B,y] = 1
n

∑
`∈[R]

〈x`a⊗t` , yπB←A(`)b
⊗t
πB←A(`)〉 ≈ 〈V

A,x,V B,y〉

Smoothing. In Section 8.9, we show a robustness property for the LHr and
SAr relaxations by which approximately feasible solutions to these hierarchies
can be converted (smoothed) into perfectly feasible solutions with a small loss
in the objective value.

To illustrate the idea behind the robustness, consider a set of unit vectors
{vi}Ri=1 that satisfy all triangle inequalities up to an additive error of ε, i.e.,

‖vi − vj‖2 + ‖vj − vk‖2 − ‖vi − vk‖2 > −ε

We include formal statements of the claims about the robustness of solutions
to LHr and SAr (Theorems 8.11, 8.10) in Section 8.3. We refer the reader to
Section 8.9 for the proofs of these claims.
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Extending to E2Linq. The above argument for Max Cut can be made precise.
However, to obtain an SDP gap for larger number of rounds, we use a slightly
more involved construction of SDP vectors.
{±1}-vectors were natural in the above discussion, since Max Cut is a CSP

over {0,1}. For E2Linq, it is necessary to work with vectors whose coordinates
are from Fq, as opposed to {±1}. The tensoring operation for Fq-integral
vectors is to be appropriately defined to ensure that while the behaviour of
the inner products resemble traditional tensoring, the tensored vectors are
Fq-integral themselves (see Section 8.6 for details).

For the case of Max Cut, we used a gap instance Φ for Unique Games all
of whose SDP vectors where {±1}-vectors. In case of E2Linq, the SDP vectors
corresponding to the Unique Games instance Φ would have to be Fq-integral
vectors. We outline a generic transformation to convert an arbitrary Unique

Games SDP gap into one that satisfies this property (see Observation 8.35).

8.3. Hierarchies of SDP Relaxations

In this section, we define the LHr and SAr hierarchies and formally state their
robustness properties.

8.3.1. LHr-Relaxation

Let I be a CSP (say Unique Games) instance over a set of variables V , alphabet
size q and arity k. A feasible solution to the LHr relaxation consists of the
following:

1. A collection of (local) distributions {µS}S⊆V ,|S |6r , where µS : [q]S →R+ is a
distribution over [q]-assignments to S, that is, µS ∈ ∆([q]S).

2. A (global) vector solution {bi,a}i∈V ,a∈[q], where bi,a ∈Rd for every i ∈ V and
a ∈ [q].
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LHr-Relaxation.

maximize E
P∼P

E
x∼µP

P (x) (LHr)

subject to 〈bi,a,bj,b〉 = P
x∼µS

{
xi = a,xj = b

}
S ⊆ V , |S | 6 r, i, j ∈ S, a,b ∈ [q] ,

(8.1)

µS ∈ ∆
(
[q]S

)
(8.2)

Here, ∆
(
[q]S

)
denotes probability distributions over [q]S . As usual, we denote

by LHr(I) the value of an optimal solution to this relaxation.
The above relaxation succinctly encodes all possible inequalities on up to r

vectors. The next remark makes this observation precise.

Remark 8.7. A linear inequality on the inner products of a subset of vectors
{bi,a}i∈S,a∈[q] for S ⊆ V is valid if it inequality if it holds for all distributions over
[q]-assignments to the variables S. A feasible solution to the LHr-relaxation
satisfies all valid inequalities on sets of up to r vectors.

8.3.2. SAr-Relaxation

Enforcing consistency between the marginals of the local distributions yields
the SAr-relaxation.

SAr-Relaxation:

maximize E
P∼P

E
x∼µP

P (x) (SAr)

subject to 〈bi,a,bj,b〉 = P
x∼µS

{
xi = a,xj = b

}
S ⊆ V , |S | 6 r, i, j ∈ S, a,b ∈ [q] ,

(8.3)∥∥∥marginA∩BµA −marginA∩BµB
∥∥∥

1
= 0 A,B ⊆ V , |A|, |B| 6 r .

(8.4)

µS ∈ ∆
(
[q]S

)
(8.5)

Remark 8.8. The SAr relaxation is closely related to the rth level of the Sherali–
Adams hierarchy. In fact, SAr is obtained from the basic SDP relaxation by
r-rounds Sherali–Adams lift-and-project.
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8.3.3. Robustness

Here we state the formal claims regarding robustness for the hierarchies LHr
and SAr . The proofs are in Section 8.9.

Definition 8.9. An SDP solution {vi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S |6r is said to be ε-
infeasible for LHr (or SAr) if it satisfies all the constraints of the program up to
an additive error of ε.

Theorem 8.10. Given an ε-infeasible solution {bi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S |6r to the
LHr relaxation, there exists a feasible solution {b′i,a}, {µ

′
S}S⊂V ,|S |6r for LHr such that

for all subsets S ⊆ V , |S | 6 r, ‖µS −µ′S‖1 6 poly(q) · r2ε.

Theorem 8.11. Given an ε-infeasible solution {bi,a}i∈V ,a∈Fq , {µS}S⊆V ,|S |6r to the
SAr relaxation, there exists a feasible solution {b′i,a}, {µ

′
S}S⊆V ,|S |6r for SAr such that

for all subsets S ⊆ V , |S | 6 r, ‖µS −µ′S‖1 6 poly(q) · ε · qr .

8.4. Weak Gaps for Unique Games

We refer to an integrality gap instance for a fairly simple SDP relaxation
of Unique Games as a weak gap instance. Formally, a weak gap instance for
Unique games is defined as follows.

Definition 8.12. (Weak SDP solutions and weak gap instances) Let Υ =
(V ,E, {πe : [n]→ [n]}e∈E).We say a collection B = {Bu}u∈V is a weak SDP solution
of value 1− η for Υ if the following conditions hold:

1. (Orthonormality) For every vertex u ∈ V , the collection B contains an
ordered set Bu = {bu,1, . . . , bu,n} of n orthonormal vectors in Rd .

2. (`2
2-triangle inequality) Any two vectors in

⋃
B have non-negative inner

product and any three vectors in
⋃
B satisfy the `2

2-triangle inequality
(‖x − y‖2 6 ‖x − z‖2 + ‖z − y‖2).

3. (Strong Matching Property) For every pair of vertices u,v ∈ V , the sets
Bu and Bv satisfy the following strong matching property: There exists n
disjoint matchings between Bu ,Bv given by bijections π(1), . . . ,π(n) : Bu→
Bv such that for all i ∈ [n],b,b′ ∈ Bu , we have 〈b,π(i)(b)〉 = 〈b′,π(i)(b′)〉 .

4. (High SDP value) For every edge e = (u,v) ∈ E, the vector sets Bu and Bv
have significant correlation under the permutation π = πe. Specifically,
〈bu,`,bv,π(`)〉2 > 0.99 for all ` ∈ [n].
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5. The collection B of orthonormal sets is a good SDP solution for Υ , in the
sense that

E
v∈V

E
w,w′∈N (v)

π=πw,v , π′=πw′ ,v

1
n

∑
`∈[n]

〈bw,π(`),bw′ ,π′(`)〉 > 1− η.

We say that Υ is a weak (1 − η,δ)-gap instance of Unique Games if Υ has a
weak SDP solution of value 1− η and no labeling for Υ satisfies more than a δ
fraction of the constraints.

Remark 8.13. The weak gap instances defined here are fairly natural objects.
In fact, if I is an instance of Γ-Max-2Lin(R) with sdp(I) > 1−η and opt(I) 6 δ,
it is easy to construct a corresponding weak gap instance I′. The idea is to
start with an optimal SDP solution for I, symmetrize it (with respect to the
group Φ), and delete all edges of I that contribute less than

√
3/4 to the SDP

objective.

We observe the following consequence of Fact 8.18 and item 4 of Defini-
tion 8.12.

Observation 8.14. If B = {Bu}u∈V is a weak SDP solution for Φ = (V ,E, {πe}e∈E),
then for any two edges (w,v), (w′,v) ∈ E, the two bijections π = π−1

(w′ ,v) ◦π(w,v) and
πBw′←Bw (see Def. 8.17) give rise to the same matching between the vector sets Bw
and Bw′ ,

π(i) = j ⇐⇒ πBw′←Bw(bw,i) = bw′ ,j .

The previous observation implies that in a weak gap instance Φ the col-
lection of permutations {πe}e∈E is already determined by the geometry of the
vector sets in a weak SDP solution B.

There are a few explicit constructions of weak gap instances of Unique

Games, most prominently the Khot–Vishnoi instance [KV05]. In particular,
the following observation is a restatement of Theorem 9.2 and Theorem 9.3 in
[KV05].

Observation 8.15. For all η,δ > 0, there exists a weak (1−η,δ)-gap instance with
22O(log(1/δ)/η)

vertices.

8.4.1. Properties of Weak Gap Instances

Observation 8.35 implies that without much loss we can assume that a weak
SDP solution is Fq-integral, that is, all vectors are Fq-integral. Here we use
again 〈·, ·〉ψ := 〈ψ(·),ψ(·)〉 as inner product for Fq-integral vectors.
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Lemma 8.16. Let Φ = (V ,E, {πe}e∈E) be a weak (1− η,δ)-gap instance. Then, for
every q ∈N, we can find a weak Fq-integral SDP solution of value 1−O(

√
η logq)

for a Unique Games instance Φ ′ which is obtained from Φ by deleting O(
√
η logq)

edges.

Proof. Let B be a weak SDP solution for Φ of value 1 − η. By applying the
transformation from Observation 8.35 to the vectors in B, we obtain a collec-
tion B′ = {B′u}u∈V of sets of Fq-integral vectors. For every u ∈ V , the vectors in
B′u are orthonormal. Furthermore, any two sets B′u ,B

′
v in B′ satisfy the strong

matching property (using the facts that the original sets Bu ,Bv satisfy this
property and that 〈b′u,i ,b

′
v,j〉ψ is a function of 〈bu,i ,bv,j〉).

Let ηv,w,w′ ,` = 1− 〈bw,π(`),bw′ ,π′(`)〉. Using Jensen’s inequality, we can verify
that the value of the SDP solution B′ is high,

E
v∈V

E
w,w′∈N (v)

π=πw,v , π′=πw′ ,v

1
R

∑
`∈[R]

〈b′w,π(`),b
′
w′ ,π′(`)〉ψ

> E
v∈V

E
w,w′∈N (v)

π=πw,v , π′=πw′ ,v

1
R

∑
`∈[R]

1−O
(√
ηv,w,w′ ,` logq

)
(by Obs. 8.35)

> 1−O(
√
η logq) (using Jensen’s inequality) .

So far, we verified that B′ satisfies all requirements of a weak SDP solution
besides item 4 of Definition 8.12. We can ensure that this condition is also
satisfied by deleting all edges from E where the condition is violated. Using
standard averaging arguments, it is easy to see that the matching property
and the high SDP value imply that this condition is satisfied for all but at
most an O(

√
η logq) fraction of edges.

We will refer to the set of orthonormal vectors associated with a vertex B as
a cloud. In what follows, we identify the vertices B in a weak gap instance with
their corresponding clouds, and thus refer to vertices/clouds interchangeably.

Definition 8.17. For A,B ∈ B, we denote

ρ(A,B) def= max
a∈A,b∈B

|〈a,b〉| .

We define πB←A : A → B to be any1 bijection from A to B such that
|〈a,πB←A(a)〉| = ρ(A,B) for all a ∈ A.

1The matching property asserts that such a matching exists. If it is not unique, we pick an
arbitrary one. We will assume πA→B = π−1

B→A.

132



8. Limits of Semidefinite Relaxations

As a direct consequence of the orthogonality of the clouds in B, we have
the following fact about the uniqueness of πB←A for highly correlated clouds
A,B ∈ B.

Fact 8.18. Let A,B ∈ B. If ρ(A,B)2 > 3/4, then there exists exactly one bijection
π : A→ B such that |〈a,π(a)〉| = ρ(A,B) for all a ∈ A.

Remark 8.19. The collection B succinctly encodes a Unique Games instance.
For a graph G = (B,E) on B, the goal is to find a labeling {`A ∈ A}A∈B (a
labeling can be seen as a system of representatives for the clouds in B) so as
to maximize the probability

P
(A,B)∈E

{
`A = πA←B(`B)

}
.

Tensoring

Lemma 8.20. For t ∈N and every pair of clouds A,B ∈ B,

1
n

∑
a∈A,b∈B
a,πA←B(b)

|〈a,b〉|t 6 2 · (3/4)t/2 .

Proof. By near-orthogonality,
∑
a∈B〈a,b〉2 6 3/2 for every b ∈ B. Hence, 〈a,b〉2 6

3/4 for all a , πA←B(b). Thus,

1
n

∑
a∈A,b∈B
a,πA←B(b)

|〈a,b〉|t 6 (3/4)
t−2
2 · 1

n

∑
a∈A,b∈B

|〈a,b〉|2 6 (3/4)
t−2
2 · 3/2 .

The notation X = Y ±Z means that |X −Y | 6 Z.

Corollary 8.21. For t ∈N and every pair of clouds A,B ∈ B,

1
n

∑
a∈A,b∈B

〈a,b〉t = 1
n

∑
a∈A
〈a,πB←A(a)〉t ± 2 · (3/4)t/2 .

Remark 8.22. The left-hand side in the corollary is the inner product of the
vectors 1/

√
R
∑
u∈Au

⊗t and 1/
√
R
∑
v∈B v

⊗t. If t is even, then we can replace the
right-hand side by ρ(A,B)t. This fact that the functional ρ(A,B)t is closely
approximated by inner products averaged-tensored vectors has implicitly
been used in [KV05] and was explicitly noted in [AKK+08, Lemma 2.2].
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8.5. Integrality Gap Instance for Unique Games

In this section, we will exhibit the construction strong SDP integrality gap
for the E2Linq problem. Recall that the E2Linq problem is a special case of
Unique Games. To this end, we follow the approach of Khot–Vishnoi [KV05]
to construct the gap instance.

Khot et al. [KKMO07] show a UGC-based hardness result for the E2Linq
problem. Specifically, they exhibit a reduction Φγ,q that maps a Unique Games

instance Φ to an E2Linq instance Φγ,q(Φ) such that the following holds: For
every γ > 0 and all q > q0(γ),

Completeness: IfΦ is 1−η-satisfiable thenΦγ,q(Φ) is 1−γ−oη,δ(1) satisfiable.

Soundness: If Φ has no labeling satisfying more than δ-fraction of the con-
straints, then no assignment satisfies more than q−η/2 + oη,δ(1)-fraction
of equations in Φγ,q(Φ).

Here the notation oη,δ(1) refers to any function that tends to 0 whenever η and
δ go to naught. The details of the Φγ,q reduction are included in Figure 8.1 for
the sake of completeness.

The rest of the chapter is devoted to the proof of the following theorem.

Theorem 8.23. Let Φ be a weak (1 − η,δ)-gap instance of Unique Games.
Then, for every q of order unity, there exists an SDP solution for the E2Linq in-
stance Φγ,q(Φ) such that

– the SDP solution is feasible for LHr with r = 2Ω(1/η1/4),

– the SDP solution is feasible for SAr with r =Ω(η1/4),

– the SDP solution has value 1−γ − oη,δ(1) for Φγ,q(Φ).

In particular, the E2Linq instance Φγ,q(Φ) is a (1 − γ − oη,δ(1),q−η/2 + oη,δ(1)))

integrality gap instance for the relaxation LHr for r = 2Ω(1/η1/4). Further, Φγ,q(Φ)
is a (1−γ − oη,δ(1),q−η/2 + oη,δ(1)) integrality gap instance for the relaxation SAr
for r =Ω(1/η1/4).

8.6. Integral Vectors

In this section, we will develop tools to create and manipulate vectors all of
whose coordinates are “integral”.
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E2Linq Hardness Reduction [KKMO07]

Input A Unique Games instance Φ with vertex set V , edge set E ⊆ V ×V (we
assume the graph (V ,E) to be regular), and permutations {πe : [R]→
[R]}e∈E .

Output An E2Linq instance Φγ,q(Φ) with vertex set V = V × FRq . Let
{Fv : FRq → Fq}v∈V denote an Fq-assignment to V . The constraints of
Φγ,q(Φ) are given by the tests performed by the following probabilistic
verifier:

– Pick a random vertex v ∈ V . Choose two random neighbours
w,w′ ∈N (v) ⊆ V . Let π,π′ denote the permutations on the edges
(w,v) and (w′,v).

– Sample x ∈ FRq uniformly at random. Generate y ∈ FRq as follows:

yi =

xi with probability 1−γ
uniform random element from Fq with probability γ

– Generate a uniform random element c ∈ Fq.
– Test if Fw(y ◦ π + c · 1) = Fw′ (x ◦ π′) + c. (Here, x ◦ π denotes the

vector (xπ(i))i∈[R].)

Figure 8.1.: Reduction from Unique Games to E2Linq
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{±1}-integral vectors. We begin by defining our notion of a {±1}-integral
vector.

Definition 8.24. Let R = (Ω,µ) be a probability space. A function u : R→
{±1} is called an {±1}-integral vector. In other words, u is a {±1}-valued random
variable defined on the probability space R. We define an inner product of
functions u,v : R→ {±1} by

〈u,v〉 = E
r∼R

u(r)v(r) .

In our construction, we often start with {±1}-integral vectors given by the
hypercube {±1}R. In the terminology of {±1}-integral vectors, we can think of
the hypercube {±1}R as the set of {±1}-integral vectors where R is the uniform
distribution over {1, . . . ,R}.

The following lemma shows how the Goemans–Williamson [GW95] round-
ing scheme can be thought of as a procedure to “round” arbitrary real vectors
to {±1}-integral vectors.

Observation 8.25. Given a family of unit vectors {v1, . . . ,vR} ∈Rd , define the set
of {±1}-valued functions v∗1, . . . , v

∗
R :R→ {±1} with R = Gd - the Gaussian space of

appropriate dimension as follows:

v∗i (g) = sign(〈vi , g〉)

for g ∈ Gd . The {±1}-valued functions {v∗i } satisfy 〈v∗1,v
∗
2〉 = 2arccos(〈v1,v2〉)/π.

Specifically, this operation obeys the following properties:

〈u,v〉 = 0⇐⇒ 〈u∗,v∗〉 = 0 〈u,v〉 = 1− ε =⇒ 〈u∗,v∗〉 > 1−O(
√
ε)

The tensor product operation on {±1}-integral vectors, yields a {±1}-integral
vector.

Definition 8.26. Given two {±1}-valued functions u :R1→ {±1} and v :R2→
{±1}, the tensor product u ⊗ v : R1 ×R2 → {±1} is defined as u ⊗ v(r1, r2) =
u(r1)v(r2).

Observation 8.27. For u,u′ : R1→ {±1} and v,v′ : R2→ {±1}, we have

〈u ⊗ v,u′ ⊗ v′〉 = E
r1,r2

[u ⊗ v(r1, r2)u′ ⊗ v′(r1, r2)]

= E
r1

[u(r1)u′(r1)]E
r2

[v(r2)v′(r2)] = 〈u,u′〉〈v,v′〉
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Fq-integral vectors. Let q be a prime. Now, we will define Fq-integral
vectors and their tensor products.

Definition 8.28. A Fq-integral vector v : R→ Fq is a function from a measure
space R to Fq. For a Fq-integral vector v : R→ Fq, its symmetrization ṽ : R×
F∗q→ Fq is defined by ṽ(r, t) = t · v(r).

Given a map f : Fq → Cd , we denote by f (v) := f ◦ v the composition of
functions f and v. Here are few examples of functions that will be relevant to
us:

1. The function χ : Fq→ Cq−1 given by

χ(i) def= 1√
q−1

(ω1·i , . . . ,ωj·i , . . . ,ω(q−1)i) ,

where ω is a primitive qth root of unity. The vector χ(i) ∈ Cq−1 is the
restriction of the ith character function of the group Zq to the set F∗q. It
is easy to see that

〈χ(a),χ(b)〉 = E
t∈F∗q

[
ωta ·ω−tb

]
=

1 if a = b ,
− 1
q−1 if a , b .

2. Let ψ0,ψ1, . . . ,ψq−1 denote the corners of the q-ary simplex inRq−1, trans-
lated so that the origin is its geometric center. Define the function
ψ : Fq→Rq−1 as ψ(i) := ψi . Again, the vectors satisfy

〈ψ(a),ψ(b)〉 =

1 if a = b ,
− 1
q−1 if a , b .

Remark 8.29. A Fq-integral vector v ∈ FNq can be thought of as a Fq-valued
function over the measure space ([N ],µ) where µ is the uniform distribution
over [N ].

Remark 8.30. The following notions are equivalent: Collection of Fq-valued
functions on some measure space R ⇐⇒ Collection of jointly-distributed,
Fq-valued random variables⇐⇒ Distribution over Fq-assignments.

For the case of Fq-integral vector, the tensor product operation is to be defined
carefully, in order to mimic the properties of the traditional tensor product.
We will use the following definition for the tensor operation ⊗q.
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Definition 8.31. Given two Fq-valued functions u : R→ Fq and u′ : R′→ Fq,
define the symmetrized tensor product u ⊗q u′ : (R×F∗q)× (R′ ×F∗q)→ Fq as

(u ⊗q u′) (r, t, r ′, t′) def= t ·u(r) + t′ ·u′(r ′) .

Lemma 8.32. For any Fq-valued functions u,v : R→ Fq and u′,v′ : R′→ Fq,

〈ψ(u ⊗q u′),ψ(v ⊗q v′)〉 = 〈ψ(u),ψ(v)〉〈ψ(u′),ψ(v′)〉 .

Proof.

〈ψ(u ⊗q u′),ψ(v′ ⊗q v′)〉
= 〈χ(u ⊗q u′),χ(v′ ⊗q v′)〉 (using 〈ψa,ψb〉 = 〈χ(a),χ(b)〉)

= E
(r,t)

E
(r ′ ,t′)

E
`∈F∗q

ω`tu(r)+`t′u′(r ′) ·ω−`tv(r)−`t′v′(r ′) (by definitions of ⊗q and χ)

= E
`∈F∗q

(
E

(r,t)
ω`tu(r)−`tv(r)

)
·
(
E

(r ′ ,t′)
ω`t

′u′(r ′)−`t′v′(r ′)
)

= E
`∈F∗q

(
E
r
〈χ(`u(r)),χ(`v(r))〉

)
·
(
E
r ′
〈χ(`u′(r ′)),χ(`v′(r ′))〉

)
= E
`∈F∗q
〈χ(`u),χ(`v)〉〈χ(`u′),χ(`v′)〉

= 〈χ(u),χ(v)〉〈χ(u′),χ(v′)〉 (using 〈χ(`a),χ(`b)〉 = 〈χ(a),χ(b)〉 for ` ∈ F∗q)
= 〈ψ(u),ψ(v)〉〈ψ(u′),ψ(v′)〉 (using 〈ψa,ψb〉 = 〈χ(a),χ(b)〉)

Remark 8.33. Unlike the ordinary tensor operation, the q-ary tensor operation
we defined is not associative. Formally, we define the tensoring operation to
be right-associative

u1 ⊗q u2 ⊗q . . .⊗q uk−1 ⊗q uk
def= u1 ⊗q

(
u2 ⊗q

(
. . . (uk−1 ⊗q uk) · · ·

))
.

The lack of associativity will never be an issue in our constructions.

We need the following simple technical observation in one of our proofs.

Observation 8.34. Let u,v : R → Fq be two “symmetric” Fq-integral vectors.
that is, Pr{u(r) − v(r) = a} = Pr{u(r) − v(r) = b} for all a,b ∈ F∗q. Then, for all
a,b ∈ Fq, we have Er〈ψ(a+u(r)),ψ(b+ v(r))〉 = 〈a⊗u,b⊗ v〉.
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We wish to point out that in our applications, the vectors u and v will be
tensor powers. In this case, the symmetry condition is always satisfied.

Proof. Using the symmetry assumption, we see that

P
r∼R,t,t′∈F∗q

{
ta+ t′u(r) = tb+ t′v(r)

}
= P
r∼R,t∈F∗q

{
a− b = t ·

(
v(r)−u(r)

)}
= P
r∼R

{
a− b = v(r)−u(r)

}
(8.6)

If we let ρ denote this probability, then we have 〈a⊗u,b⊗v〉 = ρ− (1−ρ)/(q−1)
(using the left-hand side of Eq. (8.6) as well as Er〈ψ(a+ u(r)),ψ(b + v(r))〉 =
ρ − (1− ρ)/(q − 1) (using the right-hand side of Eq. (8.6)).

The following procedure yields a way to generate Fq-integral vectors from
arbitrary vectors. The transformation is inspired by the rounding scheme for
Unique Games in Charikar et al. [CMM06a].

Observation 8.35. Define the function ζ : Gq→ Fq on the Gaussian domain as
follows:

ζ(x1, . . . ,xq) = argmaxi∈[q]xi (8.7)

Given a family of unit vectors {v1, . . . , vR} ∈ Rd , define the set of Fq-valued func-
tions v∗1, . . . , v

∗
R : R → Fq with R = (Gd)q —the Gaussian space of appropriate

dimension— as follows:

v∗i (g1, . . . , gq) = ζ(〈vi , g1〉, . . . ,〈vi , gq〉)

for g1, . . . , gq ∈ (Gd)q. The Fq-valued functions {v∗i } satisfy,

1. 〈u,v〉 = 0 =⇒ 〈ψ(u∗),ψ(v∗)〉 = 0,

2. 〈u,v〉 = 1− ε =⇒ 〈ψ(u∗),ψ(v∗)〉 = 1− f (ε,q) = 1−O(
√
ε logq).

Proof. To see (1), observe that if 〈u,v〉 = 0, then the sets of random variables
{〈u,g1〉, . . . ,〈u,gq〉} and {〈v,g1〉, . . . ,〈v,gq〉} are completely independent of each
other. Therefore,

〈ψ(u∗),ψ(v∗)〉 = E
r∈Gdq

[
ψ(u∗(r))

]
· E
r∈Gdq

[
ψ(u∗(r))

]
= 0 .

Assertion 2 follows from Lemma C.8 in [CMM06a].
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8.7. Local Distributions for Unique Games

In this section, we will construct local distribution over labelings to a Unique

Games instance.
The following facts are direct consequences of the (symmetrized) `2

2-triangle
inequality.

Fact 8.36. Let a,b,c ∈
⋃
B with |〈a,b〉| = 1 − ηab and |〈b,c〉| = 1 − ηbc. Then,

|〈a,c〉| > 1− ηab − ηbc.

Fact 8.37. Let A,B,C ∈ B with ρ(A,B) = 1 − ηAB and ρ(B,C) = 1 − ηBC . Then,
ρ(A,C) > 1− ηAB − ηBC .

The construction in the proof of the next lemma is closely related to
propagation-style UG algorithms [Tre05, AKK+08].

Definition 8.38. A set S ⊆ B is consistent if

∀A,B ∈ S . ρ(A,B) > 1− 1/16 .

Lemma 8.39. If S ⊆ B is consistent, there exists bijections {πA : [R]→ A}A∈S such
that

∀A,B ∈ S . πB = πB←A ◦πA .

Proof. We can construct the bijections in a greedy fashion: Start with an
arbitrary cloud C ∈ S and choose an arbitrary bijection πC : [R]→ C. For all
other clouds B ∈ S , choose πB := πB←C ◦πC .

Let A,B be two arbitrary clouds in S . Let σA←B := πA ◦ π−1
B . To prove

the lemma, we have to verify that σA←B = πA←B. By construction, σA←B =
πA←C ◦πC←B. Let η = 1/16. Since ρ(A,C) > 1− η and ρ(B,C) > 1− η, we have
|〈b,σA←B(b)〉| > 1−2η for all b ∈ B (using Fact 8.36). Since (1−2η)2 > 1−4η = 3/4,
Fact 8.18 (uniqueness of bijection) implies that σA←B = πA←B.

Hence, for a consistent set of clouds S , the distribution over local Unique

Games labelings µS can be defined easily as follows:

Sample ` ∈ [R] uniformly at random, and for every cloud A ∈ S ,
assign πA(`) as label.

To construct a local distribution for a set S which is not consistent, we par-
tition the set S into consistent clusters. To this end, we make the following
definition:
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Definition 8.40. A set S ⊆ B is consistent with respect to a partition P of B
(denoted Cons(S , P )) if

∀C ∈ P . ∀A,B ∈ C ∩S . ρ(A,B) > 1− 1/16 .

We use Incons(S , P ) to denote the event that S is not consistent with P . The
following is a corollary of Lemma 8.39.

Corollary 8.41. Let P be a partition of B and let S ⊆ B. If Cons(S , P ), then there
exists bijections {πA : [R]→ A | A ∈ S} such that

∀C ∈ P . ∀A,B ∈ C ∩S . πB = πB←A ◦πA .

The following lemma relies on the fact that the correlations ρ(A,B) behave
up to a small errors like inner products of real vectors. In other words, there is
a geometric representation of the correlations ρ(A,B) that can be used for the
decomposition. This insight has also been used in UG algorithms[AKK+08].

Lemma 8.42. For every t ∈ N, there exists a distribution over partitions P of B
such that

– if ρ(A,B) > 1− ε, then

P {P (A) = P (B)} > 1−O(t
√
ε) .

– if ρ(A,B) 6 1− 1/16, then

P {P (A) = P (B)} 6 (3/4)t .

Proof. Let s ∈N be even and large enough (we will determine the value of s
later). For every set B ∈ B, define a vector vB ∈RD with D := ds as

vB := 1√
R

∑
v∈B

v⊗s .

We consider the following distribution over partitions P ofB: Choose t random
hyperplanes H1, . . . ,Ht through the origin in RD . Consider the partition of RD

formed by these hyperplanes. Output the induced partition P of B (two sets
A,B ∈ B are in the same cluster of P if and only if vA and vB are not separated
by any of the hyperplanes H1, . . . ,Ht).
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Since s is even, Corollary 8.21 shows that for any two sets A,B ∈ B,

〈vA,vB〉 = ρ(A,B)s ± 2 · (3/4)−s/2 .

Furthermore, if ρ(A,B) = 1− ε, then

〈vA,vB〉 > (1− ε)s > 1− sε .
Let η = 1/16. We choose s minimally such that (1−η)s+2 ·(3/4)−s/2 6 1/

√
2. (So

s is an absolute constant.) Then for any two sets A,B ∈ B with ρ(A,B) 6 1− η,
their vectors have inner product 〈vA,vB〉 6 1/

√
2. Thus, a random hyperplane

through the origin separates vA and vB with probability at least 1/4. Therefore,

P {P (A) = P (B)} 6 (3/4)t .

On the other hand, if ρ(A,B) = 1− ε, then the vectors of A and B have inner
product 〈vA,vB〉 > 1 − sε. Thus, a random hyperplane through the origins
separates the vectors with probability at most O(

√
ε). Hence,

P {P (A) = P (B)} >
(
1−O(

√
ε)
)t
> 1−O(t

√
ε) .

Remark 8.43. Using a more sophisticated construction, we can improve the
bound 1−O(t

√
ε) to 1−O(

√
tε).

The previous lemma together with a simple union bound imply the next
corollary.

Corollary 8.44. The distribution over partitions from Lemma 8.42 satisfies the
following property: For every set S ⊆ B,

P
{
Incons(S , P )

}
6 |S |2 · (3/4)t

Remark 8.45. Using a slightly more refined argument (triangle inequality),
we could improve the bound r2 · (3/4)t to r · (3/4)t.

8.8. Construction of SDP Solutions for E2LIN(q)

In this section, we construct SDP vectors and local distributions for B×FRq that
form the variables in the Φγ,q(Φ) instance described in Section 8.5. The set
B ×FRq correspond to the set of vertices in the instance obtained by applying a
q-ary long code based reduction on the Unique Games instance encoded by B.
For a vertex (B,x) ∈ B ×FRq , we index the coordinates of x by the elements of B.
Specifically, we have x = (xb)b∈B ∈ FBq .
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Geometric Partitioning. Apply Lemma 8.42 to the collection of sets of vec-
tors B. We obtain a distribution P over partitions P of B into T disjoint subsets
{Pα}Tα=1. For a subset S ⊂ B, let S = {Sα}Tα=1 denote the partition induced on
the set S , that is, Sα := Pα ∩S . For a family B ∈ B, let αB denote the index of
the set PαB in the partition P that contains B.

8.8.1. Vector Solution

For a vertex (B,x) ∈ B × FRq , the corresponding SDP vectors are given by

functions V B,x
j : P × [T ]×R→Rq defined as follows:

W B,x
j (r) = 1√

R

∑
b∈B

ψ
(
xb − j + b⊗t(r)

)
(8.8)

UB,x
j (P ,α,r) = Pα(B) ·W B,x

j (r) (8.9)

V B,x
j = 1

qV0 +
√
q−1
q UB,x

j (8.10)

Here R is the measure space over which the tensored vectors b⊗t are defined.
The notation Pα(B) denotes the 0/1-indicator for the event B ∈ Pα. Further, V0

is a unit vector orthogonal to all the vectors UB,x
j .

Let us evaluate the inner product between two vectors V A,x
i and V

B,y
j , (in

this way, we also clarify the intended measure on the coordinate set)

〈V A,x
i ,V

B,y
j 〉 = 1

q2 + q−1
q2 〈U

A,x
i ,U

B,y
j 〉

= 1
q2 + q−1

q2 E
P∼P

∑T
α=1 Pα(A)Pα(B)〈W A,x

i ,W
B,y
j 〉

= 1
q2 + q−1

q2 P
P∼P
{P (A) = P (B)} 〈W A,x

i ,W
B,y
j 〉 (8.11)

Let us also compute the inner product of W A,x
i and W

B,y
j . Recall the notation

〈u,v〉ψ := 〈ψ(u),ψ(v)〉.

〈W A,x
i ,W

B,y
j 〉 = 1

n

∑
a∈A,b∈B

E
r∼R
〈xa − i + a⊗t(r), yb − j + b⊗t(r)〉ψ

= 1
n

∑
a∈A,b∈B

〈(xa − i)⊗ a⊗t, (yb − j)⊗ b⊗t〉ψ (by Observation 8.34)

= 1
n

∑
a∈A,b∈B

〈ψ(xa − i),ψ(yb − j)〉〈a,b〉tψ (by Lemma 8.32) (8.12)
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8.8.2. Local Distributions

Fix a subset S ⊂ B of size at most r. In this section, we will construct a local
distribution over Fq-assignments for the vertex set S = S ×FRq (see Figure 8.2).
Clearly, the same construction also yields a distribution for a general set of
vertices S ′ ⊂ B ×FRq of size at most r.

Remark 8.46. In the construction in Figure 8.2, the steps 6–7 are not strictly
necessary, but they simplify some of the following calculations. Specifically,
we could use the Fq-assignment {FB,x}(B,x)∈S to define the local distribution
for the vertex set S. The resulting collection of local distributions could be
extended to an approximately feasible SDP solution (albeit using a slightly
different vector solution).

We need the following two simple observations.

Observation 8.47. For all a,b ∈ Fq, we have

P
κ∈Fq

[a+κ = i ∧ b+κ = j] = 1
q2 + q−1

q2 〈ψ(a− i),ψ(b − j)〉 .

Proof. If a− i = b − j then both LHS and RHS are equal to 1/q, otherwise both
are equal to 0.

Observation 8.48. Fix a,b ∈ Fq, over a random choice of h1,h2 ∈ Fq,

E
h1,h2∈Fq

[〈ψ(a+ h1),ψ(b+ h2)〉] = 0 .

Proof. Follows easily from the fact that 〈ψ(i),ψ(j)〉 = 1 if i = j and −1/q−1

otherwise.

The next lemma shows that the second-order correlations of the distribution
µS approximately match the inner products of the vector solution {V A,x

i }.

Lemma 8.49. For any two vertices (A,x), (B,y) ∈ S,

P
Z∼µS

[
ZA,x = i ∧ZB,y = j

]
= 〈V A,x

i ,V
B,y
j 〉 ± 10|S|2(3/4)t/2 .

Proof. Firstly, since P[Cons(S , P )] > 1− |S |2(3/4)t (by Corollary 8.44),

P
µS

[
ZA,x = i ∧ZB,y = j

]
= P
µS

[
ZA,x = i ∧ZB,y = j

∣∣∣ Cons(S , P )
]
± |S |2(3/4)t .

(8.13)
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For S = S ×FRq , the local distribution µS over assignments FSq is defined by
the following sampling procedure:
Partitioning:

1. Sample a partition P = {Pα}Tα=1 of B from the distribution P obtained
by Lemma 8.42. Let αA,αB denote the indices of sets in the partition P
that contain A,B ∈ S respectively.

2. If Incons(S , P ) then output a uniform random Fq-assignment to S =
S ×FRq . Specifically, set

Z(B,x) = uniform random element from Fq ∀B ∈ S ,x ∈ FRq .

Choosing Consistent Representatives:

4. If Cons(S , P ) then by Corollary 8.41, for every part Sα = Pα ∩S , there
exists bijections ΠSα = {πB : [R]→ B | B ∈ Sα} such that for every A,B ∈
Sα,

πA = πA←B ◦πB .

5. Sample L = {`α}Tα=1 by choosing each `α uniformly at random from [R].
For every cloud B ∈ S , define `B = `αB . The choice of L determines a set
of representatives for each B ∈ S . Specifically, the representative of B is
fixed to be πB(`B).

Sampling Assignments:

5. Sample r ∈ R from the corresponding probability measure and assign
FB,x(P ,L, r) = xπB(`B) +πB(`B)⊗t(r) .

6. Sample H = {hα}Tα=1 by choosing each hα uniformly at random from [q].
For every cloud B ∈ B, define hB = hαB .

7. Sample κ uniformly at random from [q].

8. For each B ∈ Sα and x ∈ FRq , set

ZB,x(P ,L, r,H,κ) = FB,x(P ,L, r) + hB +κ .

9. Output the Fq-assignment {ZB,x}(B,x)∈S .

Figure 8.2.: Local distribution over Fq-assignments
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Using Observation 8.47, and the definition of ZA,x and ZB,y we can write

P
µS

[
ZA,x = i ∧ZB,y = j

∣∣∣ Cons(S , P )
]

= 1
q2 + q−1

q2 E
P ,H,L,r

[
〈ψ(FA,x + hA − i),ψ(FB,y + hB − j)〉

∣∣∣ Cons(S , P )
]
. (8.14)

IfA,B fall in the same set in the partition P (that is αA = αB), then we have hA =
hB. If A,B fall in different sets (that is αA , αB), then hA,hB are independent
random variables uniformly distributed over Fq. Using Observation 8.48, we
can write

E
P ,H,L,r

[
〈ψ(FA,x + hA − i),ψ(FB,y + hB − j)〉

∣∣∣∣ Cons(S , P )
]

= E
P ,L,r

[
1(αA = αB)〈ψ(FA,x − i),ψ(FB,y − j)〉

∣∣∣∣ Cons(S , P )
]
. (8.15)

Let P be a partition such that Cons(S , P ) and αA = αB = α. The bijections
πA,πB (see step 4 Figure 8.2) satisfy πA = πA←B ◦ πB. Note that therefore
a = πA←B(b) whenever a = πA(`) and b = πB(`) for some ` ∈ [R]. Hence,

E
L
E
r

[
〈ψ(FA,x(P ,L, r)− i),ψ(FB,y(P ,L, r)− j)〉

]
= E
`α
E
r

[
〈ψ(xπA(`α) − i +πA(`α)⊗t(r)),ψ(yπB(`α) − j +πB(`α)⊗t(r))〉

]
= 1
R

∑
a∈A,b∈B
a=πA←B(b)

E
r
〈ψ(xa − i + a⊗t(r)),ψ(yb − j + b⊗t(r))〉 (using πA = πA←B ◦πB)

= 1
R

∑
a∈A,b∈B
a=πA←B(b)

〈ψ(xa − i),ψ(yb − j)〉 · 〈a,b〉tψ (using Observation 8.34 and Lemma 8.32)

= 〈W A,x
i ,W

B,y
j 〉 ± 2 · (3/4)t/2 (using Eq. (8.12) and Lemma 8.20) .

Combining the last equation with the previous equations (8.13)–(8.15), we
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can finish the proof

P
µS

[
ZA,x = i ∧ZB,y = j

]
= 1
q2 + q−1

q2 E
P

[
1(αA = αB)

∣∣∣∣ Cons(S , P )
]
〈W A,x

i ,W
B,y
j 〉 ± (|S |2(3/4)t + 2 · (3/4)t/2)

= 1
q2 + q−1

q2 P
P

[
P (A) = P (B)

]
· 〈W A,x

i ,W
B,y
j 〉 ± 10|S|2(3/4)t/2

(using P {Cons(S , P )} > 1− |S |2(3/4)t and |〈W A,x
i ,W

B,y
j 〉| 6 1)

= 〈V A,x
i ,V

B,y
j 〉 ± 10|S|2(3/4)t/2 (using Eq. (8.11)) .

Lemma 8.50. Let S ′ ⊂ S be two subsets of B and let S ′ = S ′ ×FRq and S = S ×FRq .
Then,

‖µS ′ −marginS ′ S‖1 6 2|S|2(3/4)t .

Proof. For a partition P ∈ P , let µS |P denote the distribution µS conditioned
on the choice of partition P . Firstly, we will show the following claim:

Claim 8.51. If Cons(S ′, P ) and Cons(S , P ), then µS ′ |P = marginS ′ µS |P .

Proof. Let {Sα} and {S ′α} denote the partitions induced by P on the sets S
and S ′ respectively. Since S ′ ⊆ S , we have S ′α ⊆ Sα for all α ∈ [T ]. By our
assumption, each of the sets S ′α are consistent in that ρ(A,B) > 1− 1/16 for all
A,B ∈ S ′α. Similarly, the sets Sα are also consistent.

Let us consider the pair of sets S ′α ⊂ Sα for some α ∈ [T ]. Intuitively, the
vectors within these sets fall into R distinct clusters. Thus the distribution over
the choice of consistent representatives are the same in µS ′ |P and marginS ′ µS |P .
Formally, we have two sets of bijections ΠS ′α = {π′A | A ∈ S

′
α} and ΠSα = {πA |

A ∈ Sα} satisfying the following property:

πA→B ◦π′A(`) = π′B(`) πA→B ◦πA(`) = πB(`) ∀A,B ∈ S ′α, ` ∈ [R] .

Fix a collection A ∈ S ′α. Let ∼ denote that two sets of random variables are
identically distributed.

{π′B(`α) | B ∈ S ′α} ∼ {πA→B ◦π′A(`α) | B ∈ S ′α}
∼ {πA→B(a) | B ∈ S ′α, a is uniformly random in A}
∼ {πA→B ◦πA(`α) | B ∈ S ′α} ∼ {πB(`α) | B ∈ S ′α} .
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The variables L = {`α} are independent of each other. Therefore,

{π′B(`B) | B ∈ S ′} ∼ {πB(`B) | B ∈ S ′} .

Notice that the choice of r ∈ R, H and κ are independent of the set S . Hence,
the final assignments {ZB,x | B ∈ S ′,x ∈ FRq } are identically distributed in both
cases.

Returning to the proof of Lemma 8.50, we can write

‖µS ′ −marginS ′ µS‖1 =
∥∥∥∥∥EP µS ′ |P −EP marginS ′ µS |P

∥∥∥∥∥
1

6 E
P

[
‖µS ′ |P −marginS ′ µS |P ‖1

]
(using Jensen’s inequality)

= P[Incons(S , P )] ·E
P

[
‖µS ′ |P −marginS ′ µS |P ‖1

∣∣∣ Incons(S , P )
]
.

The first step uses that the operator marginS ′ is linear. The final step in the
above calculation makes use of Claim 8.51. The lemma follows by observing
that P[Incons(S , P )] 6 |S|2(3/4)t and ‖µS ′ |P −marginS ′ µS |P ‖1 6 2.

The next corollary follows from the previous lemma (Lemma 8.50) and the
triangle inequality.

Corollary 8.52. Let S ,S ′ be two subsets of B and let S ′ = S ′ ×FRq and S = S ×FRq .
Then,

‖marginS∩S ′ µS −marginS∩S ′ µS ′‖1 6 4max
(
|S|2, |S ′ |2

)
(3/4)t .

Proof. Suppose Φ is given by the vertex set V , the edge set E ⊆ V × V , and
the collection of permutations {πe}e∈E . Using Lemma 8.16, we obtain a weak
Fq-integral SDP solution B = {Bu}u∈V of value 1−O(

√
η logq) for Φ .

We construct a vector solution {V B,x
i | i ∈ Fq,B ∈ B,x ∈ FRq } and local distri-

butions {µS | S ⊆ B ×FRq } as defined in Section (Section 8.8).
Note that since each set B ∈ B correspond to a vertices in u ∈ V , we can

view these vectors and local distributions as an SDP solution for the E2Linq
instance Φγ,q(Φ). Specifically, we make the identifications V u,x

i := V
Bu ,x
i and

µS := µ{(Bu ,x)|(u,x)∈S} for all u ∈ V , x ∈ FRq , and sets S ⊆ V ×FRq .
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Lemma 8.49 and Corollary 8.52 show that this SDP solution is ε-infeasible
for SAr and LHr , where ε = O(r2 · (3/4)t/2). The value of the SDP solution for
Φγ,q(Φ) (see Fig. 8.1) is given by

E
v∈V

E
w,w′∈N (v)

π=πw,v , π′=πw′ ,v

E
{x,y}

E
c∈Fq

q∑
i=1

〈V w,(x◦π+c·1)
i ,V

w′ , y◦π′
i−c 〉 .

Using Eq. (8.11)–(8.12),

〈V w,(x◦π+c·1)
i ,V

w′ , y◦π′
i−c 〉

= 1
q2 + q−1

q2 P
P∼P

[P (Bw) = P (Bw′ )] · 1
n

∑
`,`′∈[R]

〈ψ(xπ(`) + c − i),ψ(yπ′(`′) − (i − c))〉〈bw,`,bw′ ,`′〉tψ .

Note that 〈ψ(xπ(`) + c − i),ψ(yπ′(`′) − (i − c))〉 = 〈ψ(xπ(`),ψ(yπ′(`′))〉. Using Obser-
vation 8.14, we have π(w,v)(`) = π(w′ ,v)(`′) if and only if ` = πBw←Bw′ (`

′). Hence,
by Lemma 8.20,

1
n

∑
`,`′∈[R]

〈ψ(xπ(`)),ψ(yπ′(`′))〉〈bw,`,bw′ ,`′〉tψ

= 1
n

∑
`

〈ψ(xπ(`)),ψ(yπ(`))〉〈bw,π(`),bw′ ,π(`)〉tψ ± 2 · r2(3/4)t/2

= 1
n

∑
`

〈ψ(x`),ψ(y`)〉ρ(Bw,Bw′ )
t ±O(ε) .

Note that the distribution of {x,y} is independent of the vertices v,w,w′, and

E
{x,y}

1
R

∑
`∈[R]

〈ψ(x`),ψ(y`)〉 = 1−γ .

Therefore, if we let ηw,w′ = ρ(Bw,Bw′ ), we can lower bound the value of the
SDP solution as follows

E
v∈V

E
w,w′∈N (v)

π=πw,v , π′=πw′ ,v

E
{x,y}

E
c∈Fq

q∑
i=1

〈V w,(x◦π+c·1)
i ,V

w′ , y◦π′
i−c 〉

= E
v∈V

E
w,w′∈N (v)

[
1
q2 + q−1

q2 P
P∼P

[P (Bw) = P (Bw′ )] · q · ρ(Bw,Bw′ )
t(1−γ)

]
±O(ε)

> (1−γ) E
v∈V

E
w,w′∈N (v)

P
P∼P

[P (Bw) = P (Bw′ )]ρ(Bw,Bw′ )
t ±O(ε)

> (1−γ) E
v∈V

E
w,w′∈N (v)

(1−O(t
√
ηw,w′ )) ±O(ε) (using Lemma 8.42)
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Using Jensen’s inequality and the fact that Ev,w,w′ ηv,w,w′ = O(
√
η logq)

(Lemma 8.16), we see that the the value of our SDP solution is at least
1−γ −O(ε+ tη1/4) (recall that we assume q to be constant).

On smoothing the SDP solution using Theorem 8.10, we lose O(r2ε) =
O(r4(3/4)t) in the SDP value. Thus we can set t = o(η−1/4) and r = (3/4)t/10 in
order to get a feasible SDP solution for LHr with value 1−γ − oη,δ(1).

On smoothing the SDP solution using Theorem 8.11, we lose O(qrε) =
O(qr(3/4)t) in the SDP value. Thus we can set, t = o(η−1/4) and r = t/ log2 q, we
would get a feasible SDP solution for SAr with value 1−γ − oη,δ(1).

Proof of Theorems 8.1–8.2.. Using Theorem 8.23 with the Khot–Vishnoi
integrality gap instance (Lemma 8.15), we have N = 22log(1/δ)/η

and thus r =
2O((loglogN )1/4). Similarly for SAr , we get r =O((loglogN )1/4).

8.9. Smoothing

Let Σ be a finite alphabet of size q. Let {χ1, . . . ,χq} be an orthonormal basis for
the vector space {f : Σ→R} such that χ1(a) = 1 for all a ∈ Σ. (Here, orthonor-
mal means Ea∈Σχi(a)χj(a) = δij for all i, j ∈ [q].) For R ∈N, let

{
χσ | σ ∈ [q]R

}
be the orthonormal basis of the vector space

{
f : ΣR→R

}
defined by

χσ (x) def= χσ1
(x1) · · · · ·χσR(xR) , (8.16)

where σ = (σ1, . . . ,σR) ∈ [q]R and x = (x1, . . . ,xR) ∈ ΣR.
For a function f : ΣR→R, we denote

f̂ (σ ) def=
∑
x∈ΣR

f (x)χσ (x) . (8.17)

Using the fact Eσ∈[q]R χσ (x)χσ (y) = δxy for all x,y ∈ ΣR, we see that

f = E
σ∈[q]R

f̂ (σ )χσ .

We define the following norm for functions f̂ : [q]R→R,

‖f̂ ‖1
def=

∑
σ∈[q]R

|f̂ (σ )| .
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We say f : ΣR→R is a distribution if f (x) > 0 for all x ∈ ΣR and
∑
x∈ΣR f (x) = 1.

We define
K

def= max
σ∈[q]R,x∈ΣR

|χσ (x)| .

In the next lemma, we give a proof of the following intuitive fact: If a
function g : ΣR→R satisfies the normalization constraint

∑
x∈ΣR g(x) = 1 and

it is close to a distribution in the sense that there exists a distribution f such
that ‖f̂ − ĝ‖ is small, then g can be made to a distribution by “smoothing” it.
Here, smoothing means to move slightly towards the uniform distribution
(where every assignment has probability q−R).

Lemma 8.53. Let f ,g : ΣR→R be two functions with f̂ (1) = ĝ(1) = 1. Suppose
f is a distribution. Then, the following function is also a distribution

(1− ε)g + εq−R whereε = ‖f̂ − ĝ‖1 ·K .

Proof. It is clear that the function h = (1− ε)g + εq−R satisfies the constraint
ĥ(1) = 1. For every x ∈ ΣR, we have

h(x) = (1− ε)g(x) + εq−R

> (1− ε)
(
g(x)− f (x)

)
+ εq−R (using f (x) > 0)

= εq−R + (1− ε) E
σ∈[q]R

(
ĝ(σ )− f̂ (σ )

)
χσ (x)

> εq−R − (1− ε) E
σ∈[q]R

∣∣∣∣ĝ(σ )− f̂ (σ )
∣∣∣∣ ·K

= εq−R − (1− ε)K‖f̂ − ĝ‖1 · q−R

> 0 . (by our choice of ε)

Let V be a set. For a function f : ΣV →R and a subset S ⊆ V , we define the
function marginS f : ΣS →R as

marginS f (x) def=
∑

y∈ΣV \S
f (x,y) .

Note that if f is a distribution over Σ-assignments to V then marginS f is its
marginal distribution over Σ-assignments to T .
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Lemma 8.54. For every f : ΣV →R and S ⊆ V ,

marginS f = E
σ∈[q]S

f̂ (σ,1)χσ .

Here, σ,1 denotes the Σ-assignment to V that agrees with σ on S and assigns 1 to
all variables in V \ S.

Proof.

marginS f (x) =
∑

y∈ΣV \S
f (x,y)

=
∑

y∈ΣV \S
E

σ∈[q]V
f̂ (σ )χσ (x,y)

=
∑

y∈ΣV \S
E

σ∈[q]S
E

σ ′∈[q]V \S
f̂ (σ )χσ (x)χσ ′ (y)

= E
σ∈[q]S

E
σ ′∈[q]V \S

f̂ (σ,σ ′)χσ (x) ·
∑

y∈ΣV \S
χσ ′ (y)

= E
σ∈[q]S

f̂ (σ,1)χσ (x) . (using
∑
y∈[q]V \S χσ ′ (y) = 0 for σ ′ , 1.)

The margin operator has the following useful property (which is clear from
its definiton).

Lemma 8.55. For every function f : ΣV →R and any sets T ⊆ S ⊆ V ,

marginT marginS f = marginT f .

Lemma 8.56. Let V be a set and let
{
µS : ΣS →R | S ⊆ V , |S | 6 R

}
be a collection

of distributions. Suppose that for all sets A,B ⊆ V with |A|, |B| 6 R,

‖marginA∩BµA −marginA∩BµB‖1 6 η .

Then, there exists a collection of distributions
{
µ′S : ΣS →R | S ⊆ V , |S | 6 R

}
such

that

– for all A,B ⊆ V with |A|, |B| 6 R,

marginA∩Bµ
′
A = marginA∩Bµ

′
B .
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– for all S ⊆ V with |S | 6 R,

‖µ′S −µS‖1 6O(ηqRK2) ,

The previous lemma is not enough to establish the robustness of our SDP
relaxations. The issue is that we not only require that the distributions are
consistent among themselves but they should also also be consistent with the
SDP vectors.

The following lemma allows us to deal with this issue.

Lemma 8.57. Let V be a set and let
{
µS : ΣS →R | S ⊆ V , |S | 6 R

}
be a collection

of distributions. Suppose that

– for all sets A,B ⊆ V with |A|, |B| 6 R,

‖marginA∩BµA −marginA∩BµB‖1 6 η .

– for all sets A,B ⊆ V with |A|, |B| 6 2,

marginA∩BµA = marginA∩BµB .

Then, for ε > qRK2η, there exists a collection of distributions{
µ′S : ΣS →R | S ⊆ V , |S | 6 R

}
such that

– for all A,B ⊆ V with |A|, |B| 6 R,

marginA∩Bµ
′
A = marginA∩Bµ

′
B . (8.18)

– for all S ⊆ V with |S | 6 R,

‖µ′S −µS‖1 6O(K2ηqR) , (8.19)

– for all S ⊆ V with |S | 6 2,

µ′S = (1− ε)µS + ε · q−|S | . (8.20)

Proof. For σ ∈ [q]V , let supp(σ ) denote the set of coordinates of σ not equal to
1, and let |σ | denote the number of such coordinates,

supp(σ ) def= {i ∈ V | σi , 1} and |σ | def= |supp(σ )| .
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For every σ ∈ [q]V with |σ | 6 R, we define

f̂ (σ ) := E
x∼µS

χσ (x) whereS = supp(σ ) .

For every σ with |σ | > R, we set f̂ (σ ) := 0. We define µ′S in terms of f =
Eσ f̂ (σ )χσ ,

µ′S := marginS (1− ε)f + εq−|V | .

By Lemma 8.55, this choice of µ′S satisfies condition (8.18).
First, let us argue that the functions µ′S are distributions. Let S ⊆ V with
|S | 6 R. For σ ∈ [q]S with T := supp(σ ) ⊆ S, we have

|f̂ (σ,1)− E
x∼µS

χσ (x)| = | E
x∼µT

χσ (x)− E
x∼µS

χσ (x)|

6 ‖µT −marginT µS‖1 ·max|χσ |
6 η ·K . (8.21)

Let fS denote the function marginS f . By Lemma 8.54, f̂S(σ ) = f̂ (σ,1) for all
σ ∈ [q]S . Hence, ‖f̂ − µ̂S‖1 6 qR ·Kη. It follows that for ε > qRK2η, the function
µ′S = (1− ε)fS + εq−|S | is a distribution (using Lemma 8.53).

Next, let us verify that (8.19) holds. We have

‖µ′S −µS‖1 6O(ε) + ‖marginS f −µS‖1
La. 8.54= O(ε) +

∥∥∥∥∥∥ E
σ∈[k]S

(
f̂ (σ,1)− E

x∼µS
χσ (x)

)
χσ

∥∥∥∥∥∥
1

(8.21)
6 O

(
ηK2 · kR

)
(using |f̂ (σ,1)− µ̂S(σ )| 6 ηK and |χσ (x)| 6 K) .

Finally, we show that the new distributions satisfy (8.20). Let S ⊆ V be a
set of size at most 2. It follows from the consistency assumption that for all
σ ∈ [k]S , we have f̂ (σ,1) = µ̂S(σ ). Hence, fS = µS , which implies (8.20).

Lemma 8.58. Let V be a set and let
{
µS : ΣS →R | S ⊆ V , |S | 6 R

}
be a collection

of distributions. Suppose that

– for all sets A,B ⊆ V with |A|, |B| 6 R,

‖marginA∩BµA −marginA∩BµB‖1 6 η .
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– for all sets A,B ⊆ V with |A|, |B| 6 2,

marginA∩BµA = marginA∩BµB .

Then, for ε > kR2K2η, there exists a collection of distributions{
µ′S : ΣS →R | S ⊆ V , |S | 6 R

}
such that

– for all A,B ⊆ V with |A|, |B| 6 R with |A∩B| 6 2,

marginA∩Bµ
′
A = marginA∩Bµ

′
B . (8.22)

– for all S ⊆ V with |S | 6 R,

‖µ′S −µS‖1 6O(K2ηkR2) , (8.23)

– for all S ⊆ V with |S | 6 2,

µ′S = (1− ε)µS + ε · k−|S | . (8.24)

Proof. The proof is along the lines of the proof of the previous lemma.
Define f̂ : [k]R→ R as before. We define new functions {µ∗S : ΣS → R | S ⊆

V , |S | 6 R} such that

µ̂∗S(σ ) =


µ̂S(σ ) if supp(σ ) > 2,
f̂ (σ,1) if 1 6 supp(σ ) 6 2,
1 otherwise.

Since |f̂ (σ,1) − µ̂S(σ )| 6 Kη (see proof of previous lemma), we can upper
bound ‖µ̂∗S − µ̂S‖1 6 kR

2 ·Kη (there are not more than kR2 different σ ∈ [k]S

with f̂ (σ,1) , µ̂S(σ ). By Lemma 8.53, for ε > kR2K2η, the functions {µ′S : ΣS →
R | S ⊆ V , |S | 6 R} defined by µ′S := (1−ε)µ∗S+εk−|S | are the desired distributions.
We can check that the assertions of the lemma are satisfied in the same way as
for the proof of the previous lemma.

Proofs of Theorem 8.10 and Theorem 8.11 (Sketch). We apply Lemma 8.58 or
Lemma 8.57 to the local distributions {µS} of the ε-infeasible LHR or SAR
solution, respectively. We get a new set of local distributions {µ′S} that have the
desired consistency properties. It remains to change the vectors so that their
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8. Limits of Semidefinite Relaxations

inner product match the corresponding probabilities in the local distribu-
tions. Suppose {vi,a} is the original vector assignment. Let {ui,a} be the vector
assignment that corresponds to the uniform distribution over all possible
assignments to the variables (this vector assignment is the geometric center of
the set of all vector assignments). Then, we define the new vector assignment
{v′i,a} as

v′i,a =
√

1− δ ·vi,a ⊕
√
δui,a ,

where δ is the smoothing parameter in Lemma 8.58 or Lemma 8.57. It is easy
to verify that {v′i,a} together with {µ′S} form a feasible LHR or SAR solution.

8.10. Notes

The material presented in this chapter is based on the paper “Integrality Gaps
for Strong SDP Relaxations of Unique Games” [RS09a], joint with Prasad
Raghavendra. A preliminary version appeared at FOCS 2009.

Related Work

In a breakthrough result, Arora et al. [ARV04] used a strong semidefinite
program with triangle inequalities to obtain O(

√
logn) approximation for the

Sparsest Cut problem. Inspired by this work, stronger semidefinite programs
have been utilized to obtain better approximation algorithms for certain graph
coloring problems [Chl07, ACC06, CS08]. We wish to point out that the work
of Chlamtac and Singh [CS08] uses the SAr hierarchy to obtain approximation
algorithms for the hypergraph coloring problem.

In this light, hierarchies of stronger SDP relaxations such as Lovász–Schriver
[LS91], Lasserre [Las01], and Sherali–Adams hierarchies [SA90] (See [Lau03]
for a comparison) have emerged as possible avenues to obtain better approxi-
mation ratios.

Considerable progress has been made in understanding the limits of linear
programming hierarchies. Building on a sequence of works [ABL02, ABLT06,
Tou05, Tou06], Schoenebeck et al. [STT07a] obtained a 2− ε-factor integrality
gap for Ω(n) rounds of Lovász–Schriver LS hierarchy. More recently, Charikar
et al. [CMM09] constructed integrality gaps for Ω(nδ) rounds of Sherali–
Adams hierarchy for several problems like Max Cut, Vertex Cover, Sparsest
Cut and Maximum Acyclic Subgraph. Furthermore, the same work also
exhibits Ω(nδ)-round Sherali–Adams integrality gap for Unique Games, in
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8. Limits of Semidefinite Relaxations

turn obtaining a corresponding gap for every problem to which Unique Games

is reduced to.
Lower bound results of this nature are fewer in the case of semidefinite pro-

grams. A Ω(n) LS+ round lower bound for proving unsatisfiability of random
3-SAT formulae was obtained in [BOGH+06, AAT05]. In turn, this leads to
Ω(n)-round LS+ integrality gaps for problems like Set Cover, Hypergraph

Vertex Cover where a matching NP-hardness result is known. Similarly, the
7
6-integrality gap for Ω(n) rounds of LS+ in [STT07b] falls in a regime where a
matching NP-hardness result has been shown to hold. A significant exception
is the result of Georgiou et al. [GMPT07] that exhibited a 2 − ε-integrality

gap for Ω
(√

logn
loglogn

)
rounds of LS+ hierarchy. More recently, building on the

beautiful work of [Sch08] on Lasserre integrality gaps for Random 3-SAT,
Tulsiani [Tul09] obtained a Ω(n)-round Lasserre integrality gap matching the
corresponding UG-hardness for k-CSP [ST06].
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9. Open Problems

Number of Large Eigenvalues versus Small-Set Expansion. Consider the
following hypothesis.

Hypothesis 9.1. There exists an absolute constant ε0 > 0 such that for every
constant δ > 0, there exists a function f : N→N with f (n) 6 no(1) such that every
graph with n vertices and at least f (n) eigenvalues larger than 1− ε0 contains a
vertex set with volume δ and expansion at most 1− ε0.

The results in Section 5.2 (Subspace Enumeration), e.g. Theorem 5.7, demon-
strate that this hypothesis implies that the Small-Set Expansion Hypothesis is
false (assuming that NP does not exp(no(1))-time algorithms).

The graphs that come closest to refuting Hypothesis 9.1 are Boolean noise
graph (which are important tools for UG-hardness reductions). There exists
(Boolean noise) graphs with n vertices and polylogn eigenvalues larger than
1 − 1/ loglogn, but no set with volume O(1/ logn) and expansion less than
1/2. These graphs demonstrate that even if Hypothesis 9.1 were true, the
function f (n) in the hypothesis must be larger than polylogn.

We conclude that a resolution of Hypothesis 9.1 would either lead to an
algorithm refuting the Small-Set Expansion Hypothesis or it would lead to a
family of graphs with “better properties” (in the sense above) than Boolean
noise graphs. Such a family of graphs could potentially lead to more efficient
hardness reductions or improved integrality gap constructions.

Subexponential Algorithm for Sparsest Cut. An interesting question
raised by the subexponential algorithms for Small-Set Expansion and Unique

Games (see Chapter 5) is whether similar subexponential algorithms exists
for other problems that are SSE-hard or UG-hard. Concretely, we can ask
if for every constant ε > 0, there exists an algorithm for Sparsest Cut with
constant approximation ratio C = C(ε) and running time exp(nε). A positive
resolution of the following conjecture would imply such an algorithm. (We
omit the proof at this point. It follows from extensions of the results presented
in Section 5.2, techniques in [ARV09], and an alternative characterization of
the threshold rank of a graph.)
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9. Open Problems

Conjecture 9.2. For every ε > 0, there exists positive constants η = η(ε) and δ =
δ(ε) such that the following holds: For every collection of unit vectors v1, . . . , vn ∈
Rn with Ei,j∈[n]

∣∣∣〈vi ,vj〉∣∣∣ 6 n−ε, there exists two sets S,T ⊆ {1, . . . ,n} with |S |, |T | >
δn and ‖vi − vj‖2 > η for all i ∈ S and j ∈ T .

In words, the conjecture says that if the global correlation Ei,j |〈vi ,vj〉| of a
collection of unit vectors v1, . . . , vn ∈Rn is polynomially small (6 n−ε), then an
Ωε(1) fraction of the vectors is Ωε(1)-separated from another Ωε(1) fraction
of the vectors. (An alternative formulation is that the graph formed by joining
any two vectors with distance η = η(ε) > 0 is not a good vertex expander.)

The configuration of vectors that comes closest to refuting Conjecture 9.2
is the Ω(

√
d)-fold tensored Boolean hypercube {±1/

√
d}d . Here, one can show

that any two subsets containing an Ω(1) fraction of the vectors are not Ω(1)
separated (using the vertex expansion of the usual graph defined on Boolean
hypercube). However, the global correlation of this configuration is at least

2−Õ(
√

logn ), which is not polynomially small.
Resolving Conjecture 9.2 would either lead to an interesting algorithm for

Sparsest Cut or to a family of geometric graphs with “nicer properties” (in
the sense above) than the Boolean hypercube.
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