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Abstract

We obtain the first polynomial-time algorithm for exact tensor completion that
improves over the bound implied by reduction to matrix completion. The algorithm
recovers an unknown 3-tensor with r incoherent, orthogonal components in �n from
r · Õ(n1.5) randomly observed entries of the tensor. This bound improves over the
previous best one of r · Õ(n2) by reduction to exact matrix completion. Our bound
also matches the best known results for the easier problem of approximate tensor
completion (Barak & Moitra, 2015).

Our algorithm and analysis extends seminal results for exact matrix completion
(Candes & Recht, 2009) to the tensor setting via the sum-of-squares method. The main
technical challenge is to show that a small number of randomly chosen monomials are
enough to construct a degree-3 polynomial with a precisely planted orthogonal global
optima over the sphere and that this fact can be certified within the sum-of-squares
proof system.
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1 Introduction
A basic task in machine learning and signal processing is to infer missing data from a small
number of observations about the data. An important example is matrix completiton which
asks to recover an unknown low-rankmatrix from a small number of observed entries. This
problem has many interesting applications—one of the prominent original motivations
was the Netflix Prize that sought improved algorithms for predicting user ratings for
movies from a small number of user-provided ratings. After an extensive research effort
[CR09, CT10, KMO09, SS05], efficient algorithms with almost optimal, provable recovery
guarantees have been obtained: In order to efficiently recover an unknown incoherent
n-by-n matrix of rank r it is enough to observe r · Õ(n) random entries of the matrix
[Gro11, Rec11]. One of the remaining challenges is to obtain algorithm for the more general
and much less understood tensor completion problem where the observations do not just
consist of pairwise correlations but also higher-order ones.

Algorithms and analyses for matrix and tensor completion come in three flavors:
1. algorithms analyzed by statistical learning tools like Rademacher complexity [SS05,

BM16].
2. iterative algorithms like alternating minimization [JNS13, Har14, HW14].
3. algorithms analyzed by constructing dual certificates for convex programming

relaxations [CR09, Gro11, Rec11].
While each of these flavors have different benefits, typically only algorithms of the third
flavor achieve exact recovery. (The only exception of this rule we are aware of is a recent
fast algorithm for matrix completion [JN15].) For all other algorithms, the analysis exhibits
a trade-off between reconstruction error and the required number of observations (even
when there is no noise in the input).1

In this work, we obtain the first algorithm for exact tensor completion that improves
over the bounds implied by reduction to exact matrix completion. The algorithm recovers
an unknown 3-tensor with r incoherent, orthogonal components in �n from r · Õ(n1.5)
randomly observed entries of the tensor. The previous best bound for exact recovery is
r · Õ(n2), which is implied by reduction to exact matrix completion. (The reduction views
3-tensor on �n as an n-by-n2 matrix. We can recover rank-r matrices of this shape from
r · Õ(n2) samples, which is best possible.) Our bound also matches the best known results
for the easier problem of approximate tensor completion [JO14, BS15, BM16] (the results of
the last work also applies to a wider range of tensors and does not require orthogonality).

A problem similar to matrix and tensor completion is matrix and tensor sensing. The
goal is to recover an unknown low rank matrix or tensor from a small number of linear
measurements. An interesting phenomenon is that for carefully designed measurements

1We remark that this trade-off is a property of the analysis and not necessarily the algorithm. For example,
some algorithms of the first flavor are based on the same convex programming relaxations as exact recovery
algorithms. Also for iterative algorithm, the trade-off between reconstruction error and number of sample
comes from the requirement of the analysis that each iteration uses fresh samples. For these iterative
algorithms, the number of samples depends only logarithmically on the desired accuracy, which means that
these analyses imply exact recovery if the bit complexity of the entries is small.
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(which actually happen to be rank 1) it is possible to efficiently recover a 3-tensor of rank r
with just O(r · n)measurements [FS12].

Sum-of-squares method. Our algorithm is based on sum-of-squares [Sho87, Par00, Las01],
a very general and powerful meta-algorithm studied extensively in many scientific com-
munities (see for example the survey [BS14]). In theoretical computer science, the main
research focus has been on the capabilities of sum-of-squares for approximation problems
[BBH+12], especially in the context of Khot’s Unique Games Conjecture [Kho02]. More
recently, sum-of-squares emerged as a general approach to inference problems that arise in
machine learning and have defied other algorithmic techniques. This approach has lead to
improved algorithms for tensor decomposition [BKS15, GM15, HSSS16, MSS16], dictionary
learning [BKS15, HM16], tensor principal component analysis [HSS15, RRS16, BGL16],
planted sparse vectors [BKS14, HSSS16]. An exciting direction is also to understand
limitations of sum-of-squares for inference problems on concrete input distributions
[MW15, HSS15, BHK+16].

An appealing feature of the sum-of-squaresmethod is that its capabilities and limitations
can be understood through the lens of a simple but surprisingly powerful and intuitive
restricted proof system called sum-of-squares or Positivstellensatz system [GV01, Gri01a,
Gri01b]. A conceptual contribution of this work is to show that seminal results for inference
problem like compressed sensing and matrix completion have natural interpretations
as identifiability proofs in this system. Furthermore, we show that this interpretation is
helpful in order to analyze more challenging inference problems like tensor completion. A
promising future direction is to find more examples of inference problems where this lens
on inference algorithms and identifiability proofs yields stronger provable guarantees.

A technical contribution of our work is that we develop techniques in order to show
that sum-of-squares achieves exact recovery. Most previous works only showed that
sum-of-squares gives approximate solutions, which in some cases can be turned to exact
solutions by invoking algorithms with local convergence guarantees [GM15, BKS14] or
solving successive sum-of-squares relaxations [MSS16].

1.1 Results
We say that a vector v ∈ �n is µ-incoherent with respect to the coordinate basis e1, . . . , en

if for every index i ∈ [n],
〈ei , v〉2 6

µ
n · ‖v‖

2 . (1.1)

We say that a 3-tensor X ∈ �n
⊗�n

⊗�n is orthogonal of rank r if there are orthogonal
vectors {ui}i∈[r] ⊆ �n , {vi}i∈[r] ⊆ �n , {wi}i∈[r] ⊆ �n such that X �

∑r
i�1 ui ⊗ vi ⊗ wi . We

say that such a 3-tensor X is µ-incoherent if all of the vectors ui , vi , wi are µ-incoherent.

Theorem 1.1 (main). There exists a polynomial-time algorithm that given at least r ·µO(1)
· Õ(n)1.5

random entries of an unknown orthogonal µ-incoherent 3-tensor X ∈ �n
⊗ �n

⊗ �n of rank r,
outputs all entries of X with probability at least 1 − n−ω(1).

2



We note that the analysis also shows that the algorithm is robust to inverse polynomial
amount of noise in the input (resulting in inverse polynomial amount of error in the
output).

We remark that the running time of the algorithm depends polynomially on the bit
complexity on X.

2 Techniques
Let {ui}i∈[r], {vi}i∈[r], {wi}i∈[r] be three orthonormal sets in �n . Consider a 3-tensor
X ∈ �n

⊗�n
⊗�n of the form X �

∑r
i�1 λi · ui ⊗ vi ⊗ wi with λ1, . . . , λn > 0. LetΩ ⊆ [n]3

be a subset of the entries of X.
Our goal is to efficiently reconstruct the unknown tensor X from its restriction XΩ to

the entries in Ω. Ignoring computational efficiency, we first ask if this task is information-
theoretically possible. More concretely, for a given set of observations XΩ, how can we
rule out that there exists another rank-r orthogonal 3-tensor X′ , X that would give rise to
the same observations X′

Ω
� XΩ?2

A priori it is not clear how an answer to this information-theoretic question could
be related to the goal of obtaining an efficient algorithm. However, it turns out that the
sum-of-squares framework allows us to systematically translate a uniqueness proof to an
algorithm that efficiently finds the solution. (In addition, this solution also comes with a
short certificate for uniqueness.3)

Uniqueness proof. LetΩ ⊆ [n]3 be a set of entries and let X �
∑r

i�1 λi · ui ⊗ vi ⊗ wi be a
3-tensor with λ1, . . . , λr > 0.

It turns out that the following two conditions are enough to imply that XΩ uniquely
determinesX: Thefirst condition is that thevectors {(ui⊗vi⊗wi)Ω} are linearly independent.
The second condition is that exists a 3-linear form T on �n with the following properties:

1. in the monomial basis T is supported on Ω so that T(x , y , z) � ∑
(i , j,k)∈Ω Ti jk · xi y jxk ,

2. evaluated over unit vectors, the 3-form T is exactly maximized at the points (ui , vi , wi)
so that T(u1, v1, w1) � · · · � T(ur , vr , wr) � 1 and T(x , y , z) < 1 for all unit vectors
(x , y , z) < {(ui , vi , wi) | i ∈ [r]}.

We show that the two deterministic conditions above are satisfied with high probability
if the vectors {ui}, {vi}, {wi} are incoherent and Ω is a random set of entries of size at
least r · Õ(n1.5).

Let us sketch the proof that such a 3-linear formT indeed implies uniqueness. Concretely,
we claim that if we let X′ be a 3-tensor of the form

∑r′
i�1 λ

′

i · u
′

i ⊗ v′i ⊗ w′i for λ
′

1, . . . , λ
′

r′ > 0

2We emphasize that we ask here about the uniqueness of X for a fixed set of entries Ω. This questions
differs from asking about the uniqueness for a random set of entries, which could be answered by suitably
counting the number of low-rank 3-tensors.

3This certificate is closely related to certificates in the form of dual solutions for convex programming
relaxations that are used in the compressed sensing and matrix completion literature.
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and unit vectors {u′i}, {v′i}, {w′i} with X′
Ω
� XΩ that minimizes

∑r′
i�1 |λ

′

i | then X′ � X must
hold. We identify T with an element of �n

⊗ �n
⊗ �n (the coefficient tensor of T in the

monomial basis). Let X′ be as before. We are to show that X � X′. One the one hand,
using that T(x , y , z) 6 1 for all unit vectors x , y , z,

〈T,X′〉 �
r′∑

i�1
λ′i · T(u′i , v′i , w′i) 6

r′∑
i�1

λ′i .

At the same time, using that T is supported on Ω and the fact that XΩ � X′
Ω
,

〈T,X′〉 � 〈T,X〉 �
r∑

i�1
λi · T(ui , vi , wi) �

r∑
i�1

λi .

Since X′ minimizes
∑r′

i�1 λ
′

i , equality has to hold in the previous inequality. It follows
that every point (u′i , v′i , w′i) is equal to one of the points (u j , v j , w j), because T is uniquely
maximized at the points {(ui , vi , wi) | i ∈ [r]}. Since we assumed that {(ui ⊗ vi ⊗ wi)Ω} is
linearly independent, we can conclude that X � X′.

When we show that such a 3-linear form T exists, we will actually show something
stronger, namely that the second property is not only true but also has a short certificate in
form of a “degree-4 sum-of-squares proof”, which we describe next. This certificate also
enables us to efficiently recover the missing tensor entries.

Uniqueness proof in the sum-of-squares system. A degree-4 sos certificate for the
second property of T is an (n + n2)-by-(n + n2) positive-semidefinite matrix M (acting as
a linear operator on �n

⊕ (�n
⊗ �n)) that represents the polynomial ‖x‖2 + ‖y‖2 · ‖z‖2 −

2T(x , y , z), i.e.,
〈(x , y ⊗ z),M(x , y ⊗ z)〉 � ‖x‖2 + ‖y‖2 · ‖z‖2 − 2T(x , y , z) . (2.1)

Furthermore, we require that the kernel of M is precisely the span of the vectors {(ui , vi ⊗

wi) | i ∈ [r]}. Let’s see that this matrix M certifies that T has the property that over unit
vectors it is exactly maximized at the desired points (ui , vi , wi). Let u , v , w be unit vectors
such that (u , v , w) is not a multiple of one of the vectors (ui , vi , wi). Then by orthogonality,
both (u , v ⊗ w) and (−u , v ⊗ w) have non-zero projection on the orthogonal complement
of the kernel of M. Therefore, the bounds 0 < 〈(u , v ⊗ w),M(u , v ⊗ w)〉 � 2 − 2p(u , v , w)
and 0 < 〈(−u , v ⊗ w),M(−u , v ⊗ w)〉 � 2 + 2p(u , v , w) together give the desired conclusion
that |T(u , v , w)| < 1.

Reconstruction algorithm based on the sum-of-squares system. The existence of a
positive semidefinite matrix M as above not only means that reconstruction of X from XΩ

is possible information-theoretically but also efficiently. The sum-of-squares algorithm
allows us to efficiently search over low-degree moments of objects called pseudo-distributions
that generalize probability distributions over real vector spaces. Every pseudo-distribution
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µ defines pseudo-expectation values �̃µ f for all low-degree polynomial functions f (x , y , z),
which behave inmanyways like expectation values under an actual probability distribution.
In order to reconstruct X from the observations XΩ, we use the sum-of-squares algorithm
to efficiently find a pseudo-distribution µ that satisfies4

�̃
µ(x ,y ,z)

‖x‖2 + ‖y‖2 · ‖z‖2 6 1 (2.2)(
�̃

µ(x ,y ,z)
x ⊗ y ⊗ z

)
Ω

� XΩ (2.3)

Note that the distribution over the vectors (ui , vi , wi) with probabilities λi satisfies the
above conditions. Our previous discussion about uniqueness shows that the existence of a
positive semidefinite matrix M as above implies no other distribution satisfies the above
conditions. It turns out that the matrix M implies that this uniqueness holds even among
pseudo-distributions in the sense that any pseudo-distribution that satisfies Eqs. (2.2)
and (2.3) must satisfy �̃µ(x ,y ,z) x ⊗ y ⊗ z � X, which means that the reconstruction is
successful.5

When do such uniqueness certificates exist? The above discussion shows that in order
to achieve reconstruction it is enough to show that uniqueness certificates of the form
above exist. We show that these certificates exists with high probability if we choose Ω
to be a large enough random subset of entries (under suitable assumptions on X). Our
existence proof is based on a randomized procedure to construct such a certificate heavily
inspired by similar constructions for matrix completion [Gro11, Rec11]. (We note that this
construction uses the unknown tensor X and is therefore not “constructive” in the context
of the recovery problem.)

Before describing the construction, we make the requirements on the 3-linear form
T more concrete. We identify T with the linear operator from �n

⊗ �n to �n such
that T(x , y , z) � 〈x , T(y ⊗ z)〉. Furthermore, let Ta be linear operators on �n such that
T(x , y , z) � ∑n

a�1 xa · 〈y , Ta z〉. Then, the following conditions on T imply the existence of a
uniqueness certificate M (which also means that recover succeeds),

1. every unknown entry (i , j, k) < Ω satisfies 〈ei , T(e j ⊗ ek)〉 � 0,

2. every index i ∈ [r] satisfies ui � T(vi ⊗ wi),
3. the matrix

∑n
a�1 Ta ⊗ Ta

ᵀ
−

∑r
i�1(vi ⊗ wi)(vi ⊗ wi )T has spectral norm at most 0.01.

We note that the uniqueness certificates for matrix completion [Gro11, Rec11] have similar
requirements. The key difference is that we need to control the spectral norm of an operator

4The viewpoint in terms of pseudo-distributions is useful to see how the previous uniqueness proof
relates to the algorithm. We can also describe the solutions to the constraints Eqs. (2.2) and (2.3) in terms of
linearly constrained positive semidefinite matrices. See alternative description of Algorithm 4.1

5The matrix M can also be viewed as a solution to the dual of the convex optimization problem of finding
a pseudo-distribution that satisfies conditions Eqs. (2.2) and (2.3).
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that depends quadratically on the constructed object T (as opposed to a linear dependence
in the matrix completion case). Combined with the fact that the construction of T is
iterative (about log n steps), the spectral norm bound unfortunately requires significant
technical work. In particular, we cannot apply general matrix concentration inequalities
and instead apply the trace moment method. (See Section 5.)

We also note that the fact that the above requirements allow us to construct the
certifcate M is not immediate and requires some new ideas about matrix representations
of polynomials, which might be useful elsewhere. (See Appendix A.)

Finally, we note that the transformation applied to T in order to obtain the matrix for
the third condition above appears in many works about 3-tensors [HSS15, BM16] with the
earliest appearance in a work on refutation algorithms for random 3-SAT instances (see
[FO07]).

The iterative construction of the linear operator T exactly follows the recipe frommatrix
completion [Gro11, Rec11]. Let RΩ be the projection operator into the linear space of
operators T that satify the first requirement. Let PT be the (affine) projection operator
into the affine linear space of operators T that satisfy the second reqirement. We start
with T(0) � X. At this point we satisfy the second condition. (Also the matrix in the third
condition is 0.) In order to enforce the first condition we apply the operator RΩ. After this
projection, the second condition is most likely no longer satisfied. To enforce the second
condition, we apply the affine linear operator PT and obtain T(1) � PT(RΩX). The idea is
to iterate this construction and show that after a logarithmic number of iterations both the
first and second condition are satisfied up to an inverse polynomially small error (which
we can correct in a direct way). The main challenge is to show that the iterates obtained in
this way satisfy the desired spectral norm bound. (We note that for technical reasons the
construction uses fresh randomness Ω for each iteration like in the matrix completion case
[Rec11, Gro11]. Since the number of iterations is logarithmic, the total number of required
observations remains the same up to a logarithmic factor.)

3 Preliminaries
Unless explicitly stated otherwise, O(·)-notation hides absolute multiplicative constants.
Concretely, every occurrence of O(x) is a placeholder for some function f (x) that satisfies
∀x ∈ �. | f (x)| 6 C |x | for some absolute constant C > 0. Similarly,Ω(x) is a placeholder for
a function 1(x) that satisfies ∀x ∈ �. |1(x)| > |x |/C for some absolute constant C > 0.

Our algorithm is based on a generalization of probability distributions over �n . To
define this generalization the following notation for the formal expectation of a function f
on �n with respect to a finitely-supported function µ : �n

→ �,

�̃
µ

f �

∑
x∈support(µ)

µ(x) · f (x) .

A degree-d pseudo-distribution over �n is a finitely-supported function µ : �n
→ � such that

�̃µ 1 � 1 and �̃µ f 2 > 0 for every polynomial f of degree at most d/2.
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A key algorithmic property of pseudo-distributions is that their low-degree moments
have an efficient separation oracle. Concretely, the set of degree-d moments �̃µ(1, x)⊗d

such that µ is a degree-d pseudo-distributions over �n has an nO(d)-time separation oracle.
Therefore, standard convex optimization methods allow us to efficiently optimize linear
functions over low-degree moments of pseudo-distributions (even subject to additional
convex constraints that have efficient separation oracles) up to arbitrary numerical accuracy.

4 Tensor completion algorithm
In this section, we show that the following algorithm for tensor completion succeeds in
recovering the unknown tensor from partial observations assuming the existence of a
particular linear operator T. We will state conditions on the unknown tensor that imply
that such a linear operator exists with high probability if the observed entries are chosen
at random. We use essentially the same convex relaxation as in [BM16] but our analysis
differs significantly.

Algorithm 4.1 (Exact tensor completion based on degree-4 sum-of-squares).
Input: locations Ω ⊆ [n]3 and partial observations XΩ of an unknown 3-tensor
X ∈ �n

⊗ �n
⊗ �n .

Operation: Find a degree-4 pseudo-distribution µ on�n
⊕�n

⊕�n such that the third
moment matches the observations

�
�̃µ(x ,y ,z) x ⊗ y ⊗ z

�
Ω
� XΩ so as to minimize

�̃
µ(x ,y ,z)

‖x‖2 + ‖y‖2 · ‖z‖2 .

Output the 3-tensor �̃µ(x ,y ,z) x ⊗ y ⊗ z ∈ �n
⊗ �n

⊗ �n .
Alternative description: Output a minimum trace, positive semidefinite matrix Y
acting on�n

⊕ (�n
⊗�n)with blocks Y1,1, Y1,2 and Y2,2 such that (Y1,2)Ω � XΩ matches

the observations, and Y2,2 satisfies the additional symmetry constraints that each entry
〈e j ⊗ ek ,Y2,2(e j′ ⊗ ek′)〉 only depends on the index sets { j, j′}, {k , k′}.
Let {ui}, {vi}, {wi} be three orthonormal sets in �n , each of cardinality r.
We reason about the recovery guarantees of the algorithm in terms of the following

notion of certifcate.

Definition 4.2. We say that a linear operator T from �n
⊗ �n to �n is a degree-4 certificate

for Ω and orthonormal sets {ui}, {vi}, {wi} ⊆ �n if the following conditions are satisfies

1. the vectors {(ui ⊗ v j ⊗ wk)Ω | (i , j, k) ∈ S} are linearly independent, where S ⊆ [n]3
is the set of triples with at least two identical indices from [r],

2. every entry (a , b , c) < Ω satisfies 〈ea , T(eb ⊗ ec)〉 � 0,

3. If we view T as a 3-tensor in (�n)⊗3 whose (a , b , c) entry is 〈ea , T(eb ⊗ ec)〉, every index
i ∈ [r] satisfies (uᵀi ⊗ vᵀi ⊗ Id)T � wi , (uᵀi ⊗ Id⊗wᵀi )T � vi , and (Id⊗vᵀi ⊗ wᵀi )T � ui .
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4. the following matrix has spectral norm at most 0.01,
n∑

a�1
Ta ⊗ Ta

ᵀ
−

r∑
i�1

(vi ⊗ wi)(vi ⊗ wi)ᵀ ,

where {Ta} are matrices such that 〈x , T(y ⊗ x)〉 � ∑n
a�1 xa · 〈y , Ta z〉.

In Section 4.4, we prove that existence of such certifcates implies that the above algorithm
successfully recovers the unknown tensor, as formalized by the following theorem.

Theorem 4.3. Let X ∈ �n
⊗ �n

⊗ �n be any 3-tensor of the form
∑r

i�1 λi · ui ⊗ vi ⊗ wi for
λ1, . . . , λr ∈ �+. Let Ω ⊆ [n]3 be a subset of indices. Suppose there exists degree-4 certificate
in the sense of Definition 4.2. Then, given the observations XΩ the above algorithm recovers the
unknown tensor X exactly.

In Section 4.5, we show that degree-4 scertificates are likely to exist whenΩ is a random
set of appropriate size.

Theorem 4.4. Let {ui}, {vi}, {wi} be three orthonormal sets of µ-incoherent vectors in �n , each
of cardinality r. LetΩ ⊆ [n]3 be a random set of tensor entries of cardinality m � r · n1.5(µ log n)C

for an absolute constant C > 1. Then, with probability 1 − n−ω(1), there exists a linear operator T
that satisfies the requirements of Definition 4.2.

Taken together the two theorems above imply our main result Theorem 1.1.

4.1 Simpler proofs via higher-degree sum-of-squares
Unfortunately the proof of Theorem 4.4 requires extremely technical spectral norm bounds
for random matrices.

It turns out that less technical norm bounds suffice if we use degree 6 sum-of-squares
relaxations. For this more powerful algorithm, weaker certificates are enough to ensure
exact recovery and the proof that these weaker certificates exist with high probability is
considerably easier than the proof that degree-4 certificates exist with high probability.

In the following we describe this weaker notion of certificates and state their properties.
In the subsequent sections we prove properties of these certificates are enough to imply
our main result Theorem 1.1.

Algorithm 4.5 (Exact tensor completion based on higher-degree sum-of-squares).
Input: locations Ω ⊆ [n]3 and partial observations XΩ of an unknown 3-tensor
X ∈ �n

⊗ �n
⊗ �n .

Operation: Find a degree-6 pseudo-distribution µ on �n
⊕ �n

⊕ �n so as to minimize
�̃µ(x ,y ,z)‖x‖2 + ‖z‖2 subject to the following constraints(

�̃
µ(x ,y ,z)

x ⊗ y ⊗ z
)
Ω

� XΩ , (4.1)

�̃
µ(x ,y ,z)

(‖y‖2 − 1) · p(x , y , z) � 0 for all p(x , y , z) ∈ �[x , y , z]614 . (4.2)
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Output the 3-tensor �̃µ(x ,y ,z) x ⊗ y ⊗ z ∈ �n
⊗ �n

⊗ �n .

Let {ui}, {vi}, {wi} be three orthonormal sets in �n , each of cardinality r. We reason
about the recovery guarantees of the above algorithm in terms of the following notion of
certificate. The main difference to degree-4 certificate (Definition 4.2) is that the spectral
norm condition is replaced by a condition in terms of sum-of-squares representations.

Definition 4.6. We say that a 3-tensor T ∈ (�n)⊗3 is a higher-degree certificate for Ω and
orthonormal sets {ui}, {vi}, {wi} ⊆ �n if the following conditions are satisfies

1. the vectors {(ui ⊗ vi ⊗ wi)Ω}i∈[r] are linearly independent,

2. every entry (a , b , c) < Ω satisfies 〈T, (ea ⊗ eb ⊗ ec)〉 � 0,

3. every index i ∈ [r] satisfies (uᵀi ⊗ vᵀi ⊗ Id)T � wi , (uᵀi ⊗ Id⊗wᵀi )T � vi , and (Id⊗vᵀi ⊗
wᵀi )T � ui ,

4. the following degree-4 polynomials in �[x , y , z] are sum of squares

‖x‖2 + ‖y‖2 · ‖z‖2 − 1/ε · 〈T′, x ⊗ y ⊗ z〉 , (4.3)
‖y‖2 + ‖x‖2 · ‖z‖2 − 1/ε · 〈T′, x ⊗ y ⊗ z〉 , (4.4)
‖z‖2 + ‖x‖2 · ‖y‖2 − 1/ε · 〈T′, x ⊗ y ⊗ z〉 . (4.5)

where T′ � T −
∑r

i�1 ui ⊗ vi ⊗ wi and ε > 0 is an absolute constant (say ε � 10−6).

In the following sections we prove that higher-degree certificates imply that Algo-
rithm 4.5 successfully recovers the desired tensor and that they exist with high probability
for random Ω of appropriate size.

4.2 Higher-degree certificates imply exact recovery
Let {ui}, {vi}, {wi} be orthonormal bases in �n . We say that a degree-` pseudo-
distribution µ(x , y , z) satisfies the constraint ‖y‖2 � 1, denoted µ |� {‖y‖2 � 1}, if
�̃µ(x ,y ,z) p(x , y , z) · (1 − ‖y‖2) � 0 for all polynomials p ∈ �[x , y , z]6`−2

We are to show that a higher-degree certificate in the sense of Definition 4.6 implies that
Algorithm 4.5 reconstructs the partially observed tensor exactly. A key step of this proof is
the following lemma about expectation values of higher degree pseudo-distributions.

Lemma 4.7. Let T ∈ (�n)⊗3 be a higher-degree certificate as in Definition 4.6 for the setΩ ⊆ [n]3
and the vectors {ui}i∈[r], {vi}i∈[r], {wi}i∈[r]. Then, every degree-16 pseudo-distribution µ(x , y , z)
with µ |� {‖y‖2 � 1} satisfies

�̃
µ(x ,y ,z)

T(x , y , z) 6 �̃
µ(x ,y ,z)

‖x‖2 + ‖z‖2

2
−

1
100 ·

n∑
i�r+1

(〈ui , x〉2
+ 〈wi , z〉2)

−
1

100 ·

n∑
i�1

∑
j∈[n]\{i}

〈vi , y〉2
·

(〈u j , x〉2
+ 〈w j , z〉2

)
(4.6)
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To prove this lemma it will be useful to introduce the sum-of-squares proof system.
Before doing that let us observe that the lemma indeed allows us to prove that Algorithm 4.5
works.

Theorem 4.8 (Higher-degree certificates imply exact recovery). Suppose there exists a
higher-degree certificate T in the sense of Definition 4.6 for the set Ω ⊆ [n]3 and the vectors
{ui}i∈[r], {vi}i∈[r], {wi}i∈[r]. Then, Algorithm 4.5 recovers the partially observed tensor exactly.
In other words, if X �

∑r
i�1 λi · ui ⊗ vi ⊗ wi with λ1, . . . , λr > 0 and µ(x , y , z) is a degree-16

pseudo-distribution with µ |� {‖y‖2 � 1} that minimizes �̃µ(x ,y ,z) 1
2(‖x‖2 + ‖z‖2) subject to

(�̃µ(x ,y ,z) x ⊗ y ⊗ z)Ω � XΩ, then �̃µ(x ,y ,z) x ⊗ y ⊗ z � X.

Proof. Consider the distribution µ∗ over vectors (x , y , z) such that (√λin · ui , vi ,
√
λi n · wi)

has probability 1/n. By construction, �µ∗(x ,y ,z) x ⊗ y ⊗ z � X. We have

�̃
µ(x ,y ,z)

T(x , y , z) � �
µ∗(x ,y ,z)

T(x , y , z) �
r∑

i�1
λi � �

µ∗(x ,y ,z)
1
2(‖x‖2 + ‖z‖2) .

By Lemma 4.7 and the optimality of µ, it follows that

�̃
µ(x ,y ,z)

1
100 ·

n∑
i�r+1

(〈ui , x〉2
+ 〈wi , z〉2) + 1

100 ·

n∑
i�1

∑
j∈[n]\{i}

〈vi , y〉2
·

(〈u j , x〉2
+ 〈w j , z〉2

)
� 0

Since the summands on the left-hand side are squares it follows that each summand
has pseudo-expectation 0. It follows that �̃µ〈ui , x〉2 � �̃µ〈vi , y〉2 � �̃µ〈wi , z〉2 � 0 for all
i > r and �̃µ〈vi , y〉2〈u j , x〉2 � �̃µ〈vi , y〉2〈w j , x〉2 � 0 for all i , j. By the Cauchy–Schwarz
inequality for pseudo-expectations, it follows that �̃µ(x ,y ,z)〈x ⊗ y ⊗ z , ui ⊗ v j ⊗ wk〉 � 0
unless i � j � k ∈ [r]. Consequently, �̃µ(x ,y ,z) x ⊗ y ⊗ z is a linear combination of
the vectors {ui ⊗ vi ⊗ wi | i ∈ [r]}. Finally, the linear independence of the vectors
{(ui ⊗ vi ⊗ wi)Ω | i ∈ [r]} implies that �̃µ x ⊗ y ⊗ z � X as desired. �

It remains to prove Lemma 4.7. Here it is convenient to use formal notation for sum-of-
squares proofs. We will work with polynomials �[x , y , z] and the polynomial equation
A � {‖y‖2 � 1}. For p ∈ �[x , y , z], we say that there exists a degree-` SOS proof thatA
implies p > 0, denoted A `` p > 0, if there exists a polynomial q ∈ �[x , y , z] of degree
at most ` − 2 such that p + q · (1 − ‖y‖2) is a sum of squares of polynomials. This notion
proof allows us to reason about pseudo-distributions. In particular, if A `` p > 0 then
every degree-` pseudo-distribution µ with µ |� A satisfies �̃µ p > 0.

We will change coordinates such that ui � vi � wi � ei is the i-th coordinate vector for
every i ∈ [n]. Then, the conditions on T in Definition 4.6 imply that

〈T, (x ⊗ y ⊗ z)〉 �
r∑

i�1
xi yi zi + T′(x , y , z) , (4.7)

where T′ is a 3-linear form with the property that T′(x , x , x) does not contain squares (i.e.
is multilinear). Furthermore, the conditions imply the following SOS proofs for T′:
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1. ∅ `4 T′(x , y , z) 6 ε · �‖x‖ + ‖y‖2 · ‖z‖2�
,

2. ∅ `4 T′(x , y , z) 6 ε · �‖y‖ + ‖x‖2 · ‖z‖2�
,

3. ∅ `4 T′(x , y , z) 6 ε · �‖z‖ + ‖x‖2 · ‖y‖2�
.

The following lemma gives an upper bound on one of the parts in Eq. (4.7).

Lemma 4.9. ForA � {‖y‖2 � 1}, the following inequality has a degree-6 sum-of-squares proof,

A `6

r∑
i�1

xi yizi 6
1
2 ‖x‖

2
+

1
2 ‖z‖

2
−

1
4

n∑
i�r+1

(x2
i + z2

i )

−
1
8

∑
i, j

y2
i ·

(
x2

j + z2
j + y2

j · (‖x‖2 + ‖z‖2)
)
. (4.8)

Proof. We bound the left-hand side in the lemma as follows,

A `6

r∑
i�1

xi yizi 6
r∑

i�1
(1

2 x2
i +

1
2 y2

i z2
i ) (4.9)

6 1
2 ||x ||2 − 1

2

∑
i>r

x2
i +

1
2

n∑
i�1

y2
i z2

i . (4.10)

We can further bound
∑

i y2
i z2

i as follows,

A `6

n∑
i�1

y2
i z2

i � *
,

n∑
i�1

y2
i

+
-
· *

,

n∑
i�1

z2
i
+
-
−

∑
i, j

y2
i · z

2
j (4.11)

� *
,

n∑
i�1

z2
i
+
-
−

∑
i, j

y2
i · z

2
j . (4.12)

We can prove a different bound on
∑

i y2
i z2

i as follows,

A `6

n∑
i�1

y2
i z2

i 6
1
2 ‖z‖

2
+

1
2

n∑
i�1

y4
i z2

i (4.13)

6 1
2 ‖z‖

2
+

1
2

n∑
i�1

y4
i ‖z‖

2 (4.14)

�
1
2 ‖z‖

2
+

1
2

*
,

n∑
i�1

y2
i

+
-
· *

,

n∑
i�1

y2
i ‖z‖

2+
-
−

1
2

∑
i, j

y2
i · y

2
j ‖z‖

2 (4.15)

� ‖z‖2 − 1
2

∑
i, j

y2
i · y

2
j ‖z‖

2 . (4.16)

By combining these three inequalities, we obtain the inequality

A `6

r∑
i�1

xi yi zi 6
1
2 ‖x‖

2
+

1
2 ‖z‖

2
−

1
2

∑
i>r

x2
i −

1
2

∑
i, j

y2
i · z

2
j −

1
4

∑
i, j

y2
i · y

2
j ‖z‖

2 .
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By symmetry between z and x, the same inequality holds with x and z exchanged.
Combining these symmetric inequalities, we obtain the desired inequality

A `6

r∑
i�1

xi yizi 6
1
2 ‖x‖

2
+

1
2 ‖z‖

2
−

1
4

∑
i>r

(x2
i + z2

i )

−
1
4

∑
i, j

y2
i · (x2

j + z2
j ) − 1

8

∑
i, j

y2
i · y

2
j (‖x‖2 + ‖z‖2) . (4.17)

�

It remains to bound the second part in Eq. (4.7), which the following lemma achieves.

Lemma 4.10. A `6 T′(x , y , z) 6 3ε
2

∑
i
∑

j,i y2
i

(
x2

j + z2
j +

1
2 y2

j (||x ||2 + ||z ||2)
)

Proof. It is enough to show the following inequality for all i ∈ [n],

A `6 y2
i T′(x , y , z) 6 ε

∑
j,i

(3
2

y2
i (x2

j + z2
j ) +

1
2

y2
i y2

j (||x ||2 + ||z ||2)
)

By symmetry it suffices to consider the case i � 1. Let x′ � x − x1 · e1, y′ � y − y1 · e1, and
z′ � z − z1 · e1. We observe that

A `4 T′(x , y , z) � T′(x1e1 + x′, y1e1 + y′, z1e1 + z′)
� T′(x1e1, y′, z′) + T′(x′, y1e1, z′)
+ T′(x′, y′, z1e1) + T′(x′, y′, z′)

We now apply the following inequalities

1. A `4 T′(x1e1, y′, z′) 6 ε
2

�
x2

1 ||y′||2 + ||z′||2�
6 ε

2
∑

j,1(y2
j ||x ||2 + z2

j )
2. A `4 T′(x′, y1e1, z′) 6 ε

2
�||x′||2 y2

1 + ||z′||2�
6 ε

2
∑

j,1(x2
j + z2

j )
3. A `4 T′(x′, y′, z1e1) 6 ε

2
�
z2

1 ||y′||2 + ||x′||2�
6 ε

2
∑

j,1(y2
j ||z ||2 + x2

j )
4. A `4 T′(x′, y′, z′) 6 ε

2
�||x′||2 ||y′||2 + ||z′||2�

6 ε
2
∑

j,1(x2
j + z2

j )
�

We can now prove Lemma 4.7.

Proof of Lemma 4.7. Taken together, Lemmas 4.9 and 4.10 imply

A `6 〈T, x ⊗ y ⊗ z〉 6 1
2 ‖x‖

2
+

1
2 ‖z‖

2
− (1

4 − O(ε))
n∑

i�r+1
(x2

i + z2
i )

− (1
8 − O(ε))

∑
i, j

y2
i ·

(
x2

j + z2
j + y2

j · (‖x‖2 + ‖z‖2)
)
, (4.18)
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where the absolute constant hidden by O(·) notation is at most 10. Therefore for ε < 1/100,
as we assumed in Definition 4.6, we get a SOS proof of the inequality,

A `6 〈T, x ⊗ y ⊗ z〉 6 1
2 ‖x‖

2
+

1
2 ‖z‖

2
−

1
8

n∑
i�r+1

(x2
i + z2

i )

−
1

16

∑
i, j

y2
i ·

(
x2

j + z2
j + y2

j · (‖x‖2 + ‖z‖2)
)
, (4.19)

This SOS proof implies that that every degree-6 pseudo-distribution µ(x , y , z) with µ |� A
satisfies the desired inequality,

�̃
µ(x ,y ,z)

〈T, x ⊗ y ⊗ z〉 6 �̃
µ(x ,y ,z)

1
2 ‖x‖

2
+

1
2 ‖z‖

2
−

1
8

n∑
i�r+1

(x2
i + z2

i )

−
1

16

∑
i, j

y2
i ·

(
x2

j + z2
j + y2

j · (‖x‖2 + ‖z‖2)
)
, (4.20)

�

4.3 Constructing the certificate T

In this section we give a procedure for constructing the certificate T. This construction is
directly inspired by the construction of the dual certificate in [Gro11, Rec11] (sometimes
called quantum golfing). We will then prove that T satisfies all of the conditions for a
higher-degree certificate ofΩ. In Section 4.5 wewill show that T also satisfies the conditions
for a degree-4 certificate for Ω.

Let {ui}, {vi}, {wi} ⊆ �n be three orthonormal bases, with all vectors µ-incoherent.
Let X �

∑r
i�1 ui ⊗ vi ⊗ wi . Let Ω ⊆ [n]3 chosen at random such that each element is

included independently with probability m/n1.5 (so that |Ω| is tightly concentrated around
m).

Let P be the projector on the span of the vectors ui ⊗ v j ⊗ wk such that an index in [r]
appears at least twice in (i , j, k) (i.e., at least one of the conditions i � j ∈ [r], i � k ∈ [r],
j � k ∈ [r] is satisfied). Let RΩ be the linear operator on �n

⊗ �n
⊗ �n that sets all entries

outside of Ω to 0 (so that (RΩ[T])Ω � RΩ[T]) and is scaled such that �Ω RΩ � Id. Let R̄Ω
be Id−RΩ.

Our goal is to construct T ∈ �n
⊗ �n

⊗ �n such that P[T] � X, (T)Ω � T, and the
spectral norm condition in Definition 4.2 is satisfied. The idea for constructing T is to start
with T � X. Then, move to closest point T′ that satisfies RΩ[T′] � T′ Then, move to closest
point T′′ that satisfies P[T′′] � X and repeat. To implement this strategy, we define

T(k)
�

k−1∑
j�0

(−1) jRΩ j+1(PR̄Ω j ) · · · (PR̄Ω1)[X] , (4.21)

where Ω1, . . . ,Ωk are iid samples from the same distribution as Ω.
By induction, we can show the following lemma about linear constraints that the

constructed stensors T(k) satisfy.
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Lemma 4.11. For every k > 1, the tensor T(k) satisfies (T)Ω � T and

P[T(k)] + (−1)kP(PR̄Ωk ) · · · (PR̄Ω1)[X] � X .

Here, P(PR̄Ωk ) · · · (PR̄Ω1)[X] is an error term that decreases geometrically. In the
parameter regime of Theorem 4.4, the norm of this term is n−ω(1) for some k � (log n)O(1).

The following lemma shows that it is possible to correct such small errors. This lemma
also implies that the linear independence condition in Definition 4.2 is satisfied with high
probability. (Therefore, we can ignore this condition in the following.)

Lemma 4.12. Suppose m > rnµ · (log n)O(1). Then, with probability 1− n−ω(1) over the choice of
Ω, the following holds: For every E ∈ �n

⊗�n
⊗�n with P[E] � E, there exists Y with (Y)Ω � Y

such that P[Y] � E and ‖Y‖F 6 O(1) · ‖E‖F.
Proof. Let S ⊆ [n]3 be such that P is the projector to the vectors ui ⊗ v j ⊗wk with (i , j, k) ∈ S.
By construction of P we have |S | 6 3rn. In order to show the conclusion of the lemma it is
enough to show that the vectors (ui ⊗ v j ⊗ wk)Ω with (i , j, k) ∈ S are well-conditioned in
the sense that the ratio of the largest and smallest singular value is O(1). This fact follows
from standard matrix concentration inequalities. See Lemma 4.14. �

The main technical challenge is to show that the construction satisfies the condition
that the following degree 4 polynomials are sums of squares (where T′ � T − X).

‖x‖2 + ‖y‖2 · ‖z‖2 − 1/ε · 〈T′, x ⊗ y ⊗ z〉 , (4.22)
‖y‖2 + ‖x‖2 · ‖z‖2 − 1/ε · 〈T′, x ⊗ y ⊗ z〉 , (4.23)
‖z‖2 + ‖x‖2 · ‖y‖2 − 1/ε · 〈T′, x ⊗ y ⊗ z〉 . (4.24)

We show how to prove the first statement, the other statements can be proved with
symmetrical arguments. To prove the first statement, we decompose T′ into pieces of the
form (R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X), P′(R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X) (where we will split P into parts
P′), or E. For each piece A, we prove a norm bound ‖

∑
a Aa ⊗ AT

a ‖ 6 B. Since
∑

a Aa ⊗ AT
a

represents the same polynomial as AT A, this proves that B‖y‖2‖z‖2 − (y ⊗ z)T AT A(y ⊗ z)
is a degree 4 sum of squares. Now note that (y ⊗ z)T AT A(y ⊗ z) − √BxT A(y ⊗ z) −
√

B(y ⊗ z)T AT x + B‖x‖2 is also a sum of squares. Combining these equations and scaling
we have that ‖x‖2 + ‖y‖2‖z‖2 − 2

√
B

xT A(y ⊗ z) is a degree 4 sum of squares.
Thus, it is sufficient to prove norm bounds on ‖

∑
a Aa ⊗ AT

a ‖. We have an appropriate
bound in the case when A � E because E has very small Frobenius norm. For the cases
when A � (R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X) or A � P(R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X), we use the following
theorem

Theorem 4.13. Let A � (R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X) or P′(R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X) where P′ is a
part of P. There is an absolute constant C such that for any α > 1 and β > 0,

�





∑
a

Aa ⊗ AT
a


> α−(l+1)


< n−β

as long as m > Cαβµ
3
2 rn1.5

· log(n) and m > Cαβµ2rn log(n).

14



Proof. This theorem follows directly from combining Proposition 5.10, Theorem 6.1,
Theorem 7.1, and Theorem 8.1. �

4.3.1 Final correction of error terms

In this section, we prove a spectral norm bound that allows us to correct error terms
that are left at the end of the construction. The proof uses the by now standard Matrix
Bernstein concentration inequality. Similar proofs appear in the matrix completion
literature [Gro11, Rec11].

Let {ui}, {vi}, {wi} ⊆ �n be three orthonormal bases, with all vectors µ-incoherent.
LetΩ ⊆ [n]3 be m entires sampled uniformly at random with replacement. (This sampling
model is different from what is used in the rest of the proof. However, it is well known
that the models are equivalent in terms of the final recovery problem.)

Lemma 4.14. Let S ⊆ [n]3. Suppose m � µ|S |(log n)C for an absolute constant C > 1. Then
with probability 1 − nω(1) over the choice of Ω, the vectors (ui ⊗ v j ⊗ wk)Ω for (i , j, k) ∈ S are
well-conditioned in the sense that the ratio between the largest and smallest singular value is at
most 1.1.

Proof. For s � (i , j, k) ∈ S, let ys � ui ⊗ v j ⊗ wk . Let Ω � {ω1, . . . , ωm}, where ω1, . . . , ω ∈
[n]3 are sampled uniformly at random with replacement. Let A be the S-by-S Gram matrix
of the vectors (ys)Ω. Then, A is the sum of m identically distributed rank-1 matrices Ai ,

A �

m∑
i�1

Ai with (Ai)s ,s′ � (ys)ωi · (ys′)ωi .

Each Ai has expectation �Ai � n−1.5 Id and spectral norm at most |S | · µ/n1.5. Standard
matrix concentration inequalities [Tro12] show that m > O(|S |µ2 log n) is enough to
ensure that the sum is spectral close to its expectation (m/n1.5) Id in the sense that
0.99A � (m/n1.5) Id � 1.1A. �

4.4 Degree-4 certificates imply exact recovery
In this section we prove Theorem 4.3. We need the following technical lemma, which we
prove in Appendix A.

Lemma 4.15. Let R be self-adjoint linear operator R on�n
⊗�n . Suppose 〈(v j⊗wk), R(vi⊗wi)〉 �

0 for all indices i , j, k ∈ [r] such that i ∈ { j, k}. Then, there exists a self-adjoint linear operator R′

on�n
⊗�n such that R′(vi ⊗wi) � 0 for all i ∈ [r], the spectral norm of R′ satisfies ‖R′‖ 6 10‖R‖,

and R′ represents the same polynomial in �[y , z],
〈(y ⊗ z), R′(y ⊗ z)〉 � 〈(y ⊗ z), R(y ⊗ z)〉 .

We can now prove that certificates in the sense of Definition 4.2 imply the our algorithm
successfully recoves the unknown tensor.
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Proof of Theorem 4.3. Let T be a certificate in the sense of Definition 4.2.
Our goal is to construct a positive semidefinitematrix M on�n

⊕�n
⊗�n that represents

the following polynomial

〈(x , y ⊗ z),M(x , y ⊗ z)〉 � ‖x‖2 + ‖y‖2 · ‖z‖2 − 2〈x , T(y ⊗ z)〉 .
Let Ta be matrices such that 〈x , T(x ⊗ y)〉 � ∑

a xa · Ta(y , z). Since ‖x‖2 +∑n
a�1 Ta(y , z)2 −

2〈x , T(y ⊗ z)〉 � ‖x −T(y ⊗ z)‖ is a sum of squares of polynomials, it will be enough to find
a positive semidefinite matrix that represents the polynomial ‖y‖2 · ‖z‖2 −

∑n
a�1 Ta(y , z)2.

(This step is a polynomial version of the Schur complement condition for positive semidefi-
niteness.) Let R be the following linear operator

R �

n∑
a�1

Ta ⊗ Ta
ᵀ
−

r∑
i�1

(vi ⊗ wi)(vi ⊗ wi)ᵀ ,

Lemma 4.16. R satisfies the requirement of Lemma 4.15.

Proof. Consider 〈(v j ⊗ wk), R(v j ⊗ w j)〉. Since v j is repeated, the value of this expression
will be the same if we replace R by an R2 which represents the same polynomial. Thus, we
can replace R by R2 �

∑n
a�1 Ta

ᵀTa −
∑r

i�1(vi ⊗ wi)(vi ⊗ wi )T � TᵀT −
∑r

i�1(vi ⊗ wi)(vi ⊗ wi )T
We now observe that 〈(v j ⊗ wk), R2(v j ⊗ w j)〉 � 〈(v j ⊗ wk), Tᵀ(u j)− (v j ⊗ w j)〉 � 0. By a

symmetrical proof, 〈(v j ⊗ wk), R(vk ⊗ wk)〉 � 0 as well. �

By Lemma Lemma 4.15, there exists a self-adjoint linear operator R′ that represents
the same polynomial as R, has spectral norm ‖R′‖ 6 10‖R‖ 6 0.1, and sends all vectors
vi ⊗ wi to 0. Since R′ sends all vectors vi ⊗ wi to 0 and ‖R′‖ 6 0.1, the following matrix

R′′ �
r∑

i�1
(vi ⊗ wi)(vi ⊗ wi)ᵀ + R′

has r eigenvalues of value 1 (corresponding to the space spanned by vi ⊗ wi) and all other
eigenvalues are at most 0.1 (because the non-zero eigenvalues of R′ have eigenvectors
orthogonal to all vi ⊗ wi). At the same time, R′′ represents the following polynomial,

〈(y ⊗ z), R′′(y ⊗ z)〉 �
n∑

a�1
Ta(y , z)2 .

LetP be a positive semidefinitematrix that represents the polynomial ‖x‖2+
∑n

a�1 Ta(y , z)2−
2〈x , T(y ⊗ z)〉 (such a matrix exists because the polynomial is a sum of squares). We choose
M as follows

M �

(
Id −T
(T )T (T )T T

)
+

(
0 0
0 Id−R′′

)
Since R′′ � Id, this matrix is positive semidefinite. Also, M represents ‖x‖2 + ‖y‖2 · ‖z‖2 −
2〈x , T(y ⊗ z)〉. Since ui � T(vi ⊗ wi) for all i ∈ [r] and the kernel of Id−R′′ only contains
span of vi ⊗ wi , the kernel of M is exactly the span of the vectors (ui , vi ⊗ wi).
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Next, we show that the abovematrix M implies that Algorithm 4.1 recovers the unknown
tensor X. Recall that the algorithm on input XΩ finds a pseudo-distribution µ(x , y , z) so
as to minimize �̃µ‖x‖2 + ‖y‖2 · ‖z‖2 such that (�̃µ x ⊗ y ⊗ z)Ω � XΩ. Since everything
is scale invariant, we may assume that X �

∑r
i�1 λi · ui ⊗ vi ⊗ wi for λ1, . . . , λr > 0 and∑

i λi � 1. Then, a valid pseudo-distribution would be the probability distribution over
(u1, v1, w1), . . . , (ur , vr , wr)with probabilities λ1, . . . , λr . Let µ be the pseudo-distribution
computed by the algorithm. By optimality of µ, we know that the objective value
satisfies �̃µ‖x‖2 + ‖y‖2 · ‖z‖2 6 �i∼λ‖ui ‖

2 + ‖vi ‖
2
· ‖wi ‖

2 � 2. Then, if we let Y �

�µ(x , y ⊗ z)(x , y ⊗ z)T ,

0 6 〈M,Y〉 � �̃
µ(x ,y ,z)

‖x‖2 + ‖y‖2 · ‖z‖2 − 2〈x , T(y ⊗ z)〉
6 2 − 2 �̃

µ(x ,y ,z)
〈x , T(y ⊗ z)〉

� 2 − 2 �
i∼λ

〈ui , T(vi ⊗ wi)〉
� 0

The first step uses that M and Y are psd. The second step uses that M represents the
polynomial ‖x‖2 + ‖y‖2 · ‖z‖2 − 2〈x , T(y ⊗ z)〉. The third step uses that µminimizes the
objective function. The fourth step uses that the entries of T are 0 outside of Ω and that µ
matches the observations (�̃µ x ⊗ y ⊗ z)Ω � XΩ. The last step uses that ui � T(vi ⊗ wi) for
all i ∈ [r].

We conclude that 〈M,Y〉 � 0, which means that the range of Y is contained in the kernel
of M. Therefore, Y �

∑r
i , j�1 γi , j · (ui , vi ⊗ wi)(u j , v j ⊗ w j )T for scalars {γi , j}. We claim that

the multipliers must satisfy γi ,i � λi and γi , j � 0 for all i , j ∈ [r]. Indeed since µ matches
the observations in Ω,

0 �

n∑
i , j�1

(λi − γi , jδi j) · (ui ⊗ v j ⊗ w j)Ω .

Since the vectors (ui ⊗ v j ⊗ w j)Ω are linearly independent, we conclude that γi , j � λi · δi j

as desired. (This linear independence was one of the requirements of the certificate in
Definition 4.2.) �

4.5 Degree-4 certificates exist with high probability
In this section we show that our certificate T in fact satisfies the conditions for a degree-4
certificate, proving Theorem 4.4.

We use the same construction as in Section 4.3. The main, remaining technical challenge
for Theorem 4.4 is to show that the construction satisfies the spectral norm condition of
Definition 4.2. This spectral norm bound follows from the following theorem which we
give a proof sketch for in Appendix B.
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Theorem 4.17. Let A � (R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X) or P(R̄Ωl P) · · · (R̄Ω1P)(R̄Ω0 X) and B �

(R̄Ωl′P) · · · (R̄Ω1P)(R̄Ω0 X) or P(R̄Ωl′P) · · · (R̄Ω1P)(R̄Ω0 X). There is an absolute constant C such
that for any α > 1 and β > 0,

�





∑
a

Aa ⊗ BT
a


> α−(l+l′+2)


< n−β

as long as m > Cαβµ
3
2 rn1.5

· log(n) and m > Cαβµ2rn log(n).

Remark 4.18. If itwere true in general that ||∑a Aa ⊗ BT
a || 6

√
||∑a Aa ⊗ AT

a ||
√
||∑a Ba ⊗ BT

a ||
then it would be sufficient to use Theorem 4.13 and we would not need to prove Theorem
4.17. Unfortunately, this is not true in general.

That said, it may be possible to show that even if we do not know directly that
||∑a Aa ⊗ BT

a || is small, since ||∑a Aa ⊗ AT
a || and ||∑a Ba ⊗ BT

a || are both small there must
be some alternative matrix representation of

∑
a Aa ⊗ BT

a which has small norm, and this is
sufficient. We leave it as an open problem whether this can be done.

We have now all ingredients to prove Theorem 4.4.

Proof of Theorem 4.4. Let k � (log n)C for some absolute constant C > 1. Let E �

(−1)kP(PR̄Ωk ) · · · (PR̄Ω1)[X]. By Lemma 4.12 there exists Y with (Y)Ω � Y and P[Y] � E
such that ‖Y‖F 6 O(1)‖E‖. We let T � T(k) + Y. This tensor satisfies the desired linear
constraints (T)Ω � T and P[T] � X. Since E has the form of the matrices in Theorem 4.17,
the bound in Theorem 4.17 implies ‖E‖F 6 2−k

· n10 6 n−C+10. (Here, we use that the norm
in the conclusion of Theorem 4.17 is within a factor of n10 of the Frobenius norm.)

We are to prove that the following matrix has spectral norm bounded by 0.01,

n∑
a�1

(T)a ⊗ (T)Ta −
n∑

a�1
Xa ⊗ XT

a .

We expand the sum according to the definition of T(`) in Eq. (4.21). Then, most terms that
appear in the expansion have the form as in Theorem 4.17. Since those terms decrease
geometrically, we can bound their contribution by 0.001 with probability 1 − n−ω(1). The
terms that involve the error correction Y is smaller than 0.001 because Y has polynomially
small norm ‖Y‖F 6 n−C+10. The only remaining terms are cross terms between X and a
tensor of the form as in Theorem 4.17. We can bound the total contribution of these terms
also bounded by at most 0.001 using Theorem B.27. �

5 Matrix norm bound techniques
In this section, we describe the techniques that we will use to prove probabilistic norm
bounds on matrices of the form Y �

∑
a (R̄ΩA)a ⊗ (R̄ΩA)Ta . We will prove these norm

bounds using the trace moment method, which obtains probabilistic bounds on the norm
of a matrix Y from bounds on the expected value of tr((YYT)q) for sufficiently large q.
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This will require analyzing tr((YYT)q), which will take the form of a sum of products,
where the terms in the product are either entries of A or terms of the form R̄Ω(a , b , c)
where R̄Ω(a , b , c) � n3

m − 1 if (a , b , c) ∈ Ω and −1 otherwise. To analyze tr((YYT)q), we will
group products together which have the same expected behavior on the R̄Ω(a , b , c) terms,
forming smaller sums of products. For each of these sums, we can then use the same
bound on the expected behavior of the R̄Ω(a , b , c) terms for each product in the sum. This
allows us to move this bound outside of the sum, leaving us with a sum of products of
entries of A. We will then bound the value of these sums by carefully choosing the order
in which we sum over the indices.

In the reainder of this section and in the next two sections, we allow for our tensors to
have asymmetric dimensions. We account for this with the following definitions.

Definition 5.1. Wedefine n1 to the dimension of the u vectors, n2 to be the dimension of the
v vectors, and n3 to be the dimension of the w vectors. We define nmax � max {n1, n2, n3}

5.1 The trace moment method
We use the trace moment method through the following proposition and corollary.

Proposition 5.2. For any random matrix Y, for any integer q > 1 and any ε > 0,

Pr

||Y || > 2q

√
E [tr((YYT)q)]

ε


< ε

Proof. By Markov’s inequality, for all integers q > 1 and all ε > 0

Pr

tr((YYT)q) > E

�
tr((YYT)q)�

ε


< ε

The result now follows from the observation that if ||Y || > 2q
√

E[tr((YYT)q)]
ε then tr((YYT)q) >

E[tr((YYT)q)]
ε . �

Corollary 5.3. For a given p > 1, r > 0, n > 0, and B > 0, for a random matrix Y, if
E

�
tr

�(YYT)q��
6 (qpB)2qnr for all integers q > 1 then for all β > 0,

Pr
[
||Y || > Bep

( (r + β)
2p

ln n + 1
)p ]

< n−β

Proof. We take ε � n−β and we choose q to minimize 2q
√

(qp B)2q nr

ε � Bqp n
r+β
2q . Setting the

derivative of this expression to 0 we obtain that ( p
q −

r+β
2q2 ln n)Bqp n

r+β
2q � 0, so we want

q �
r+β
2p ln n. However, q must be an integer, so we instead take q � d r+β

2p ln ne. With this q,
we have that

Bqpn
r+β
2q 6 B

(
r + β

2p
ln n + 1

)p

n
p

ln n � Bep
( (r + β)

2p
ln n + 1

)p
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Applying Proposition 5.2 with q, we obtain that

Pr

||Y || > 2q

√
E [tr((YYT)q)]

ε


6 Pr

[
||Y || > Bep

( (r + β)
2p

ln n + 1
)p ]

< n−β

�

5.2 Partitioning by intersection pattern
As discussed at the beginning of the section, E

�
tr((YYT)q)� will be a sum of products,

where part of these products will be of the form
∏2q′

i�1 R̄Ω(ai , bi , ci). Here, q′ may or
may not be equal to q, in fact we will often have q′ � 2q because each Y will contribute
two terms of the form R̄Ω(a , b , c) to the product. To handle this part of the product, we
partition the terms of our sum based on the intersection pattern of which triples (ai , bi , ci)
are equal to each other. Fixing an intersection pattern determines the expected value of∏2q′

i�1 R̄Ω(ai , bi , ci).
Definition 5.4. We define an intersection pattern to be a set of equalities and inequalities
satisfying the following conditions

1. All of the equalities and inequalities are of the form (ai1 , bi1 , ci1) � (ai2 , bi2 , ci2) or
(ai1 , bi1 , ci1) , (ai2 , bi2 , ci2), respectively.

2. For every i1, i2, either (ai1 , bi1 , ci1) � (ai2 , bi2 , ci2) is in the intersections pattern or
(ai1 , bi1 , ci1) , (ai2 , bi2 , ci2) is in the intersection pattern

3. All of the equalities and inequalities are consistent with each other, i.e. there exist
values of (a1, b1, c1), · · · , (a2q , b2q , c2q) satisfying all of the equalities and inequalities
in the intersection pattern.

Proposition 5.5. For a given (a , b , c),
1. E

�
R̄Ω(a , b , c)� � 0

2. For all k > 1, E
[�

R̄Ω(a , b , c)�k
]
6

� n1n2n3
m

�k−1

Corollary 5.6. For a given intersection pattern, if there is any triple (a , b , c) which appears
exactly once, E

[∏2q′

i�1 R̄Ω(ai , bi , ci)
]
� 0. Otherwise, letting z be the number of distinct triples,

E
[∏2q′

i�1 R̄Ω(ai , bi , ci)
]
6

� n1n2n3
m

�2q′−z

Proof. for a given intersection pattern, let (ai1 , bi1 , ci1), · · · , (aiz , biz , ciz ) be the distinct triples
and let c j be the number of times the triple (ai j , bi j , ci j ) appears. We have that

E


2q′∏
i�1

R̄Ω(ai , bi , ci)

�

z∏
j�1

E
[(

R̄Ω(ai j , bi j , ci j )
) c j ]
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If c j � 1 for any j then this expression is 0. Otherwise,

z∏
j�1

E
[(

R̄Ω(ai j , bi j , ci j )
) c j ]
6

z∏
j�1

(n1n2n3
m

) c j−1
�

(n1n2n3
m

) (∑z
j�1 c j

)
−z

�

(n1n2n3
m

)2q′−z

�

5.3 Bounding sums of products of tensor entries
In this subsection, we describe how to bound the sum of products of tensor entries we
obtain for a given intersection pattern after moving our bound on the expected value of
the R̄Ω(a , b , c) terms outside the sum. We represent such a product with a hypergraph as
follows.

Definition 5.7. Given a set of distinct indices and a set of tensor entries on those indices,
let H be the hypergraph with one vertex for each distinct index and one hyperedge for each
tensor entry, where the hyperedge consists of all indices contained in the tensor entry. If
the tenor entry appears to the pth power, we take this hyperedge with multiplicity p.

With this definition in mind, we will first preprocess our products.

1. We will preprocess the tensor entries so that every entry appears to an even power
using the inequality |ab | 6 1

2(a2 + b2). This has the effect of taking two hyperedges of
our choice in H and replacing them with one doubled hyperedge or the other (we
have to consider both possibilities). Note that this step makes all of our terms positive
and can only increase their magnitude, so the result will be an upper bound on our
actual sum.

2. We will add the missing terms to our sum so that for we sum over every possibility
for the distinct indices (even the possibilities which make several of these indices
equal and would put us in a different intersection pattern). Note that this can only
increase our sum.

Remark 5.8. It is important that we first bound the expected value of the R̄Ω(a , b , c) terms
and move this bound outside of our sum before adding the missing terms to the sum.

After preprocessing our products, our strategy will be as follows. We will sum over
the indices, removing the corresponding vertices from H. As we do this, we will apply
appropriate bounds on squared tensor entries, removing the corresponding doubled
hyperedge from H. To obtain these bounds, we observe that we can bound the average
square of our tensor entries in terms of the number of indices we are averaging over.

Definition 5.9. We say that an order 3 tensor A of dimensions n1 × n2 × n3 is (B, r, µ)-
bounded if the following bounds are true

1. maxa ,b ,c {A2
abc} 6 Br
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2. max {maxb ,c { 1
n1

∑
a A2

abc},maxa ,c { 1
n2

∑
b A2

abc},maxa ,b { 1
n3

∑
c A2

abc}} 6 B
µ

3. max {maxc { 1
n1n2

∑
a ,b A2

abc},maxb { 1
n1n3

∑
a ,c A2

abc},maxa { 1
n2n3

∑
b ,c A2

abc}} 6 B
µ2

4. 1
n1n2n3

∑
a ,b ,c A2

abc 6
B
µ3

More generally, we say that a tensor A is (B, r, µ)-bounded if the following is true

1. The maximum value of an entry of A squared is at most Br

2. Every index which we average over decreases our upper bound by a factor of µ

3. If we are averaging over at least one index then we can delete the factor of r in our
bound.

Since r and µ will always be the same, we write B-bounded rather than (B, r, µ)-bounded
To give a sense of why these are the correct type of bounds to use, we now show that X

is
(

rµ3

n1n2n3

)
-bounded. In Section 7, we will use an iterative argument to show that with high

probability, similar bounds hold for all of the tensors A we will be considering.

Proposition 5.10. X is
(

rµ3

n1n2n3

)
-bounded

Proof. Recall that X �
∑r

i�1 ui ⊗ vi ⊗ wi where the vectors {ui} are orthogonal, the vectors
{vi} are orthogonal, and the vectors {wi} are orthogonal. Also recall that for all i , a , b , c,
u2

ia 6
µ
n1
, v2

ib 6
µ
n2
, and w2

ic 6
µ
n3
. We now have the following bounds:

1.

max
a ,b ,c

{X2
abc} � max

a ,b ,c




r∑
i�1

r∑
i′�1

uiavib wic ui′a vi′b wi′c



6

r2µ3

n1n2n3

2.

max
b ,c




1
n1

∑
a

X2
abc



�

1
n1

max
b ,c




∑
a

r∑
i�1

r∑
i′�1

uia vib wic ui′a vi′bwi′c




�
1
n1

max
b ,c




r∑
i�1

r∑
i′�1

*
,

∑
a

uiaui′a+
-

vib wic vi′bwi′c




�
1
n1

max
b ,c




r∑
i�1

v2
ib w2

ic




6
rµ2

n1n2n3

The other bounds where we sum over one index follow by symmetrical arguments.
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3.

max
c




1
n1n2

∑
a ,b

X2
abc



�

1
n1n2

max
c




∑
a ,b

r∑
i�1

r∑
i′�1

uia vib wic ui′a vi′bwi′c




�
1

n1n2
max

c




r∑
i�1

r∑
i′�1

*
,

∑
a

uia ui′a+
-

*
,

∑
b

vib vi′b+
-

wic wi′c




�
1

n1n2
max

c




r∑
i�1

w2
ic




6
rµ

n1n2n3

The other bounds where we sum over two indices follow by symmetrical arguments.

4.

1
n1n2n3

∑
a ,b ,c

X2
abc �

1
n1n2n3

∑
a ,b ,c

r∑
i�1

r∑
i′�1

uia vib wic ui′a vi′bwi′c

�
1

n1n2n3

r∑
i�1

r∑
i′�1

*
,

∑
a

uia ui′a+
-

*
,

∑
b

vib vi′b+
-

*
,

∑
c

wic wi′c+
-

�
1

n1n2n3

r∑
i�1

1

�
r

n1n2n3

�

With these kinds of bounds in mind, we bound sums of products of tensor entries
as follows. We note that we can always apply the entrywise bound for a squared tensor
entry. However, to apply any of the other bounds, we must be able to sum over an index or
indices where the only term in our product which depends on this index or indices is the
squared tensor entry. This can be described in terms of the hypergraph H as follows.

Definition 5.11. Given a hyperedge e in H, define b(e) to the the minimal B such that the
tensor entry corresponding to e is B-bounded.

Definition 5.12. We say that a vertex is free in H if it contained in only one hyperedge and
this hyperedge appears with multiplicity two.

We can apply our bounds in the following ways.

1. We can always choose a hyperedge e of H, use the entrywise bound of rb(e) on
the corresponding squared tensor entry (note the extra factor of r), and reduce the
multiplicity of e by two.
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2. If there is a free vertex incident with a doubled hyperedge e in H, we can sum over
all free vertices which are incident with e using the corresponding bound then delete
these vertices and the doubled hyperedge e from H. When we do this, we obtain a
factor of

b(e)
(

n1
µ

)# of deleted a vertices (
n2
µ

)# of deleted b vertices (
n3
µ

)# of deleted c vertices

The factors of n1, n2, n3 appear because we are summing over these indices and the
factors of 1

µ appear because each index we sum over reduces the bound on the average
value by a factor of µ.

If we apply these bounds repeatedly until there are no tensor entries/hyperedges left to
bound, our final bound on a single sum of products of tensor entries will be

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a indices (
n2
µ

)# of b indices (
n3
µ

)# of c indices

r# of entrywise bounds used

To prove our final upper bound, we will argue that we can always apply these bounds in
such a way that the number of times we need to use an entrywise bound is sufficiently
small.

5.4 Counting intersection patterns
There will be one more factor in our final bound. This factor will come from the number of
possible intersection patterns with a given number z of distinct triples (a , b , c).
Lemma 5.13. The total number of intersection patterns on 2q′ triples with z distinct triples (a , b , c)
such that every triple (a , b , c) has multiplicity at least two is at most

�2q′
z

�
z2q′−z 6 22q′q′2q′−z

Proof. To determine which triples (a , b , c) are equal to each other, it is sufficient to decide
which triples are distinct from all previous triples (there are

�2q′
z

�
choices for this) and for

the remaining 2q′ − z triples, which of the z distinct triples they are equal to (there are
z2q′−z choices for this). �

6 Trace Power Calculation for R̄ΩA ⊗ (R̄ΩA)T
In this section, we implement the techniques described in Section 5 to probabilistically
bound ||R̄ΩA ⊗ (R̄ΩA)T ||. In particular, we prove the following theorem.

Theorem 6.1. If A is B-bounded, C > 1, and

1. m > 10000C(2 + β)2nmax rµ2 ln nmax

2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 +

β)2r
√

n1n2n3µ
3
2 ln nmax
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3. µr 6 min {n1, n2, n3}
then defining Y � R̄ΩA ⊗ (R̄ΩA)T ,

Pr
[
||Y || > Bn1n2n3

Crµ3

]
< 4n−(β+1)

Corollary 6.2. If C > 1 and

1. m > 10000C(2 + β)2nmax rµ2 ln nmax

2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 +

β)2r
√

n1n2n3µ
3
2 ln nmax

3. µr 6 min {n1, n2, n3}
then

Pr
[
||R̄ΩX ⊗ (R̄ΩX)T || > 1

C

]
< 4n−(β+1)

Proof. This follows immediately from Theorem 6.1 and the fact that X is
(

rµ3

n1n2n3

)
-bounded.

�

To prove Theorem 6.1, we break up Y into four parts and then prove probabilistic norm
bounds for each part.

Definition 6.3.

1. Define (Y1)bcb′c′ � Ybcb′c′ if b � b′, c � c′ and 0 otherwise.

2. Define (Y2)bcb′c′ � Ybcb′c′ if b � b′, c , c′ and 0 otherwise.

3. Define (Y3)bcb′c′ � Ybcb′c′ if b , b′, c � c′ and 0 otherwise.

4. Define (Y4)bcb′c′ � Ybcb′c′ if b , b′, c , c′ and 0 otherwise.

6.1 Structure of tr((YjYT
j )q)

We have that Ybcb′c′ �
∑

a R̄Ω(a , b , c′)R̄Ω(a , b′, c)Aabc′Aab′c . To see the structure of (YYT)q ,
we now compute YYT .

(YYT)b1c1b2c2 �∑
a1 ,a2 ,b′,c′

R̄Ω(a1, b1, c′)R̄Ω(a1, b′, c1)R̄Ω(a2, b2, c′)R̄Ω(a2, b′, c2)Aa1b1c′Aa1b′c1Aa2b2c′Aa2b′c2

The R̄Ω termswill not be part of our hypergraph H (as their expected behavior is determined
by the intersection pattern). We can view the first two terms Aa1b1c′ and Aa1b′c1 as an
hourglass with upper triangle (b1, a1, c′) and lower triangle (c1, a1, b′) (where the vertices in
each triangle are listed from left to right). Similarly, we can view the last two terms Aa2b2c′
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and Aa2b′c2 as an hourglass with upper triangle (c′, a2, b2) and lower triangle (b′, a2, c2).
Thus, the hypergraph H corresponding to tr((YjYT

j )q)will be 2q hourglasses glued together
where the top vertices of the hourglass alternate between b and c′ indices, the bottom
vertices of the hourglass alternate between c and b′ indices, and the middle vertices of the
hourglass are the a indices.

Remark 6.4. While there is no real difference between the b and b′ indices and between the
c and c′ indices, we will keep track of this to make it easier to see the structure of H.

As described in Section 5, we split up E
[
tr((YjYT

j )q)
]
based on the intersection pattern

of which of the 4q triples of the form (a , b , c′) or (a , b′, c) are equal to each other. We only
need to consider patterns where each triple and thus each hyperedge appears at least twice,
as otherwise the terms in the sum will have expected value 0. In all cases, letting z be the
number of distinct triples in a given intersection pattern, by Corollary 5.6 our bound on
the expected value of the R̄Ω terms will be

� n1n2n3
m

�4q−z

6.2 Bounds on ||Y1||
Consider E

�
tr((Y1YT

1 )q)�. The constraints that b′ � b and c′ � c in every Y force all of the b
and b′ indices to be equal and all of the c and c′ indices to be equal, so our hypergraph H
consists of a single vertex b, a single vertex c, and two copies of the hyperedge (ai , b , c) for
each i ∈ [1, 2q]. For all intersection patterns, the number of distinct triples z is equal to the
number of distinct a indices, which can be anywhere from 1 to 2q.

We apply our bounds on H as follows.

1. In our preprocessing step, when there are two hyperedges e1 and e2 which appear
with odd multiplicity, we double one of these hyperedges or the other. Thus, we can
assume that all hyperedges appear with even multiplicity.

2. We will apply an entrywise bound 2q − z times on hyperedges of multiplicity > 4,
reducing the multiplicity by 2 each time.

3. After applying these entrywise bounds, all of the distinct a vertices will be free and
we can sum up over these indices one by one.

Recall that the bound from the RΩ terms is
� n1n2n3

m

�4q−z and our bound for the other terms
is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a entries (
n2
µ

)# of b entries (
n3
µ

)# of c entries

r# of entrywise bounds used

where b(e) � B for all our hyperedges. Summing over all z ∈ [1, 2q] and all intersection
patterns using Lemma 5.13, our final bound is

2q · 24q max
z∈[1,2q]

{
(2q)4q−z

(n1n2n3
m

)4q−z
B2q

(
n1
µ

) z (
n2
µ

) (
n3
µ

)
r2q−z

}
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The inner expression will either be maximized at z � 2q or z � 1 and we will always take q
to be between ln nmax

2 and nmax
2 , so our final bound on E

�
tr((Y1YT

1 )q)� is at most

(4q)4q max



nmax *
,

n2
1n2n3B

mµ ln nmax
+
-

2q (
n2
µ

) (
n3
µ

)
, *

,

n2
1n2

2n2
3rB

m2
+
-

2q
m

rµ3




Since m > 10000C(2 + β)2nmax rµ2 ln nmax and m > 10000C(2 + β)2r
√

n1n2n3µ
3
2 ln nmax , we

have that

E
�
tr((Y1YT

1 )q)� < (16q2)2q
(

n1n2n3B
10000C(2 + β)2rµ3(ln nmax)2

)2q

n3
max

(note that m < n3
max as otherwise the tensor completion problem is trivial). We now recall

Corollary 5.3, which says that for a given p > 1, r > 0, n > 0, and B > 0, for a random
matrix Y, if E

�
tr

�(YYT)q��
6 (qpB)2q nr for all integers q > 1 then for all β > 0,

Pr
[
||Y || > Bep

( (r + β)
2p

ln n + 1
)p ]

< n−β

Using Corollary 5.3 with the appropriate parameters, we can show that for all β > 0,

P
[
||Y1 || > 16e2Bn1n2n3

10000rµ3

]
< n−(β+1)

max

6.3 Bounds on ||Y2|| and ||Y3||
Consider E

�
tr((Y2YT

2 )q)�. The constraint that b′ � b in every Y forces all of the b and
b′ indices to be equal, so our hypergraph H consists of a single vertex b and 4q total
hyperedges of the form (a , b , c) or (a , b , c′). Ignoring the b vertex (which is part of all the
hyperedges), the (a , c) and (a , c′) edges form a single connected component. We only need
to consider intersection patterns where each triple (a , b , c) or (a , b , c′) (and thus each edge
(a , c) or (a , c′)) appears with multiplicity at least two. For a given intersection pattern, let z
be the number of distinct edges.

We apply our bounds on H as follows.

1. In our preprocessing step, when there are two edges e1 and e2 which appear with
odd multiplicity, we double one of these edges or the other. Thus, we can assume
that all edges appear with even multiplicity.

2. We will apply an entrywise bound 2q − z times on edges of multiplicity > 4, reducing
the multiplicity by 2 each time.

3. After applying these entrywise bounds, all of our edges will have multiplicity 2. We
now sum over a free a, c, or c′ vertex in H whenever such a vertex exists. Otherwise,
there must be a cycle, in which case we use the entrywise bound on one edge of the
cycle and delete it.
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Definition 6.5. Let x be the number of times we delete an edge in a cycle using the
entrywise bound.

Lemma 6.6. The total number of vertices in H (excluding b) is z + 1 − x

Proof. Observe that neither deleting a free vertex nor deleting an edge in a cycle can
disconnect H. Also, except for the final edge where both of its vertices will be free, every
edge which has a free vertex has exactly one free vertex. Thus, we delete an edge in a cycle
x times, removing 0 vertices each time, we delete an edge with one free vertex z − x − 1
times, removing 1 vertex each time, and we delete the final edge once, removing the final
two vertices. This adds up to z + 1 − x vertices in H. �

Recall that the bound from the RΩ terms is
� n1n2n3

m

�4q−z and our bound for the other terms
is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a entries (
n2
µ

)# of b entries (
n3
µ

)# of c or c′ entries

r# of entrywise bounds used

where b(e) � B for all our hyperedges. Summing over all z ∈ [1, 2q] and all intersection
patterns using Lemma 5.13, our final bound is

2q · 24q max
z∈[1,2q],x∈[0,z−1]



(2q)4q−z

(n1n2n3
m

)4q−z
B2q

(
nmax

µ

) z−1−x (
n1n2n3

µ3

)
r2q−z+x




Since µr 6 nmax , the inner expression will either be maximized when z � 2q and x � 0 or
when z � 1 and x � 0. Again, we will always take q to be between ln nmax

2 and nmax
2 , so our

final bound on E
�
tr((Y2YT

2 )q)� is at most

(4q)(4q) max



(
n1n2n3nmaxB

mµ ln nmax

)2q (
n1n2n3

µ2

)
, *

,

n2
1n2

2n2
3rB

m2
+
-

2q
m

rµ3




Since m > 10000C(2 + β)2nmax rµ2 ln nmax and m > 10000C(2 + β)2r
√

n1n2n3µ
3
2 ln nmax , we

have that

E
�
tr((Y2YT

2 )q)� < (16q2)2q
(

n1n2n3B
10000C(2 + β)2rµ3(ln nmax)2

)2q

n3
max

Using Corollary 5.3 with the appropriate parameters (in fact the same ones as before), we
can show that for all β > 0,

P
[
||Y2 || > 16e2Bn1n2n3

10000rµ3

]
< n−(β+1)

max

By a symmetrical argument, we can obtain the same probabilistic bound on ||Y3 ||.
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6.4 Bounds on ||Y4||
Consider E

�
tr((Y4YT

4 )q)�. Our hypergraph H consists of 2q hyperedges of the form (b , a , c′)
or (c′, a , b) from the top triangles of the hourglasses and 2q hyperedges of the form
(c , a , b′) or (b′, a , c) from the bottom triangles of the hourglasses. We only need to consider
intersection patterns where each triple (and thus each hyperedge) appears with multiplicity
at least two. For a given intersection pattern, let z be the number of distinct hyperedges.

Ignoring the a vertices for now, we can think of H as a graph on the b, b′, c, and c′

vertices. Note that the (b , c′) and (c′, b) edges are part of a single connected component
and the (c , b′) and (b′, c) edges are part of a single connected component (these connected
components may or may not be the same).

We apply our bounds on H as follows.

1. In our preprocessing step, when there are two hyperedges e1 and e2 which appear
with odd multiplicity, we double one of these hyperedges or the other. Thus, we can
assume that all hyperedges appear with even multiplicity.

2. We will apply an entrywise bound 2q − z times on hyperedges of multiplicity > 4,
reducing the multiplicity by 2 each time.

3. After applying these entrywise bounds, all of our hyperedges will have multiplicity
2. We now sum over a free b,b′,c, or c′ vertex in H whenever such a vertex exists.
Otherwise, there must be a cycle on the (b , c′) and (b′, c) parts of the hyperedges, in
which case we use the entrywise bound on one hyperedge of the cycle and delete it.

Definition 6.7. Let x be the number of times we delete a hyperedge in a cycle using the
entrywise bound.

Lemma 6.8. Let k be the number of connected components of H. The total number of b,b′,c, and c′

vertices in H is z + k − x 6 z + 2 − x

Proof. The proof is similar to the proof of Lemma 6.6. Observe that neither deleting a free
vertex nor deleting an edge in a cycle can disconnect a connected component of H. Also,
except for the final edge of a connected component where both of its vertices will be free,
every edge which has a free vertex has exactly one free vertex. Thus, we delete an edge
in a cycle x times, removing 0 vertices each time, we delete an edge with one free vertex
z − x − k times, removing 1 vertex each time, and we delete the final edge of a connected
component k times, removing the final 2k vertices. This adds up to z + k − x vertices in H.
For the inequality, recall that H has at most 2 connected components, one for the (b , c′)
edges and one for the (c , b′) edges. �

Finally, we bound the number of distinct a indices

Proposition 6.9. The number of distinct a indices is at most z
2 .

Proof. Note that by the definition of Y4, every a index must be part of at least two distinct
hyperedges. �
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Recall that the bound from the RΩ terms is
� n1n2n3

m

�4q−z and our bound for the other
terms is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a entries (
n2
µ

)# of b or b′ entries (
n3
µ

)# of c or c′ entries

r# of entrywise bounds used

where b(e) � B for all our hyperedges. Summing over all z ∈ [2, 2q] and all intersection
patterns using Lemma 5.13, our final bound is

2q·24q max
z∈[1,2q],x∈[0,z−2]



(2q)4q−z

(n1n2n3
m

)4q−z
B2q

(
n1
µ

) z
2
(

max {n2, n3}
µ

) z−2−x
*
,

n2
2n2

3
µ4

+
-

r2q−z+x



Since µr 6 min {n1, n2, n3}, the inner expression will either be maximized when z � 2q
and x � 0 or when z � 2 and x � 0. Again, we will always take q to be between ln nmax

2 and
nmax

2 , so our final bound on E
�
tr((Y2YT

2 )q)� is at most

(4q)(4q) max



*
,

n1n2n3
√

n1 max {n2, n3}B

mµ
3
2 ln nmax

+
-

2q (
n3

max

µ2

)
, *

,

n2
1n2

2n2
3rB

m2
+
-

2q
m2

r2µ5n1




Since m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax , we have that

E
�
tr((Y4YT

4 )q)� < (16q2)2q
(

n1n2n3B
10000C(2 + β)2rµ3(ln nmax)2

)2q

n6
max

Using Corollary 5.3 with the appropriate parameters, we can show that for all β > 0,

P
[
||Y4 || > 16e2Bn1n2n3

10000rµ3

]
< n−(β+1)

max

Putting our four bounds together with a union bound, for all β > 0,

P
[
||Y || > Bn1n2n3

rµ3

]
6 P

[
||Y || > 64e2Bn1n2n3

10000rµ3

]
< 4n−(β+1)

max

as needed.

7 Iterative tensor bounds
In this section, we show that with high probability, applying the operator PR̄Ω to an
order 3 tensor A improves our bounds on it, where we are assuming that Ω is chosen
independently of A.

Theorem 7.1. If A is a B-bounded tensor, C > 1, β > 0, and

1. m > 10000C(2 + β)2nmax rµ2 ln nmax
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2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 +

β)2r
√

n1n2n3µ
3
2 ln nmax

3. µr 6 min {n1, n2, n3}
then

Pr
[
PR̄ΩA is not

( B
C

)
-bounded

]
< 100n−(β+1)

max

Proof. We first consider how P acts on a tensor

Definition 7.2.

1. Define PUV to be the projection onto span{ui ⊗ vi ⊗ w : i ∈ [1, r]}.
2. Define PUW to be the projection onto span{ui ⊗ v ⊗ wi : i ∈ [1, r]}.
3. Define PVW to be the projection onto span{u ⊗ vi ⊗ wi : i ∈ [1, r]}.
4. Define PUVW to be the projection onto span{ui ⊗ vi ⊗ wi : i ∈ [1, r]}.

Proposition 7.3. P � PUV + PUW + PVW − 2PUVW

With this in mind, we break up the tensor W � PR̄ΩA into four parts and then obtain
probabilistic bounds for each part. Theorem 7.1 will then follow from the union bound
and the inequality (a + b + c − 2d)2 6 5(a2 + b2 + c2 + 2d2).
Definition 7.4.

1. Define WUV � PUV R̄ΩA.

2. Define WUW � PUW R̄ΩA.

3. Define WVW � PVW R̄ΩA.

4. Define WUVW � PUVW R̄ΩA.

To analyze these parts, we reexpress PUV , PUW , PVW , PUVW in terms of matrices
UV,UW,VW,UVW .

Definition 7.5.

1. Define UVaba′b′ �
∑r

i�1 uiavib uia′vib′

2. Define UWaca′c′ �
∑r

i�1 uiawic uia′wic′

3. Define VWbcb′c′ �
∑r

i�1 vib wic vib′wic′

4. Define UVWabca′b′c′ �
∑r

i�1 uiavib wic uia′vib′wic′

Proposition 7.6.

1. UV is
(

rµ4

n2
1n2

2

)
-bounded.
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2. UW is
(

rµ4

n2
1n3

2

)
-bounded.

3. VW is
(

rµ4

n2
2n2

3

)
-bounded.

4. UVW is
(

rµ6

n2
1n2

2n2
3

)
-bounded.

Proof. These bounds can be proved in the same way as Proposition 5.10. �

Proposition 7.7.

1. WUV
abc �

∑
a′,b′ UVaba′b′R̄Ω(a′, b′, c)Aa′b′c

2. WUW
abc �

∑
a′,c′ UVaca′c′R̄Ω(a′, b , c′)Aa′bc′

3. WVW
abc �

∑
b′,c′ UVbcb′c′R̄Ω(a , b′, c′)Aab′c′

4. WUVW
abc �

∑
a′,b′,c′ UVabca′b′c′R̄Ω(a′, b′, c′)Aa′b′c′

Proposition 7.8.

1.
(
WUV

abc

)2
�

∑
a′1 ,b

′

1 ,a
′

2 ,b
′

2
UVaba′1b′1UVaba′2b′2 R̄Ω(a′1, b′1, c)R̄Ω(a′2, b′2, c)Aa′1b′1cAa′2b′2c

2.
(
WUW

abc

)2
�

∑
a′1 ,c

′

1 ,a
′

2 ,c
′

2
UWaca′1c′1UWaca′2c′2 R̄Ω(a′1, b , c′1)R̄Ω(a′2, b , c′2)Aa′1bc′1Aa′2bc′2

3.
(
WVW

abc

)2
�

∑
b′1 ,c

′

1 ,b
′

2 ,c
′

2
VWbcb′1c′1VWbcb′2c′2 R̄Ω(a , b′1, c′1)R̄Ω(a , b′2, c′2)Aab′1c′1Aab′2c′2

4.
�
WUVW

abc

�2
�∑

a′1 ,b
′

1 ,c
′

1 ,a
′

2 ,b
′

2 ,c
′

2

UVWabca′1b′1c′1UVWabca′2b′2c′2 R̄Ω(a′1, b′1, c′1)R̄Ω(a′2, b′2, c′2)Aa′1b′1c′1Aa′2b′2c′2

Weneed toprobabilistically bound the expressions
∑

subset of {a ,b ,c} (WUV,UW,VW, or UVW
a ,b ,c )2.

For each expression which we need to probabilistically bound, we can obtain this bound by
analyzing the expected value of its qth power using the techniques in Section 5 and then
using a result similar to Corollary 5.3. We begin by probabilistically bounding

(
WUVW

abc

)2
.

As the remaining bounds will all be very similar, rather than giving a full proof of the
remaining bounds we will only describe the few differences and what effect they have.

Lemma 7.9. For all a , b , c and all β > 0, if m > 10000C(2 + β)2nmax rµ2 ln nmax then

P
[�

WUVW
abc

�2
>

32e2Brµ
10000Cnmax

]
< n−(β+4)

max
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Proof. Similar to before, we partition our sum based on the intersection pattern of which
(a′i , b′i , c′i) are equal. Letting z be the number of distinct triples (a′i , b′i , c′i), the contribution
from the R̄Ω(a′i , b′i , c′i) terms will be at most a factor of

� n1n2n3
m

�2q−z . Recall that for a given
intersection pattern, our bound on the remaining terms is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a or a′ indices (
n2
µ

)# of b or b′ indices (
n3
µ

)# of c or c′ indices

r# of entrywise bounds used

Remark 7.10. Here we will only be summing over a′,b′, and c′, indices, but for other
expressions we will be summing over a, b, and c indices as well.

In our hypergraph H, we will have hyperedges (a′i , b′i , c′i) corresponding to the tensor
entries Aa′i ,b

′

i ,c
′

i
and we will have hyperedges (a , b , c , a′i , b′i , c′i) corresponding to the matrix

entries UVWa ,b ,c ,a′i ,b
′

i ,c
′

i
. We have that

∏
e∈H

√
b(e) � Bq *

,

rµ6

n2
1n2

2n2
3

+
-

q

We apply our bounds on H as follows.

1. In our preprocessing step, we ensure that all of the hyperedges (a′, b′, c′) occur with
even multiplicity and every distinct (a′, b′, c′) has multiplicity at least two. If all of
the hyperedges (a , b , c , a′, b′, c′) have the same a , b , c, which is the case here, then we
ensure that all of these hyperedges occur with even multiplicity and (a , b , c , a′, b′, c′)
occurs with multiplicity at least 2 for every distinct (a′, b′, c′). If not, which will
happen in other cases, we take the two (a , b , c , a′, b′, c′) hyperedges coming from
each (WUVW

abc )2 and double one or the other. When this happens, all of the (a , b , c)
will be distinct because we will be summing over at least one of these indices and our
intersection patterns say nothing about the (a , b , c) indices, so this ensures that each
(a , b , c) occurs with multiplicity exactly 2.

2. If all of the hyperedges (a , b , c , a′, b′, c′) have the same a , b , c, which happens here,
we apply an entrywise bound q times to the (a , b , c , a′, b′, c′) hyperedges. If instead
each (a , b , c) appears with multiplicity 2 and always contains at least one free index,
which will happen in other cases, we will apply the appropriate bounds on the
(a , b , c , a′, b′, c′) hyperedges.

3. We will apply an entrywise bound q− z times on hyperedges (a′, b′, c′) of multiplicity
> 4, reducing the multiplicity by 2 each time. After doing this, all our hyperedges
will have multiplicity 2. We now ignore the c′ vertices and consider the graph on the
a′, b′ vertices. We then sum over a free a′ or b′ vertex in H whenever such a vertex
exists. Otherwise, there must be a cycle (which could be a duplicated edge if we have
hyper-edges (a′, b′, c′1) and (a′, b′, c′2)), in which case we use the entrywise bound on
one edge of the cycle and delete it.
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Definition 7.11. Let x be the number of times we delete an edge in a cycle using the
entrywise bound.

Lemma 7.12. Let k be the number of connected components of H. The total number of a′ and b′

vertices in H is z + k − x 6 2z − 2x

Proof. The first part can be proved in exactly the sameway as Lemma 6.8. For the inequality,
we need to show that k 6 z − x. To see this, note that there are at most z distinct edges
and every time we delete an edge in a cycle, this removes one edge without reducing the
number of connected components. After removing all cycles (and no other edges), we
must have at least as many edges left as we have connected components, so z − x > k, as
needed. �

Summing over all z ∈ [1, 2q] and all intersection patterns using Lemma 5.13 and noting
that there are at most z a′,b′,c′ indices but we must have two fewer a′ or b′ indices for
each time we delete an edge in a cycle using an entrywise bound, our final bound on

E
[((

WUVW
abc

)2) q ]
is

2q ·22q max
z∈[1,2q],x∈[0,z−1]




q2q−z
(n1n2n3

m

)2q−z *
,

Br2µ6

n2
1n2

2n2
3

+
-

q (
n1n2n3

µ3

) z (
µ

min {n1, n2}
)2x

rq−z+x



Since m >> rq and µr 6 min {n1, n2, n3}, the inner expression will be maximized when
z � q and x � 0. Again, we will take q to be between ln nmax

2 and nmax
2 so our final bound on

E
[((

WUVW
abc

)2) q ]
is at most

(2q)(2q)
(

2Br2µ3

m ln nmax

) q

nmax

Since m > 10000C(2 + β)2rnmaxµ2 ln nmax , we have that for all a , b , c.

E
[(�

WUVW
abc

�2
) q ]

< q2q
(

8Brµ
10000C(2 + β)2nmax(ln nmax)2

) q

nmax

Corollary 7.13. For a given p > 1, r > 0, n > 0, and B > 0, for a non-negative expression Z, if
E[Zq] 6 (qpB)2qnr for all integers q > 1 then for all β > 0,

Pr

|Z | > B2e2p

( (r + β)
2p

ln n + 1
)2p

< n−β

Proof. This can be proved in the same way as Corollary 5.3 except that |Z | takes the place
of ||YYT || which is why the bound of Corollary 5.3 is squared. �

Using Corollary 7.13 with the appropriate parameters, we can show that for all β > 0,
for all a , b , c

P
[�

WUVW
abc

�2
>

32e2Brµ
10000Cnmax

]
< n−(β+4)

max

�
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All of the remaining bounds can be proved in a similar way, we now describe the few
differences.

We first consider the remaining bounds involving WUVW . If we average over at least
one coordinate, then instead of using entrywise bounds on the (a , b , c , a′, b′, c′) hyperedges,
the index or indices we average over will create free vertices, allowing us to bound the
(a , b , c , a′, b′, c′) hyperedges without using any entrywise bounds. This reduces our power
bound by a factor of rq and thus reduces our final bound by a factor of r. Moreoever, each
index that we average over reduces our final bound by a factor of µ. For example, if we are
averaging over the a indices, then having these extra indices gives us an additional factor
of

(
n1
µ

) q
in our power bound and thus a factor of n1

µ in our final bound. However, since
we are taking an average rather than a sum, we divide this by n1, so our final bound is
reduced by factor of µ, as needed.

At this point, we just need to consider the bounds involving WUV , as the remaining cases

are symmetric. When we analyze WUV rather than WUVW , instead of having
(

Br2µ6

n2
1n2

2n2
3

) q

in our power bound from the (a , b , c , a′, b′, c′) hyperedges, we will have
(

Br2µ4

n2
1n2

2

) q
from

(a , b , a′, b′) hyperedges, increasing our power bound by a factor of
(

n2
3
µ2

) q
. However, this is

partially counteracted by the fact that we are either no longer summing over the c′ indices
separately from the c indices because we always have that c′i � ci . This removes a factor of

( n3
µ )z from our power bound. Thus, our bound on E

[((
WUV

abc

)2) q ]
is now

2q · 22q max
z∈[1,2q],x∈[0,z−1]




q2q−z
(n1n2n3

m

)2q−z *
,

Br2µ4

n2
1n2

2

+
-

q (
n1n2

µ2

) z (
µ

min {n1, n2}
)2x

rq−z+x



We check that it is still optimal to take z � q and x � 0. Since rµ 6 min {n1, n2, n3},
it is always optimal to take x � 0. Now if we reduce z by 1, this gives us a factor
of at most qn1n2n3

m ·
rµ2

n1n2
�

qrµ2n3
m . We will take q 6 10(1 + β) ln nmax and we have that

m > 10000C(2 + β)2nmax rµ2 ln nmax , so it is indeed still optimal to take z � q and x � 0.
Thus, the net effect of the differences is a factor of

(
n3
µ

) q
in our power bound and which

gives us a factor of n3
µ in our final bound. This gives us the following bound.

Lemma 7.14. For all a , b , c and all β > 0, if m > 10000C(2 + β)2nmax rµ2 ln nmax then

P
[�

WUV
abc

�2
>

32e2Br
10000C

]
< n−(β+4)

max

We now consider what happens if we average over one or more of the a, b, and c
indices. If we average over the a indices or average over the b indices, then instead of
using entrywise bounds on the (a , b , a′, b′) hyperedges, the index or indices we average
over will create free vertices, allowing us to bound the (a , b , a′, b′) hyperedges without
using any entrywise bounds. We can now use the same reasoning as before. The final
case is if we only average of the c indices. To handle this, instead of first processing the
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(a , b , a′, b′) hyperedges and then processing the (a′, b′, c′) hyperedges, we will first process
the (a′, b′, c′) hyperedges using all of the distinct c′ vertices and process the (a , b , a′, b′)
hyperedges in the same way that we processed the (a′, b′, c′) hyperedges before.

Letting y � z − (# of distinct c), we have the following bounds on the number of a′, b′, c
indices and the number of times we will use an entrywise bound

1. There are at most z a′ indices and there are at most z b′ indices.

2. There are at most 2z − 2x a′ and b′ indices, where x is the number of times we use an
entrywise bound because of an edge in a cycle.

3. There are (z − y) c indices.

4. The number of times that we will use an entrywise bound is 2q − 2z + x + y

We check that it is optimal to take z � q, x � 0, and y � 0. Since rµ 6 min {n1, n2, n3},
it is always optimal to take x � y � 0. Now if we reduce z by 1, this gives us a factor
of at most qn1n2n3

m ·
r2µ3

n1n2n3
�

qr2µ3

m . We will take q 6 10(1 + β) ln nmax and we have that
rµ 6 min {n1, n2, n3} and m > 10000C(2 + β)2nmax rµ2 ln nmax , so it is indeed optimal to
take z � q, x � 0, and y � 0 and thus the optimal case has no entrywise bounds. This
implies that the same bounds hold when we average over the c indices as when we average
over the a or b indices and we have all of our needed probabilistic bounds. Theorem
7.1 now follows from the inequality W2

abc 6 5
((WUV

abc )2 + (WUW
abc )2 + (WVW

abc )2 + 2(WUVW
abc )2)

and union bounds. �

8 Trace Power Calculation for PR̄ΩA ⊗ (PR̄ΩA)T
In this section, we give a sketch of how to prove the following theorem.

Theorem 8.1. If A is B-bounded, C > 1, and

1. m > 10000C(2 + β)2nmax rµ2 ln nmax

2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 +

β)2r
√

n1n2n3µ
3
2 ln nmax

3. µr 6 min {n1, n2, n3}
then

Pr
[
||Y || > Bn1n2n3

Crµ3

]
< 4n−(β+1)

whenever Y is any of the following:

1. Y � PUV R̄ΩA ⊗ (PUV R̄ΩA)T

2. Y � PUW R̄ΩA ⊗ (PUW R̄ΩA)T
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3. Y � PVW R̄ΩA ⊗ (PVW R̄ΩA)T

4. Y � PUVW R̄ΩA ⊗ (PUVW R̄ΩA)T
Proof Sketch. This can be proved using the techniques of Sections 5 and 6with one additional
trick. We first consider the PUVW case and then describe the small difference with the
other cases.

The structure of tr
�(YYT)q�

is as follows. We have (a′, b′, c′) hyperedges and we have
hyperedges (a , b , c , a′, b′, c′) which we can view as an outer triangle (a , b , c) and an inner
triangle (a′, b′, c′). The outer triangles form hourglasses as before while the inner triangles
sit inside the outer triangles.

The R̄Ω terms only involve the (a′, b′, c′) triples so our intersection patterns only describe
these indices. Thus, we sum over all of the a , b , c indices freely. We now use the following
additional trick. We decompose each UVWabca′b′c′ as

∑r
i�1 uiavib wic uia′vib′wic′. Now every

vertex in the outer triangles appears in two hyperedges. When we sum over that vertex, we
get something like

∑
a ui1aui2a . This is 0 unless i1 � i2 and is 1 if i1 � i2. This in fact forces a

global choice for i among the UVW terms, giving a global factor of r which is negligible.
This also means that the vertices in the outer triangles give a factor of exactly 1, so they can
be ignored! For the remaining terms of UVW , we use the bounds u2

ia 6
µ
n1
, v2

ib 6
µ
n2
, and

w2
ic 6

µ
n3
.

We now consider the contribution from summing over the a′, b′, c′ vertices, the con-
tribution from the R̄Ω terms, and the contribution from the entries of A. Letting z be the
number of distinct triples (a′, b′, c′) in the given intersection pattern, the contribution from
the R̄Ω terms will be

� n1n2n3
m

�4q−z . The contribution from the entries of A from the b(e) is
B2q . Letting x be the number of times that we have to use an entrywise bound on a doubled
edge because it is in a cycle, we have the following bounds on the number of indices and
the number of times we use an entrywise bound.

1. The number of distinct a indices, the number of distinct b indices, and the number of
distinct c indices are all at most z

2. The total number of distinct indices is at most 3z − x.

3. The number of times we use an entrywise bound is 2q − z + x

It is easily checked that it is optimal to take z � 2q and x � 0. In this case, the factors from
summing over the indices and the remaining factors from the UVW terms cancel each
other out! Thus, ignoring the terms from the number of intersection patterns (which gives
a function of q), we are left with roughly B2q � n1n2n3

m

�2q .

This is much less than our previous bound of roughly
(

n1n2n3
√

n1 max {n2 ,n3}B

mµ
3
2

)2q

which

we had for Y4, so we get a correspondingly smaller norm bound, as needed.
The analysis us exactly the same for the PUV , PUW , and PVW cases except for the

following difference (which increases the bound, but still makes it much less than we had
for Y4). One of the outer indices is merged with one of the indices and we no longer have
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UVW , UV , UW , or VW terms for that index. This means that instead of having perfect
cancellation between the factors from summing over the indices and the remaining factors
from the UVW terms, we have factors of n1

µ ,
n2
µ , or

n3
µ from summing over those indices.

Our bound will now be roughly at most B2q
(

n1n2n3nmax
mµ

)2q
which is still much less than the

bound we had for Y4 �
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A Controlling the kernel of matrix representations
We prove the following lemma in this section which was an ingredient of the proof of
Theorem 4.3. Let {ui}, {vi}, {wi} be three orthonormal bases of �n .

Lemma (Restatement Lemma 4.15). Let R be self-adjoint linear operator R on�n
⊗�n . Suppose

〈(v j ⊗ wk), R(vi ⊗ wi)〉 � 0 for all indices i , j, k ∈ [r] such that i ∈ { j, k}. Then, there exists a
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self-adjoint linear operator R′ on �n
⊗ �n such that R′(vi ⊗ wi) � 0 for all i ∈ [r], the spectral

norm of R′ satisfies ‖R′‖ 6 10‖R‖, and R′ represents the same polynomial in �[y , z],
〈(y ⊗ z), R′(y ⊗ z)〉 � 〈(y ⊗ z), R(y ⊗ z)〉 .

Proof. We write
R(vi ⊗ wi) �

∑
jk

cii jk v j ⊗ wk

Then the condition on the bilinear form of R implies that for all i , j, k, ciiik � 0 and cii ji � 0.
We now take Z to be the following matrix

Z �

∑
i , j,k

cii jk
�(v j ⊗ wk)(vi ⊗ wi)T − (v j ⊗ wi)(vi ⊗ wk)T − (vi ⊗ wk)(v j ⊗ wi)T + (vi ⊗ wi)(v j ⊗ wk)T

�

+

∑
i j

cii j j

2
�(v j ⊗ w j)(vi ⊗ wi)T − (v j ⊗ wi)(vi ⊗ w j)T − (vi ⊗ w j)(v j ⊗ wi)T + (vi ⊗ wi)(v j ⊗ w j)T�

It can be verified directly that Z represents the 0 polynomial and has the same behavior
on each of the (vi ⊗ wi) as R. The factor of 1

2 in the second sum comes from the fact that
c j jii � cii j j and the fourth term for c j jii matches the first term for cii j j

We choose R′ � R − Z. In order to show the bound ‖R′‖ 6 10‖R‖ it is enough to show
that ‖Z‖ 6 9‖R‖

We analyze the norm of Z as follows. We break Z into parts according to each type
of term and analyze each part separately. Define X to be the subspace spanned by the
(vi ⊗ wi), define PX to be the projection onto X and define P⊥X to be the projection onto the
subspace orthogonal to X.

For the part
∑

i jk cii jk(v j ⊗ wk)(vi ⊗ wi)T , note that
∑

i jk cii jk(v j ⊗ wk)(vi ⊗ wi)T �

P⊥X R′PX so it has norm at most ||R||.
For the part

∑
i jk cii jk(v j ⊗ wi)(vi ⊗ wk)T , note that under a change of basis this is

equivalent to a block-diagonal matrix with blocks
∑

jk cii jk v j wT
k . The norm of each such

block is at most its Frobenius norm, which is the norm of
∑

jk cii jk(v j ⊗ wk) � R′(vi ⊗ wi).
Thus, this part also has norm at most ||R||. Using similar arguments, we can bound the
norm of the other parts by ||R|| as well, obtaining that ||Z || 6 8||R||. �

B Full Trace Power Calculation
In this section, we analyze ||∑a Aa ⊗ BT

a || where A � (R̄Ωl Pl) · · · (R̄Ω1P1)(R̄Ω0 X) or
A � Pl+1(R̄Ωl Pl) · · · (R̄Ω1P1)(R̄Ω0 X) for some projection operators P1, · · · , Pl , Pl+1 and
B � (R̄Ωl′Pl′) · · · (R̄Ω1P′1)(R̄Ω0 X) or B � Pl′+1(R̄Ωl′Pl′) · · · (R̄Ω1P′1)(R̄Ω0 X) for some projec-
tion operators P′1, · · · , P

′

l′ , P
′

l′+1. In particular, we prove the following theorem using the
trace power method.

Theorem B.1. There is an absolute constant C such that for any α > 1 and β > 0,

Pr

||
∑

a

Aa ⊗ BT
a || > α−(l+l′+2)


< n−β
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as long as

1. rµ 6 min {n1, n2, n3}
2. m > Cαβµ

3
2 r
√

n1 max {n2, n3}lo1(max {n1, n2, n3})
3. m > Cαβµ2r max {n1, n2, n3}lo1(max {n1, n2, n3})

Remark B.2. In this draft, we only sketch the case where we do not have projection operators
in front. To handle the cases where there are projection operators in front, we can use the
same ideas that are sketched out in Section 8,

B.1 Term Structure
When we expand out the sums in tr

(�(∑a Aa ⊗ BT
a )(∑a Aa ⊗ BT

a )T
�q) , our terms will have

the following structure. We label the indices so that each R̄Ω j operator has its own indices
(ai j , bi j , ci j) or (a′i j , b

′

i j , c
′

i j). Many of these indices will be equal.

1. For all i ∈ [0, l] and all j ∈ [1, 2q]we have indices (ai j , bi j , ci j) and a corresponding
term R̄Ωi (ai j , bi j , ci j) in the product.

2. For all i ∈ [0, l′] and all j ∈ [1, 2q]we have indices (a′i j , b
′

i j , c
′

i j) and a corresponding
term R̄Ωi (a′i j , b

′

i j , c
′

i j) in the product.

3. For all j ∈ [1, 2q] we have a term Xa0b0c0 and a term Xa′0b′0c′0 in the product.

4. For all i ∈ [0, l] and all j ∈ [1, 2q] we have a term Pi(ai j , bi j , ci j , a(i−1) j , b(i−1) j , c(i−1) j)
in the product.

5. For all i ∈ [0, l′] and all j ∈ [1, 2q]we have a term P′i (a′i j , b
′

i j , c
′

i j , a
′

(i−1) j , b
′

(i−1) j , c
′

(i−1) j)
in the product.

We represent the terms in the product graphically as follows.

Definition B.3.

1. For all i, we represent the terms R̄Ωi (ai j , bi j , ci j) and R̄Ωi (a′i j , b
′

i j , c
′

i j) by triangles. We
call these triangles Ri-triangles and R′i-triangles respectively.

2. For all i and j,

(a) If Pi � PUV then we represent Pi(ai j , bi j , ci j , a(i−1) j , b(i−1) j , b(i−1) j) by a hyperedge
(ai j , bi j , a(i−1) j , b(i−1) j). We call this hyperedge a UV-hyperedge.

(b) If Pi � PUW thenwe represent Pi(ai j , bi j , ci j , a(i−1) j , b(i−1) j , b(i−1) j) by a hyperedge
(ai j , ci j , a(i−1) j , c(i−1) j). We call this hyperedge a UW-hyperedge.

(c) If Pi � PVW then we represent Pi(ai j , bi j , ci j , a(i−1) j , b(i−1) j , b(i−1) j) by a hyperedge
(bi j , ci j , b(i−1) j , c(i−1) j). We call this hyperedge a VW-hyperedge.
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(d) If Pi � PUVW then we represent Pi(ai j , bi j , ci j , a(i−1) j , b(i−1) j , b(i−1) j) by a hy-
peredge (ai j , bi j , ci j , a(i−1) j , b(i−1) j , c(i−1) j). We call this hyperedge a UVW-
hyperedge.

We represent the P′i terms by hyperedges in a similar manner.

3. For all j ∈ [1, 2q], we represent the term Xa0 j b0 j c0 j with a hyperedge (a0 j , b0 j , c0 j)
and we represent the term Xa′0 j b

′

0 j c
′

0 j
with a hyperedge (a′0 j , b

′

0 j , c
′

0 j). We call these
hyperedges X-hyperedges.

We have the following equalities among the indices:

1. For all j ∈ [1, 2q], al j � a′l′ j

2. For all j ∈ [1, 2q], if j is even then bl j � bl( j+1) and c′l′ j � c′l′( j+1)
3. For all j ∈ [1, 2q], if j is odd then cl j � cl( j+1) and b′l′ j � b′l′( j+1)
4. For all i ∈ [1, l] and all j ∈ [1, 2q], if Pi � PUV then ci j � c(i−1) j , if Pi � PUW then

bi j � b(i−1) j , and if Pi � PVW then ai j � a(i−1) j

5. For all i ∈ [1, l] and all j ∈ [1, 2q], if P′i � PUV then c′i j � c′(i−1) j , if P′i � PUW then
b′i j � b′(i−1) j , and if P′i � PVW then a′i j � a′(i−1) j

B.2 Techniques
In this section, we describe how to bound the expected value of

tr *
,

*
,
(
∑

a

Aa ⊗ Ba)(
∑

a

Aa ⊗ Ba)T+
-

q

+
-

We first consider the R̄Ωi terms, which for a given choice of the indices are as follows:

*.
,

l∏
i�0

2q∏
j�1

R̄Ωi (ai j , bi j , ci j)+/
-

*.
,

l′∏
i�0

2q∏
j�1

R̄Ωi (a′i j , b
′

i j , c
′

i j)+/
-

For a given choice of the indices, the expected value of this part can be bounded as follows

Definition B.4. For all i, let zi be the number of distinct Ri-triangles and let z′i be the
number of distinct R′i-triangles. If a triangle appears as both an Ri-triangle and as an
R′i-triangle then it contributes 1

2 to both zi and z′i (so the total number of distinct triangles
at level i is zi + z′i)

Lemma B.5. For a given choice of the indices {ai j , bi j , ci j} and {a′i j , b
′

i j , c
′

i j}
1. If any triangle appears exactly once at some level i then

E


*.
,

l∏
i�0

2q∏
j�1

R̄Ωi (ai j , bi j , ci j)+/
-

*.
,

l′∏
i�0

2q∏
j�1

R̄Ωi (a′i j , b
′

i j , c
′

i j)+/
-


� 0
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2. If for all i, all of the triangles which appear at level i appear at least twice then

0 < E


*.
,

l∏
i�0

2q∏
j�1

R̄Ωi (ai j , bi j , ci j)+/
-

*.
,

l′∏
i�0

2q∏
j�1

R̄Ωi (a′i j , b
′

i j , c
′

i j)+/
-



6
(n1n2n3

m

)∑l
i�0 (2q−zi)+∑l′

i�0 (2q−z′i)

Proof. If there is any triangle (a , b , c)which appears exactly once in level i then R̄Ωi (ai , bi , ci)
has expectation 0 and is independent of every other term in the product so the entire
product has value 0. Otherwise, note that for k > 1, 0 < E

�(RΩi (a , b , c))k�
6

� n1n2n3
m

�k−1.
Further note that RΩi (a , b , c) termswith either different i or different a , b , c are independent
of each other. Thus, using this bound, each copy of a triangle beyond the first gives us
a factor of

� n1n2n3
m

�
. The total number of factors which we obtain is the total number of

triangles minus the number of distinct triangles (where triangles at different levels are
automatically distinct) and the result follows. �

Wenownote that this bound holds for all sets of indices that follow the same intersection
pattern of which Ri-triangles and R′i-triangles are equal to each other. Thus, we can group
all terms which have the same intersection pattern together, using this bound on all of
them.

Each such intersection pattern forces additional equalities between the indices. After
taking these equalities into account, we must sum over the remaining distinct indices. We
now analyze what happens with the remaining terms of the product as we sum over these
indices. We begin by considering how well we can bound the sum of entries of X squared
if we sum over 0,1,2, or all 3 indices.

Lemma B.6.

1. maxabc {X2
abc} 6 r2µ3

n1n2n3

2. maxbc {∑a X2
abc} 6 rµ2

n2n3

3. maxc {∑a ,b X2
abc} 6 rµ

n3

4.
∑

a ,b ,c X2
abc � r

Proof. For the first statement,

X2
abc �

∑
i , j

uia vib wic u jav jb w jc 6 r2 max
i

{u2
ia v2

ib w2
ic} 6

r2µ3

n1n2n3

For the second statement,∑
a

X2
abc �

∑
i , j

*
,

∑
a

uiau ja+
-

vib wicv jb w jc �
∑
i ,a

u2
iav2

ib w2
ic 6

µ2

n2n3

∑
a ,i

u2
ia �

rµ2

n2n3
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For the third statement,∑
a ,b

X2
abc �

∑
i , j,b

*
,

∑
a

uia u ja+
-

vib wic v jb w jc �
∑
i ,a ,b

u2
ia v2

ib w2
ic 6

µ

n3

∑
i

*
,

∑
a

u2
ia

∑
b

v2
ib

+
-
�

rµ
n3

The final statement can be proved in a similar way. �

Note that every index we sum over reduces the average value by µ. Further note that
if we do not sum over any indices, there is an extra factor of r in our bound. Following
similar logic, similar statements hold for the Pi and P′i terms.

We utilize this as follows. We start with a hypergraph H which represents the current
terms in our product. We first preprocess our product using the inequality |ab | 6 x

2 a2 + b2

2x
(carefully choosing each a, b, and x) to make all of our hyperedges have even multiplicity.
Note that when doing this, we cannot fully control which doubled hyperedges we will
have; if we apply this on hyperedges e1 and e2 we could end up with two copies of e1 or
two copies of e2.

Now if we have a hyperedge with multiplicity 4 or more, we use the entrywise bound
to reduce its multiplicity by 2. For example, if our sum was

∑
a X4

abc then we would use the
inequality ∑

a

X4
abc 6 max

abc
{X2

abc}
∑

a

X2
abc

to bound this sum.
Once every hyperedge appears with power 2, we choose an ordering for how we

will bound the hyperedges. For each hyperedge, we sum over all indices which are
currently only incident with that hyperedge, take the appropriate bound, and then delete
the hyperedge and these indices from our current hypergraph H. We account for all of this
with the following definitions:

Definition B.7.

1. Define the base value of an X-hyperedge e to be v(e) �
√

rµ3

n1n2n3

2. Define the base value of a UV-hyperedge e to be v(e) �
√

rµ4

n2
1n2

2

3. Define the base value of a UW-hyperedge e to be v(e) �
√

rµ4

n2
1n2

3

4. Define the base value of a VW-hyperedge e to be v(e) �
√

rµ4

n2
2n2

3

5. Define the base value of an UVW-hyperedge e to be v(e) �
√

rµ6

n2
1n2

2n2
3

Definition B.8. We say that a index in our hypergraph H is free if it is incident with at
most one hyperedge.
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For a given intersection pattern, assuming that every vertex is incident with at least one
hyperedge after the preprocessing, our final bound will be(n1n2n3

m

)∑l
i�0 (2q−zi)+∑l′

i�0 (2q−z′i) *
,

∏
e

v(e)+
-

(
n1
µ

)# of a indices
(

n2
µ

)# of b indices (
n3
µ

)# of c indices
r# of doubled hyperedges we bound with no free index

To see this, note that from the discussion above, when an index a,b, or c is free and we
sum over it, we obtain n1, n2, or n3 terms respectively but this also reduces the current
bound we are using by a factor of µ. This will happen precisely one time for every index
which is incident to at least one edge. Thus, for this part the ordering doesn’t really matter.
However, there is an extra factor of r whenever we bound a doubled hyperedge with no
free index (including when this hyperedge has multiplicity 4 or higher and we reduce its
multiplicity by 2). We want to avoid this extra factor of r as much as possible. We describe
how to do this in subsection B.4.
Remark B.9. When summing over an index, we may not acutally sum over all possiblities
because this could create equalities between triangles which should not be equal according
to the intersection pattern. However, adding in these missing terms can only increase the
sum, so it is still an upper bound.

B.3 Bounding the number of indices
In this subsection, we describe bounds on the number of each type of index for a given
intersection pattern. We then define a coefficient ∆which is the discrepency between the
our bounds and the actual number of indices and reexpress our boun in terms of ∆.

We make the following simplifying assumption about our sums.

1. For all i ∈ [0, l′], we either have that a′i j � ai j for all j ∈ [1, 2q] or a′i j , ai j for all
j ∈ [1, 2q].

2. For all i ∈ [0, l′], we either have that b′i j � bi j for all j ∈ [1, 2q] or b′i j , bi j for all
j ∈ [1, 2q].

3. For all i ∈ [0, l′], we either have that c′i j � ci j for all j ∈ [1, 2q] or c′i j , ci j for all
j ∈ [1, 2q].

Moreover, all of these choices are fixed beforehand. We justify this assumption with a
random partitioning argument in subsection B.5.

With this setup, we first bound the number of each type of index which appears.

Definition B.10. For all i,

1. We define xia to be the number of distinct indices ai j which do not appear at a higher
level, we define xib to be the number of distinct indices bi j which do not appear at a
higher level, and we define xic to be the number of distinct indices ci j which do not
appear at a higher level.
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2. We define x′ia to be the number of distinct indices a′i j which do not appear at a higher
level, we define x′ib to be the number of distinct indices b′i j which do not appear at a
higher level, and we define x′ic to be the number of distinct indices c′i j which do not
appear at a higher level.

In the case where we have an equality a′i j � ai j and this index does not appear at a higher
level, we instead count it as 1

2 for xia and 1
2 for x′ia (and similarly for b and c).

Recall that we defined zi to be the number of distinct Ri-triangles and we defined z′i to
be the nmber of distinct R′i-triangles. zi and z′i give the following bounds on the coefficients

Proposition B.11.

1. For all i < l, xia 6 zi , xib 6 zi , and xic 6 zi .

2. For all i < l′, x′ia 6 z′i , x′ib 6 z′i , and x′ic 6 z′i .

3. If l′ , l, b′l j , bl j , or c′l j , cl j ,

(a) xla + x′l′a 6 min {zl , z′l′}
(b) xlb + xlc 6 zl + 1

(c) x′l′b + x′l′c 6 z′l′ + 1

4. In the special case that l′ � l, b′l j � bl j , and c′l j � cl j ,

(a) xla + x′l′a � zl + z′l′
(b) xlb + xlc � x′l′b + x′l′c � 1

Proof. The first two statements and 3(a) follow from the observation that distinct vertices
must be in distinct triangles. For 3(b), note that if we take the b , c edges from each
Ri-triangle, the resulting graph is connected. Thus, each distinct such edge (which must
come from a distinct triangle) after the first edge can only add one new vertex and the
result follows. 3(c) can be proved analogously.

For the fourth statement, note that in this case all of the bl j and b′l j indices are equal to
a single index b and all of the cl j and c′l j indices are equal to a single index c. Thus, the
number of distinct al j is equal to the number of distinct Rl and R′l triangles. �

With these bounds in mind, we define xmax coefficients which represent the maximum
number of distinct indices we can expect (given the structure of A and B and the values
zi , z′i) and ∆ coefficients which describe the discrepency between this maximum and the
number of distinct indices which we actually have.

Definition B.12.

1. For all i < l,
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(a) If Pi+1 � PUV then we define xmax
ia � xmax

ib � zi . We define ∆ia � xmax
ia − xia ,

∆ib � xmax
ib − xib , and ∆ic � 0.

(b) If Pi+1 � PUW then we define xmax
ia � xmax

ic � zi . We define ∆ia � xmax
ia − xia ,

∆ic � xmax
ic − xic , and ∆ib � 0.

(c) If Pi+1 � PVW then we define xmax
ia � xmax

ib � zi . We define ∆ib � xmax
ib − xib ,

∆ic � xmax
ic − xic , and ∆ia � 0.

(d) If Pi+1 � PUVW then we define xmax
ia � xmax

ib � xmax
ic � zi . We define ∆ia �

xmax
ia − xia , ∆ib � xmax

ib − xib , and ∆ic � xmax
ic − xic .

2. For all i < l′,

(a) If P′i+1 � PUV then we define x′max
ia � x′max

ib � z′i . We define ∆′ia � x′max
ia − x′ia ,

∆′ib � x′max
ib − x′ib , and ∆′ic � 0.

(b) If P′i+1 � PUW then we define x′max
ia � x′max

ic � z′i . We define ∆′ia � x′max
ia − x′ia ,

∆′ic � x′max
ic − x′ic , and ∆′ib � 0.

(c) If P′i+1 � PVW then we define x′max
ia � x′max

ib � z′i . We define ∆′ib � x′max
ib − x′ib ,

∆′ic � x′max
ic − x′ic , and ∆′ia � 0.

(d) If P′i+1 � PUVW then we define x′max
ia � x′max

ib � x′max
ic � z′i . We define ∆ia �

x′max
ia − x′ia , ∆′ib � x′max

ib − x′ib , and ∆′ic � x′max
ic − x′ic .

3. If l′ , l, b′l′ j , bl j , or c′l′ j , cl j then we define xmax
ll′a � min {zl , z′l′}, we define

xmax
lbc � zl + 1, and we define x′max

lbc � z′l′ + 1. In the special case where l′ � l, b′l′ j � bl j ,
and c′l′ j � cl j , we define xmax

ll′a � zl + z′l and xmax
lbc � x′max

l′bc � 1. In both of these cases,
we define ∆ll′a � xmax

ll′a − xla − x′l′a , ∆lbc � xmax
lbc − xlb − xlc , and ∆′l′bc � x′max

l′bc − x′l′b − x′l′c .

Definition B.13. We define

∆ � ∆ll′a + ∆lbc + ∆
′

l′bc +

l−1∑
i�0

(∆ia + ∆ib + ∆ic) +
l′−1∑
i�0

(∆′ia + ∆′ib + ∆′ic)

We now reexpress our bound in terms of ∆.

Lemma B.14. For a given intersection pattern and choices for the equalities or inequalities between
the ai j , bi j , ci j and a′i j , b

′

i j , c
′

i j indices, we can obtain a bound which is a product of

n2n3

µ2

(
µ

min {n1, n2, n3}
)∆

r# of doubled hyperedges we bound with no free index−
(∑l

i�0 (2q−zi)+∑l′
i�0 (2q−z′i)

)

and terms of the form rµ
3
2
√

n1 max {n2 ,n3}
m , rµ2 max {n1 ,n2 ,n3}

m , or rµ3

m

Proof. Recall that our bound was(n1n2n3
m

)∑l
i�0 (2q−zi)+∑l′

i�0 (2q−z′i) *
,

∏
e

v(e)+
-

(
n1
µ

)# of a indices
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(
n2
µ

)# of b indices (
n3
µ

)# of c indices
r# of doubled hyperedges we bound with no free index

For all i < l, we consider the part of this bound which comes from Pi+1 and the indices
ai , bi , ci which do not appear at a higher level. Similary, for all i < l′, we consider the part
of this bound which comes from P′i+1 and the indices a′i , b

′

i , c
′

i which do not appear at a
higher level. Finally, we consider the part of this bound that comes from the X hyperedges,
the Rl-triangles, the R′l′-triangles, and their indices.

1. If Pi+1 � PUV then we can decompose the corresponding terms into the following
parts:

(a) ( rµ4

n2
1n2

2
)q from the hyperedges.

(b)
(

n1n2
µ2

) q
from the q potential new a, b, and c indices.

(c)
� n1n2n3

m

�q from the q potential distinct triangles.

(d)
(
r · µ2

n1n2
·

n1n2n3
m

) q−zi

�

(
rµ2n3

m

) q−zi

from the actual number of distinct triangles,
the corresponding reduced maximum number of potential new indices, and the
factors of r which we take from r# of doubled hyperedges we bound with no free index

(e)
(
µ
n1

)∆ia (
µ
n2

)∆ib
(
µ
n3

)∆ic
6

(
µ

min {n1 ,n2 ,n3}
)∆ia+∆ib+∆ic from the actual number of new

indices which we have

Putting everything together we obtain(
rµ2n3

m

)2q−zi ( µ

min {n1, n2, n3}
)∆ia+∆ib+∆ic

Similar arguments apply if Pi+1 � PVW or PVW

2. If Pi+1 � PUVW then we can decompose the corresponding terms into the following
parts:

(a) ( rµ6

n2
1n2

2n2
3
)q from the hyperedges.

(b)
(

n1n2n3
µ2

) q
from the q potential new a, b, and c indices.

(c)
� n1n2n3

m

�q from the q potential distinct triangles.

(d)
(
r · µ3

n1n2n3
·

n1n2n3
m

) q−zi

�

(
rµ3

m

) q−zi

from the actual number of distinct triangles,
the corresponding reduced maximum number of potential new indices, and the
factors of r which we take from r# of doubled hyperedges we bound with no free index

(e)
(
µ
n1

)∆ia (
µ
n2

)∆ib
(
µ
n3

)∆ic
6

(
µ

min {n1 ,n2 ,n3}
)∆ia+∆ib+∆ic from the actual number of new

indices which we have
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Putting everything together we obtain(
rµ3

m

)2q−zi ( µ

min {n1, n2, n3}
)∆ia+∆ib+∆ic

Similar arguements holds for the P′ terms.

3. If l′ , l, b′l j , bl j , or c′l j , cl j then our remaining terms are as follows

(a) ( rµ3

n1n2n3
)2q from the hyperedges.

(b) n2n3
µ2

(
n1(max {n2 ,n3})2

µ3

) q
from the q potential a indices and 2q + 2 potential b or c

indices (which must have at least one b index and at least one c index).

(c)
� n1n2n3

m

�2q from the 2q potential distinct triangles.

(d)
(
r · µ

3
2

√
n1 max {n2 ,n3} ·

n1n2n3
m

)2q−zl−z′l
6

(
rµ3/2√n1 max {n2 ,n3}

m

)2q−zl−z′l
from the actual

number of distinct triangles, the corresponding reduced maximum num-
ber of potential new indices, and the factors of r which we take from
r# of doubled hyperedges we bound with no free index

(e)
(
µ
n1

)∆ll′a
(

µ
max {n2 ,n3}

)∆lbc+∆
′

l′bc 6
(

µ
min {n1 ,n2 ,n3}

)∆ll′a+∆lbc+∆
′

l′bc from the actual num-
ber of new indices which we have

Putting everything together we obtain

n2n3

µ2

(
rµ3/2√n1 max {n2, n3}

m

)4q−zl−z′l ( µ

min {n1, n2, n3}
)∆ll′a+∆lbc+∆

′

l′bc

4. In the special case that l′ � l, b′l j � bl j , and c′l j � cl j , we have the same terms except
that now there is only one b and c index and there are 2q potential a indices. Following
similar logic we obtain a bound of

n2n3

µ2

(
rµ2n1

m

)4q−zl−z′l ( µ

min {n1, n2, n3}
)∆ll′a+∆lbc+∆

′

l′bc

�

With this lemma in hand, to show our bound it is sufficient to show that we can
choose an ordering on the hyperedges such that the number of times we bound a doubled
hyperedge without a free index is at most ∆ +

∑l
i�0 (2q − zi) +∑l′

i�0 (2q − z′i)

B.4 Choosing an ordering
In this section, we describe how to choose a good ordering for bounding the hyperedges.
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LemmaB.15. For any structure for A and B (including equalities or inequalities between ai j , bi j , ci j

and a′i j , b
′

i j , c
′

i j) and any intersection pattern, there is a way to double the hyperedges using the
inequality |ab | 6 x

2 a2 + 1
2x b2 and then bound the doubled hyperedges one by one so that

1. After doubling the hyperedges, every index is part of at least one hyperedge.

2. The number of times that we bound a doubled hyperedge without a free index is at most
∆ +

∑l
i�0 (2q − zi) +∑l′

i�0 (2q − z′i)
Proof. To double the X-hyperedges, we choose pairs of X-hyperedges corresponding to
the same triangle. This guarantees us at least one doubled hyperedge for every triangle at
level 0. We double any remaining X-hyperedges arbitrarily.

We show by induction on i that we cover all indices with these hyperedges. The
base case i � 0 is already done. If we have already covered all indices at level i − 1 then
consider the hyperedges corresponding to the projection operators Pi and P′i . All of these
hyperedges go between a triangle at level i − 1 and a triangle at level i. We double pairs of
these hyperedges which correspond to the same triangle at level i. This guarantees that for
every triangle at level i, there is at least one doubled hyperedge corresponding to it. This
hyperedge may not cover all three of the vertices of the triangle, but if it misses one, this
one must be equal to a vertex at the level below which was already covered by assumption.
We double the remaining hyperedges corresponding to the projection operators Pi and P′i
arbitrarily.

When performing this doubling, whenever the two hyperedges e1 and e2 have the same
base value, we use the inequality |e1e2 | 6 e2

1+e2
2

2 . In the rare case when they have different
base values, we use the inequality |e1e2 | 6 v(e2)

2v(e1) e
2
1 +

v(e1)
2v(e2) e

2
2 to preserve the product of the

base values.
Note that by this construction, for every triangle at level i > 1, there is a doubled

hyperedge corresponding to some Pi or P′i which goes between this triangle and a lower
triangle, but we don’t know which one.

We now describe our ordering on the hyperedges. To find this ordering, we consider
the following multi-graph.

Definition B.16. We define the multi-graph G to have vertex set V(G) �

∪i j{ai j , bi j , ci j , a′i j , b
′

i j , c
′

i j} (with all equalities implied by the intersection pattern, the
structure of the matrices A and B, and the choices for equalities or inequalities between the
primed indices and unprimed indices.). We take the edges of G as follows. For all i < l
and for each distinct triangle (ai j , bi j , ci j) or (a′i j , b

′

i j , c
′

i j), we take the elements which do
not appear in a higher level. If this is true for two of the three elements (which will be the
case most of the time) we take the corresponding edge. If this is true for all three elements,
we choose two of them to take as an edge, making this choice so that we take the same
type of edge for all triangles at that level. If this is only true for one element, we take a loop
on that element.

There are two cases for what happens with i � l
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1. If l′ , l, b′l j , bl j , or c′l j , cl j then for every triangle (al j , bl j , cl j) we take the edge
(bl j , cl j). If l′ � l then for every triangle (a′l j , b

′

l j , c
′

l j) we take the edge (b′l j , c
′

l j)
2. If l′ � l, b′l j � bl j , and c′l j � cl j then we take loops on every distinct element al j .

We analyze ∆ in terms of this G. If we have a fixed budget of edges and want to
maximize the number of vertices which we have, we want to have as many connected
components as possible and we want each connected component to have the minimal
number of edges. We define weights on the connected components of G measuring how
far they are from satisfying these ideals.

Definition B.17. Given a connected component C of G, we define wed1e(C) to be the
number of non-loop edges it contains plus 1 minus the number of vertices it contains.

Definition B.18. Given a connected component C of G, we define wtrian1le(C) as follows

1. If C does not contain any bl j , cl j , b′l′ j , or c′l′ j then we define wtrian1le(C) to be the
number of distinct triangles whose corresponding edge in G is in C minus 1.

2. If C is the connected component containing bl j and cl j for all j then we set
wtrian1le(C) � 0

3. If C is the connected component containing b′l′ j and c′l′ j for all j thenwe set wtrian1le(C)
to be the number of distinct Rl′ triangles (al′ j , bl′ j , cl′ j) whose corresponding edge in
G is in C.

4. If C is a connected component containing some c′l′ j but no b′l′ j (because all of the b′l′ j
appeared at a higher level) or vice versa, then we define wtrian1le(C) to be the number
of distinct triangles whose corresponding edge in G is in C minus 1.

Definition B.19. We say that a vertex ai j is bad if

1. The projector Pi+1 involves the vertex ai j (i.e. we do not have the constraint a(i+1) j � ai j

directly)

2. ai j appears at a higher level.

We define badness similarly for the a′, b , b′, c , c′ indices. Note that we could have ai be bad
while a′i is not bad even if a′i � ai (in fact this equality must be true in this case).

Lemma B.20.

∆ >
∑

C

(wed1e(C) + wtrian1le(C)) +
∑

i<l:ai j ,bi j , or ci j is bad
zi +

∑
i<l:a′i j ,b

′

i j , or c′i j is bad
z′i

Proof. As discussed above, every time a connected component contains an extra edge
above what it needs to be connected, this reduces the number of indices we can have by
1. Similarly, in the optimal case we have one connected component per triangle (with the
exception of the Rl-triangles and perhaps the R′l′-triangles), so every time a connected
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component contains an extra triangle (or rather the edge corresponding to that triangle),
this reduces the number of connected components by 1. For the remaining terms, note that
if there are bad vertices, our previous bounds assumed that we would have new indices of
that type but we do not. The resulting difference in the bounds is the corresponding zi or
z′i . Note that this also works out in the special case that a′i � ai , b′i � bi , c′i � ci . Here we
can view each a index as being half ai and half a′i and similarly for the b and c indices. �

With this lemma in hand, our strategy is as follows. We choose an ordering on the
hyperedges so that each time we fail to have a free index, we can attribute it to one of the
terms described above. We first preprocess our doubled hyperedges so that each hyperedge
appears with multiplicity exactly 2. This requires bounding

∑l
i�0 (2q − zi) +∑l′

i�0 (2q − z′i)
doubled hyperedges with no free index. At this point, there is a one to one correspondence
between our doubled hyperedges and edges of G. Note that this correspondence is
somewhat strange, we only know that each edge in G is part of the upper level triangle for
its corresponding hyperedge.

We now describe our procedures for ordering the hyperedges

Definition B.21. We say that a vertex v is an anchor for an edge e of G if either

1. v , e ⊆ {ai j , bi j , ci j} for some i and j and v appears at a higher level.

2. v , e ⊆ {a′i j , b
′

i j , c
′

i j} for some i and j and v appears at a higher level.

Definition B.22. For an anchor vertex vanchor , define Ei(vanchor) to be the set of all edges at
level i which have vanchor as an anchor vertex.

Definition B.23. We say that a vertex v or edge e is uncovered if it is not incident with any
hyperedges between its level and the level above and covered otherwise. For a vertex v
which is not part of G at level i, we say that v is uncovered at level i if there is no j > 0
such that v incident with a hyperedge between level i + j and i + j + 1.

Definition B.24. We say that a vertex v is released at level i if there are no hyperedges
remaining between level i and i − 1 whose upper and lower triangles both contain v.

Ourmain recursive procedure is as follows. We are considering a collection of connected
component of the graph at level i where everything is uncovered except possibly for one
edge er . If an edge er is covered and has anchor vertex vanchor then we assume that this
collection contains all of Ei(vanchor) and that vanchor is uncovered at level i.

We first consider the case when there are no bad vertices (we will consider the cases
where we have bad vertices afterwards). If G contains a cycle, we can delete an edge and
its corresponding hyperedge to break the cycle, accounting for this by decreasing wed1e(C).
Otherwise, unless C is just the single edge er , there must be a vertex v and edge e in C such
that e , er and e is the only edge incident with v.

We now consider the hyperedge corresponding to e. If v is part of this hyperedge
then we can delete e and this hyperedge and continue. Otherwise, v must be an anchor
vertex for many edges at the level below. Moreover, v is uncovered at level i − 1. We now
consider Ei−1(v). If Ei−1(v) and everything connected to it is uncovered except for the edge
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e′r which is the bottom edge of the hyperedge corresponding to e, then we can apply our
procedure recursively on Ei−1(v) and everything connected to it. Otherwise, Ei−1(v)must
be connected to Ei−1(v′anchor) for some other anchor vertex v′anchor which has not yet been
released at level i. Note that since there are no bad vertices, Ei−1(v) ∩ Ei−1(v′anchor) � ∅.
Thus, there is a contribution of at least 1 to wtrian1le of one of these connected components
from the connection between Ei−1(v) and Ei−1(v′anchor). Using this contribution, we can
delete e and continue. After doing this, v is released at level i.
Remark B.25. Whenever we have a connection between Ei−1 for two anchor vertices, we
relase one of them at level i immediately after taking this connection into account. This
ensures that we do not double count contributions to wtrian1le .

If we are left with the single edge er then there are several cases. Letting v be the anchor
vertex for er , if v goes down to the level below then consider the hyperedge corresponding
to er and let e′r be its bottom edge. Since we have deleted all edges in Ei(v) except for er ,
either all of Ei−1(v) except for e′r is uncovered or Ei−1(v) is connected to Ei−1(v′anchor) for
a different anchor vertex v′anchor which has not yet been released at level i. In the first
case, we can apply our recursive procedure on Ei−1(v) and all edges connected to it. In the
second case, we instead delete er as before and go back to the level above. Again, after
doing this, v is now released at level i.

If v does not go down to the level below (or we are already at the bottom) then the
hyperedge coresponding to er contains v. Moreover, by our assumption v is uncovered at
level i. Thus, v is a free index for er so we can delete er and go back to the level above.

This procedure will succeed in the case that there are no bad vertices. We now handle
bad vertices by reducing to the case where there are no bad vertices.

We consider the case where are below level l′ andwe do not haave that a′i j � ai j , b′i j � bi j ,
and c′i j � ci j . We will handle these cases separately.

If the a′i j are bad vertices, this must be because of equalities a′i j � ai j . We handle
this by replacing each a′i j with a new vertex and running our procudure on this altered
graph. This will cause failures when we try to use a′i j or ai j as a free index. That said,
once we’ve tried to use all but one of a set of equal vertices, the final one will succeed, so
the number of additional failures is at most z′i . We can account for this using the term∑

i<l:a′i j ,b
′

i j , or c′i j is bad
z′i . We handle bad ai j , bi j , b′i j , ci j , c′i j vertices in a similar manner.

In the case that a′i j � ai j , b′i j � bi j , and c′i j � ci j , if the a′i j and bi j are bad vertices, this
must be because of the equalities a′i j � ai j and b′i j � bi j . We handle this by creating a new
vertex for each a′i j , having the hyperedges between levels i and i + 1 use the old vertices,
and having the hyperedges at lower levels use the new vertices. We modify G so that
instead of loops at level i, the edges involve these new vertices. This makes it so that the
only anchor vertices for edges at level i are the vertices b′(i+1) j . Since all edges of G now
have a unique anchor, the recursive procedure succeeds. We can accomplish this with the
terms

∑
i<l:ai j ,bi j , or ci j is bad zi +

∑
i<l:a′i j ,b

′

i j , or c′i j is bad
z′i .

We consider level l′ separately. If the bottom of level l′ contains bad vertices, we cannot
make these vertices distinct. However, if this happens then we have loops in G for the
bottom triangles at level l′. These triangles are distinct from the triangles on top at level l′.
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We handle this by using wtrian1le to delete edges from G at this level so that each
component contains at most one loop. When we run the procedure, we can use wtrian1le

when Ei−1(v) is connected to a loop as well as when it is connected to Ei−1(v′anchor) for some
other anchor vertex v′anchor which has not been released at level i. This allows us to process
each component of G at level i until we are left with either a covered edge or a single loop,
both of which can be handled by our procedure. �

B.5 Counting intersection patterns and random partitioning
There are two pieces left to add. First, all of our analysis so far was for a given intersection
pattern. We must sum over all intersection patterns.

Lemma B.26. For all i, there are at most
�2q

zi

�(zi)2q−zi 6 22q(2q)2q−zi choices for which Ri-triangles
are equal to each other.

Proof. To specify a partition of the 2q Ri-triangles into zi parts, we specify which triangles
are distinct from all previous triangles. There are

�2q
zi

�
choices for which triangles these are.

For the remaining triangles, we specify which previous triangle they are equal to. There
are at most (zi)2q−zi choices for this. �

In our bound, we can group this with the other factors corresponding to the Ri-triangles.
Since we take q to be O(lo1n), this is fine as m has a lo1(n) factor.

Second, we justify our assumption that

1. For all i ∈ [0, l′], we either have that a′i j � ai j for all j ∈ [1, 2q] or a′i j , ai j for all
j ∈ [1, 2q].

2. For all i ∈ [0, l′], we either have that b′i j � bi j for all j ∈ [1, 2q] or b′i j , bi j for all
j ∈ [1, 2q].

3. For all i ∈ [0, l′], we either have that c′i j � ci j for all j ∈ [1, 2q] or c′i j , ci j for all
j ∈ [1, 2q].

To achieve this, instead of looking at the entire matrix
∑

a Aa ⊗ BT
a , we split it into parts

based on the equalities/inequalities we’re looking at. To obtain the case where indices a
and a′ are always equal,we just restrict ourselves in

∑
a Aa ⊗ BT

a to the terms where this is
the case. To obtain the case where indices a and a′ are never equal, we choose a random
partition V,V c of the indices and restrict ourselves in

∑
a Aa ⊗ BT

a to the terms where a ∈ V
and a′ ∈ V c . If there are multiple indices that we wish to fork over, we apply this argument
to each one (choosing the vertex partitions independently).

This construction has the property that if we take the expectation over all the possible
vertex partitions, we obtain a constant times the part of

∑
a Aa ⊗ BT

a we are interested in.
Using this, it can be shown that probabilistic nrom bounds on these restricted matrices
imply probabilistic norm bounds on the original matrix. For details, see Lemma 27
of “Bounds on the Norms of Uniform Low Degree Graph Matrices”. From the above
subsections, we have probabilistic norm bounds on the restricted matrices and the result
follows.

55



B.6 Other Cross Terms
In this subsection, we sketch how the argument differs when B � X rather than B � R̄Ω0 X
or B � P′0R̄Ω0 X.

Theorem B.27. There is an absolute constant C such that for any α > 1 and β > 0,

Pr

||
∑

a

Aa ⊗ XT || > α−(l+1)

< n−β

as long as

1. rµ 6 min {n1, n2, n3}
2. m > Cαβµ

3
2 r
√

n1 max {n2, n3}lo1(max {n1, n2, n3})
3. m > Cαβµ2r max {n1, n2, n3}lo1(max {n1, n2, n3})

Proof sketch: The terms from X directly are

2q∏
j�1

Xa′0 j b
′

0 j c
′

0 j
�

2q∏
j�1

*.
,

∑
i j

ui j a′0 j
vi j b′0 j

wi j c′0 j

+/
-

Note that the RΩ factors are completely independent of the b′0 j and c′0 j indices. Thus,
we can sum over the b′0 j and c′0 j indices first. When we do, this zeros out all terms except
the ones where all of the i j are equal. Moreover, all of the v and w terms sum to 1. The
ui j terms can be bounded by

(
µ
n1

) q
. We now compare the bound we had before with the

bound we have here.
For R̄Ω0 X we had factors

1. ( rµ3

n1n2n3
)2q from the X-hyperedges.

2. n2n3
µ2

(
n1(max {n2 ,n3})2

µ3

) q
from the q potential a indices and 2q + 2 potential b or c indices.

3.
� n1n2n3

m

�2q from the 2q potential distinct triangles.

4.
(
r · µ

3
2

√
n1 max {n2 ,n3} ·

n1n2n3
m

)2q−zl−z′l
6

(
rµ3/2√n1 max {n2 ,n3}

m

)2q−zl−z′l
from the actual

number of distinct triangles, the corresponding reduced maximum num-
ber of potential new indices, and the factors of r which we take from
r# of doubled hyperedges we bound with no free index

5.
(
µ
n1

)∆ll′a
(

µ
max {n2 ,n3}

)∆lbc+∆
′

l′bc 6
(

µ
min {n1 ,n2 ,n3}

)∆ll′a+∆lbc+∆
′

l′bc from the actual number of
new indices which we have

We now have the following factors instead:
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1. ( rµ3

n1n2n3
)qr( µn1

)q from the X-hyperedges.

2. max {n2 ,n3}
µ

(
n1 max {n2 ,n3}

µ2

) q
from the q potential a indices and q + 1 potential b or c

indices.

3.
� n1n2n3

m

�q from the q potential distinct triangles.

4.
(
r · µ2

n1 max {n2 ,n3} ·
n1n2n3

m

) q−zl

6
(

rµ2 max {n2 ,n3}
m

) q−zl

from the actual number of distinct
triangles, the corresponding reduced maximum number of potential new indices,
and the factors of r which we take from r# of doubled hyperedges we bound with no free index

5.
(
µ
n1

)∆ll′a
(

µ
max {n2 ,n3}

)∆lbc+∆
′

l′bc 6
(

µ
min {n1 ,n2 ,n3}

)∆ll′a+∆lbc+∆
′

l′bc from the actual number of
new indices which we have

The difference is in the first three terms, grouping these terms together gives

r max {n2, n3}
µ

(
rµ2 max {n2, n3}

m

) q

By our assumption, m > Crµ2 max {n2n3}lo1(n)2 so we are fine. �
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