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Abstract

Estimation is the computational task of recovering a hidden parameter x associated
with a distribution Dx , given a measurement y sampled from the distribution. High
dimensional estimation problems arise naturally in statistics, machine learning, and
complexity theory.

Many high dimensional estimation problems can be formulated as systems of poly-
nomial equalities and inequalities, and thus give rise to natural probability distributions
over polynomial systems. Sum-of-squares proofs provide a powerful framework to
reason about polynomial systems, and further there exist efficient algorithms to search
for low-degree sum-of-squares proofs.

Understanding and characterizing the power of sum-of-squares proofs for estimation
problems has been a subject of intense study in recent years. On one hand, there
is a growing body of work utilizing sum-of-squares proofs for recovering solutions
to polynomial systems when the system is feasible. On the other hand, a general
technique referred to as pseudocalibration has been developed towards showing lower
bounds on the degree of sum-of-squares proofs. Finally, the existence of sum-of-squares
refutations of a polynomial system has been shown to be intimately connected to the
existence of spectral algorithms. In this article we survey these developments.
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1 Introduction

In estimation problems, the goal is to recover a structured object from an observed input
which partially obfuscates it. Formally, an estimation problem is specified by a family of
distributions {Dx} over�N parametrized by x ∈ �n . The input consists of a sample y ∈ �N

drawn fromDx for some x ∈ �n , and the goal is to recover the value of the parameter x.
We refer to x as the hidden variable or the parameter, and to the sample y as the measurement
or the instance.

Often, it is information-theoretically impossible to recover hidden variables x in that
their value is not completely determined by the measurements. Further, even when
recovery is information-theoretically possible, in many high-dimensional settings it is
computationally intractable to recover x. For these reasons, we often seek to recover x
approximately by minimizing the expected loss for an appropriate loss function. For
example, if θ(y) denotes the estimate for x given the measurement y, a natural goal would
be to minimize the expected mean-square loss given by �y∼Dx [‖θ(y) − x‖2].

In many cases, we can formulate such a minimization problem as a feasibility problem
for a system of polynomial equations. By classical NP-completeness results, general
polynomial systems in many variables are computationally intractable in the worst case. In
our context, an estimation problem gives rise to a distribution over polynomial systems
that encode it. We wish to study a typical system drawn from this distribution. If the
underlying distributions are sufficiently well-behaved, polynomial systems yield an avenue
to design algorithms for high-dimensional estimation problems.

In this survey, our tool for studying such polynomial systems will be sum-of-squares
(SoS) proofs. Sum-of-squares proofs yield a complete proof system for reasoning about
polynomial systems [Kri64, Ste74]. More importantly, SoS proofs are constructive: the
problem of finding a sum-of-squares proof can be formulated as a semidefinite program,
and thus algorithms for convex optimization can be used to find a sum-of-squares proof
when one exists. Low-degree SoS proofs can be found efficiently, and the computational
complexity of the algorithm grows exponentially with the degree of the polynomials
involved in the proof.

The study of low-degree SoS proofs in the context of estimation problems suggests a
rich family of questions. For natural estimation problems, if a polynomial system drawn
from the corresponding distribution is feasible, can one harness sum-of-squares proofs
towards solving the polynomial system? (surprisingly, the answer is often yes!) If a system
from this distribution is typically infeasible, what is the smallest degree of a sum-of-squares
refutation? Are there structural characterizations of the degree of SoS refutations in
terms of the properties of the distribution? Is there a connection between the existence of
low-degree SoS proofs and the spectra of random matrices associated with the distribution
(yielding efficient spectral algorithms)? Over the past few years, significant strides have
been made on all these fronts, exposing the contours of a rich theory that remains largely
hidden. This survey will be devoted to expounding some of the major developments in
this context.
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1.1 Estimation problems

We will start by describing a few estimation problems that will be recurring examples in
our survey.

Example 1.1 (k-clique). Fix a positive integer k 6 n. In the k-clique problem, a clique of
size k is planted within a random graph drawn from the Erdős-Rényi distribution denoted
�(n , 1

2). The goal is to recover the k-clique.
Formally, the structured family {DS} is parametrized by subsets S ⊂

([n]
k

)
. For a subset

S ∈
([n]

k

)
, the distributionDS over measurements G ∈ {0, 1}(n2) is specified by the following

sampling procedure:

• Sample a graph G′ � ([n], E(G′)) from the Erdős-Rényi distribution �(n , 1
2) and set

G � ([n], E(G′) ∪ E(KS))where KS denotes the clique on the vertices in S.

An application of the second moment method [GM75] shows that for all k � 2 log n,
the clique S can be exactly recovered with high probability given the graph G. However,
for any k �

√
n, there is no known polynomial time algorithm for the problem with the

best algorithm being a brute force search running in time nO(log n). Improving upon this
runtime is an open problem dating back to Karp in 1976 [Kar76], but save for the spectral
algorithm of Alon et al. for k � Ω(

√
n) [AKS98a], the only progress has been in proving

lower bounds against broad classes of algorithms (e.g. [Jer92, FK03, FGR+17, BHK+16]).
We will now see how to encode the problem as a polynomial system. For pairs (S,G), let

y ∈ {±1}(n2) denote the natural {±1}-encoding of the graph G, namely, yi j � (1− 2 · 1[(i , j) <
E(G)]) for all i , j ∈

(n
2
)
. Set x :� 1S ∈ {0, 1}n . We will refer to the variables yi j as instance

variables as they specify the input to the problem. The variables xi will be referred to as the
hidden variables. We encode each constraint as a polynomial equality or inequality:

xi are Boolean {xi(1 − xi) � 0}i∈[n]
if (i , j) < E(G) then {i , j} are not both in clique

{
(1 − yi j)xix j � 0

}
∀i , j∈([n]2 )

at least k vertices in clique
∑
i∈[n]

xi − k > 0

Note that when we are solving the estimation problem, the instance variables yi j are given,
and the hidden variables {xi} are the unknowns in the polynomial system. It is easy to
check that the only feasible solutions x ∈ �n for this system of polynomial equations are
Boolean vectors x ∈ {0, 1}n which are supported on cliques of size at least k in G.

Refutation and distinguishing. For every estimation problem that we will encounter
in this survey, we can associate two related computational problems termed refutation
and distinguishing. In estimation problems, we typically think of instances y as having
structure: we sample y from a structured distribution Dx , and we wish to recover the
hidden variables x that give structure toDx . But there may also be instances y which do
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not have structure. The goal of refutation is to certify that there is no hidden structure,
when there is none.

A null distribution is a probability distribution over instances y for which there is
no hidden structure x. For example, in the k-clique problem, the corresponding null
distribution is the Erdős-Rényi random graph�(n , 1

2) (without a planted clique). With high
probability, a graph y ∼ �(n , 1

2) has no clique with significantly more than 2 log n vertices.
Therefore, for a fixed k � 2 log n, given a graph y ∼ �(n , 1

2), the goal of a refutation
algorithm is to certify that y has no clique of size k. Equivalently, the goal of a refutation
algorithm is to certify the infeasibility of the associated polynomial system.

The most rudimentary computational task associated with estimation and refutation is
that of distinguishing. The setup of the distinguishing problem is as follows. Fix a prior
distribution π on the hidden variables x ∈ �n , which in turn induces a distributionD∗ on
�N , obtained by first sampling x ∼ π and then sampling y ∼ Dx . The input consists of a
sample y which is with equal probability drawn from the structured distributionD∗ or the
null distributionD∅. The computational task is to identify which distribution the sample
y is drawn from, with a probability of success 1

2 + δ for some constant δ > 0. For example,
the structured distribution for k-clique is obtained by setting the prior distribution of x to
be uniform on subsets of [n] of size k. In the distinguishing problem, the input is a graph
drawn from either D∗ or the null distribution �(n , 1

2), and the algorithm is required to
identify the distribution. For every problem included in this survey, the distinguishing
task is formally no harder than estimation or refutation, i.e., the existence of algorithms for
estimation or refutation immediately implies a distinguishing algorithm.

Example 1.2. (tensor PCA) The family of structured distributions {Dv} is parametrized
by unit vectors v ∈ �n . A sample from Dv consists of a 4-tensor T � v⊗4 + ζ where
ζ ∈ �n×n×n×n is a symmetric 4-tensor whose entries are i.i.d Gaussian random variables
sampled from N(0, σ2). The goal is to recover a vector x that is close as possible to v.

A canonical strategy to recover v given T � v⊗4 + ζ is to maximize the degree-4
polynomial associated with the symmetric 4 tensor T. Specifically, if we set

x′ � argmax‖x‖61〈T, x⊗4〉

then one can show that ‖v − x′‖2 6 O(n1/2 · σ) with high probability over ζ. If T ∼ Dv

then 〈T, v⊗4〉 � 1. Furthermore, when σ � n−1/2 it can be shown that v ∈ �n is close to
the unique maximizer of the function φ(x) � 〈T, x⊗4〉. So the problem of recovering v can
be encoded as the following polynomial system:

x is in the unit sphere ‖x‖2 6 1,

x has large value for T

∑
i , j,k ,`∈[n]4

Ti jk`xix j xk x` > 1.

In the distinguishing and refutation versions of this problem, we will take the null
distributionD∅ to be the distribution over 4-tensors with independent Gaussian entries
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sampled from N(0, σ2) (equivalent to the distribution of the noise ζ fromDv). For a 4-tensor
T, the maximum of T(x) � 〈x⊗4,T〉 over the unit ball is referred to as the injective tensor
norm of the tensor T, and is denoted by ‖T‖inj. If T ∼ D∅ then ‖T‖inj 6 O

(
n1/2 · σ

)
with

high probability over choice of T [ABAC̆]. Thus when σ � n−1/2, the refutation version
of the tensor PCA problem reduces to certifying an upper bound on ‖T‖inj. If we could
compute ‖T‖inj exactly, then we can certify that T ∼ D∅ for σ as large as σ � O(n−1/2).

The injective tensor norm is known to be computationally intractable in the worst
case [Gur03, Gha10, BBH+12]. Understanding the the function 〈x⊗k ,T〉 for random T is a
deep topic in probability theory and statistical physics (e.g. [ABAC̆]). As an estimation
problem, tensor PCA was first considered by [MR14], and inspired multiple follow-up
works concerned with spectral and SoS algorithms (e.g. [HSS15, HSSS16, RRS17, BGL17]).

Example 1.3. (Matrix & Tensor Completion) In matrix completion, the hidden parameter is
a rank-r matrix X ∈ �n×n . For a parameter X, the measurement consists of a partial matrix
revealing a subset of entries of X, namely XΩ for a subset Ω ⊂ [n] × [n] with |Ω| � m. The
probability distribution DX over measurements is obtained by picking the set Ω to be a
uniformly random subset of m entries.

To formulate a polynomial system for recovering a rank-r matrix consistent with the
measurement XΩ, we will use a n × r matrix of variables B, and write the following system
of constraints on it:

BBT is consistent with measurement (BBT)Ω � XΩ .

Tensor completion is the analogous problem with X being a higher-order tensor namely,
X �

∑r
i�1 a⊗k

i for some fixed k ∈ �. The corresponding polynomial system is again over a
n × r matrix of variables B with columns b1, . . . , br and the following system of constraints,

∑r
i�1 b⊗k

i is consistent with measurement ©­«
∑
i∈[r]

b⊗k
i

ª®¬Ω � XΩ .

1.2 Sum-of-squares proofs

The sum-of-squares (SoS) proof system is a restricted class of proofs for reasoning about
polynomial systems. Fix a set of polynomial inequalitiesA � {pi(x) > 0}i∈[m] in variables
x1, . . . , xn . We will refer to these inequalities as the axioms. Starting with the axiomsA, a
sum-of-squares proof of q(x) > 0 is given by an identity of the form,

q(x) �
∑

j∈[m′]
s2

j (x) +
∑

i∈[m]
a2

i (x) · pi(x) ,

where {s j(x)} j∈[m′], {ai(x)}i∈[m] are real polynomials. It is clear that any identity of the
above form manifestly certifies that the polynomial q(x) > 0, whenever each pi(x) > 0
for real x. The degree of the sum-of-squares proof is the maximum degree of all the
summands, i.e., max{deg(s2

j ), deg(a2
i pi)}i , j .
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Sum-of-squares proofs extend naturally to polynomial systems that involve a set of
equalities {ri(x) � 0} along with a set of inequalities {pi(x) > 0}. We can extend the
definition syntactically by replacing each equality ri(x) � 0 by a pair of inequalities ri(x) > 0
and −ri(x) > 0.

Wewill the use the notationA d
x {q(x) > 0} to denote that the assertion that, there exists

a degree-d sum-of-squares proof of q(x) > 0 from the set of axioms A. The superscript
x in the notation A d

x {q(x) > 0} indicates that the sum-of-squares proof is an identity
of polynomials where x is the formal variable. We will drop the subscript or superscript
when it is clear from the context, and just writeA {q(x) > 0}. Sum-of-squares proofs
can also be used to certify the infeasibility, or refute, the polynomial system. In particular, a
degree-d sum-of-squares refutation of a polynomial system {pi(x) > 0}i∈[m] is an identity
of the form,

−1 �

∑
i∈[k]

s2
i (x) +

∑
i∈[m]

a2
i (x) · pi(x) (1.1)

where max{deg(s2
j ), deg(a2

i pi)}i , j is at most d.
The sum-of-squares proof system has been an object of study starting with the work

of Hilbert and Minkowski more than a century ago (see [Rez00] for a survey). With no
restriction on degree, Stengle’s Positivestellensatz implies that sum-of-squares proofs form
a complete proof system, i.e., if the axiomsA imply q(x) > 0, then there is an SoS proof of
this fact.

The algorithmic implications of the sum-of-squares proof system were first realized
in the works of Parrilo [Par00] and Lasserre [Las01], who independently arrived at
families of algorithms for polynomial optimization using semidefinite programming (SDP).
Specifically, these works observed that semidefinite programming can be used to find a
degree-d SoS proof in time nO(d), if there exists one. This family of algorithms (called a
hierarchy, as we have an algorithm for each even integer degree-d) are referred to as the
sum-of-squares SDP hierarchy. We say that the SoS algorithm is low-degree if d does not
grow with n.

The SoS hierarchy has since emerged as a powerful tool for algorithm design. On the
one hand, the first few levels of the SoS hierarchy systematically capture a vast majority
of algorithms in combinatorial optimization and approximation algorithms developed
over several decades. Furthermore, the low-degree SoS SDP hierarchy holds the promise
of yielding improved approximations to NP-hard combinatorial optimization problems,
approximations that would beat the long-standing and universal barrier posed by the
notorious unique games conjecture [Tre12, BS14].

More recently, the low-degree SoS SDP hierarchy has proved to be a very useful tool
in designing algorithms for high-dimensional estimation problems, wherein the inputs
are drawn from a natural probability distribution. For this survey, we organize the recent
work on this topic into three lines of work.

• When the polynomial system for an estimation problem is feasible, can sum-of-squares proofs
be harnessed to retrieve the solution? The answer is yes for many estimation problems,
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including tensor decomposition, matrix and tensor completion, and clustering
problems. Furthermore, there is a simple and unifying principle that underlies all
of these applications. Specifically, the underlying principle asserts that if there is a
low-degree SoS proof that all solutions to the system are close to the hidden variable
x, then a low-degree SoS SDP can be used to actually retrieve x. We will discuss this
broad principle and several of its implications in Section 2.

• When the polynomial system is infeasible, what is the smallest degree at which it admits
sum-of-squares proof of infeasibility? The degree of the sum-of-squares refutation is
critical for the run-time of the SoS SDP-based algorithm. Recent work by Barak et
al. [BHK+16] introduces a technique referred to as “pseudocalibration” for proving
lower bounds on the degree of SoS refutation, developed in the context of the work
on k-clique. Section 3 is devoted to the heuristic technique of pseudocalibration, and
the mystery surrounding its effectiveness.

• Can the existence of degree-d of sum-of-square refutations be characterized in terms of (spectral)
properties of the underlying distribution? In Section 4, we will discuss a result that
shows a connection between the existence of low-degree sum-of-squares refutations
and the spectra of certain low-degree matrices associated with the distribution. This
connection implies that under fairly mild conditions, the SoS SDP based algorithms
are no more powerful than a much simpler and more lightweight class of algorithms
referred to as spectral algorithms. Roughly speaking, a spectral algorithm proceeds by
constructing amatrix M(x) out of the input instance x, and then using the eigenvalues
of the matrix M(x) to recover the desired outcome.

Notation. For a positive integer n, we use [n] to denote the set {1, . . . , n}. We sometimes
use

([n]
d

)
to denote the set of all subsets of [n] of size d, and [n]6d to denote the set of all

multi-subsets of cardinality at most d.
If x ∈ �n and A ⊂ [n] is a multiset, then we will use the shorthand xA to denote the

monomial xA �
∏

i∈A xi . We will also use x6d to denote the N × 1 vector containing all
monomials in x of degree atmost d (including the constantmonomial 1), where N �

∑d
i�0 n i .

Let �[x]6d denote the space of polynomials of degree at most d in variables x.
For a function f (n), we will say 1(n) � O( f (n)) if limn→∞

1(n)
f (n) 6 C for some universal

constant C. We say that f (n) � 1(n) if limn→∞
f (n)
1(n) � 0.

If µ is a distribution over the probability space S, then we use the notation x ∼ µ for
x ∈ S sampled according to µ. For an event E, we will use 1[E] as the indicator that E
occurs. We use �(n , 1

2) to denote the Erdős-Rényi distribution with parameter 1
2 , or the

distribution over graphs where each edge is included independently with probability 1
2 .

If M is an n × m matrix, we use λmax(M) to denote M’s largest eigenvalue. When
n � m, then Tr(M) denotes M’s trace. If N is an n × m matrix as well, then we use
〈M,N〉 � Tr(MN>) to denote the matrix inner product. We use ‖M‖F to denote the
Frobenius norm of M, ‖M‖F � 〈M,M〉1/2. For a subset S ⊂ [n], we will use 1S to denote
the {0, 1} indicator vector of S in �n . We will also use 1 to denote the all-1’s vector.
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For two matrices A, B we use A ⊗ B to denote both the Kronecker product of A and B,
and the order-4 tensor given by taking A ⊗ B and reshaping it with modes for the rows
and columns of A and of B. We also use A⊗k to denote the k-th Kronecker power of A.
For an order-k tensor T ∈ (�n)⊗k and for a permutation of [k] i1, . . . , ik , we denote by
T{i1 ,...,i`}{i`+1 ,...,ik} the n` × nk−` matrix reshaping given by ordering the modes of T so that
i1, . . . , i` index the rows and i`+1, . . . , ik index the columns.

Pseudoexpectations. For a polynomial system P in n variables x ∈ �n consisting of
inequalities {pi(x) > 0}i∈[m], we can write an SDP of size nO(d) which finds a degree-d
sum-of-squares refutation, if one exists (see [Rot13] for more discussion).

If there is no degree-d refutation, the dual semidefinite program computes in time nO(d)

a linear functional over degree-d polynomials which we term a pseudoexpectation. Formally,
a degree-d pseudoexpectation �̃ : �[x]6d → � is a linear functional over polynomials of
degree at most d with the properties that �̃[1] � 1, �̃[p(x)a2(x)] > 0 for all p ∈ P and
polynomials a such that deg(a2 · p) 6 d, and �̃[q(x)2] > 0 whenever deg(q2) 6 d.

Claim 1.4. If there exists a degree-d pseudoexpectation �̃ : �[x]6d → � for the polynomial
system P � {pi(x) > 0}i∈[m], then P does not admit a degree-d refutation.

Proof. Suppose P admits a degree-d refutation. Applying the pseudoexpectation operator
�̃ to the left-hand-side of Eq. (1.1), we have −1. Applying �̃ to the right-hand-side of
Eq. (1.1), the first summand must be non-negative by definition of �̃ since it is a sum of
squares, and the second summand is non-negative, since we assumed that �̃ satisfies the
constraints of P. This yields a contradiction. �

The properties above imply that when A d
x {q(x) > 0}, then if �̃ is a degree-d

pseudoexpectation operator for the polynomial system defined byA, �̃[q(x)] > 0 as well.
This implies that �̃ satisfies several useful inequalities; for example, the Cauchy-Schwarz
inequality.

Claim 1.5. If �̃ is a degree-d pseudoexpectation and if p , q are polynomials of degree at
most d

2 , then �̃[q(x) · p(x)] 6 1
2 �̃[q(x)2] + 1

2 �̃[p(x)2].

Proof. We have the following polynomial equality of degree at most d:

q(x)p(x) � 1
2
· q(x)2 + 1

2
· q(x)2 − 1

2
(
q(x) − p(x)

)2
.

Applying �̃ to both sides, using that �̃[(q(x) − p(x))2] > 0, we have our conclusion. �

Other versions of the Cauchy-Schwarz inequality can be shown to hold for pseudoex-
pectations as well; see e.g. [BBH+12] for details.
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2 Algorithms for high-dimensional estimation

In this section, we prove a algorithmic meta-theorem for high-dimensional estimation that
provides a unified perspective on the best known algorithms for a wide range of estimation
problems. This unifying perspective allows us to obtain algorithms with significantly
better guarantees than what’s known to be possible with other methods. We illustrate
the power of this meta-theorem by applying it to matrix and tensor completion, tensor
decomposition, and clustering.

2.1 Algorithmic meta-theorem for estimation

We consider the following general class of estimation problems, which will turn out to
capture a plethora of interesting problems in a useful way: In this class, an estimation
problem1is specified by a set P ⊆ �n ×�m of pairs (x , y), where x is called parameter and y
is called measurement. Nature chooses a pair (x∗, y∗) ∈ P, we are given the measurement y∗

and our goal is to (approximately) recover the parameter x∗.
For example, we can encode compressed sensing with measurement matrix A ∈ �m×n

and sparsity bound k by the following set of pairs,

PA,k �
{
(x , y) | y � Ax , x ∈ �n is k-sparse

}
.

Similarly, we can encode matrix completion with observed entries Ω ⊆ [n] × [n] and rank
bound r by the set of pairs,

PΩ,r �
{
(X,XΩ) | X ∈ �n×n , rank X 6 r

}
.

For both examples, the measurement was a simple (linear) function of the parameter. This
is not always the case; consider for example the following clustering problem. There are
two distinct centers µ1, µ2 ∈ �n , and we observe m samples y1, . . . ym ∈ �n such that each
sample is closer to either µ1 or µ2. Then we can encode the problem of finding µ1 and µ2
as follows,

Pµ,m �
{
((µ1, µ2),Y) | µ1 , µ2 ∈ �n , Y ∈ �n×m , ∀i ∈ [m],

��‖yi − µ1‖ − ‖yi − µ2‖
�� > 0

}
.

Identifiability. In general, an estimation problem P ⊆ �n ×�m may be ill-posed in the
sense that, even ignoring computational efficiency, it may not be possible to (approximately)
recover the parameter for a measurement y because we have (x , y), (x′, y) ∈ P for two
far-apart parameters x and x′.

For a pair (x , y) ∈ P, we say that y identifies x exactly if (x′, y) < P for all x′ , x.
Similarly, we say that y identifies x up to error ε > 0 if ‖x − x′‖ 6 ε for all (x′, y) ∈ P. We

1In contrast to the discussion of estimation problems in Section 1, for every parameter, we have a set of
possible measurements as opposed to a distribution over measurements. We can model distributions over
measurements in this way by considering a set of “typical measurements”. The viewpoint in terms of sets of
possible measurements will correspond more closely to the kind of algorithms we consider.
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say that x is identifiable (up to error ε) if every (x , y) ∈ P satisfies that y identifies x (up to
error ε).

For example, for compressed sensing PA,k , it is not difficult to see that every k-sparse
vector is identifiable if every subset of at most 2k columns of A is linearly independent. For
tensor decomposition, a sufficient condition under which the observation f (x) � ∑r

i�1 x⊗3
i

is enough to identify x ∈ �n×r (up to a permutation of its columns) is if the columns
x1, . . . , xr ∈ �n of x are linearly independent.

From identifiability proofs to efficient algorithms. By itself, identifiability typically only
implies that there exists an inefficient algorithm to recover a vector x close to the parameter
x∗ from the observation y∗ (e.g. by brute-force search over the set of all x). But perhaps
surprisingly, the notion of identifiability in a broader sense can also help us understand if
there exists an efficient algorithm for this task. Concretely, if the proof of identifiability is
captured by the sum-of-squares proof system at low degree, then there exists an efficient
algorithm to (approximately) recover x from y.

In order to formalize this phenomenon, let the set P ⊆ �n × �m be be described by
polynomial equations

P �
{
(x , y) | ∃z. p(x , y , z) � 0

}
,

where p � (p1, . . . , pt) is a vector-valued polynomial and z are auxiliary variables.2 (In
other words, P is a projection of the variety given by the polynomials p1, . . . , pt .) The
following theorem shows that there is an efficient algorithm to (approximately) recover
x∗ given y∗ if there exists a low-degree proof of the fact that the equation p(x , y∗, z) � 0
implies that x is (close to) x∗.

Theorem 2.1 (Meta-theorem for efficient estimation). Let p be a vector-valued polynomial
and let the triples (x∗, y∗, z∗) satisfy p(x∗, y∗, z∗) � 0. Suppose A d

x ,z {‖x∗ − x‖2 6 ε}, where
A � {p(x , y∗, z) � 0}. Then, every degree-d pseudo-distribution D consistent with the constraints
A satisfies 



x∗ − �̃

D(x ,z)
x




2

6 ε .

Furthermore, for every d ∈ �, there exists a polynomial-time algorithm (with running time
nO(d))3 that given a vector-valued polynomial p and a vector y outputs a vector x̂(y) with the
following guarantee: if A d

x ,z {‖x∗ − x‖2 6 ε} with a proof of bit-complexity at most nd , then
‖x∗ − x̂(y∗)‖2 6 ε + 2−nd .

Despite not being explicitly stated, the above theorem is the basis for many recent
advances in algorithms for estimation problems through the sum-of-squares method
[BKS15, BKS14, HSS15, MSS16, BM16, PS17, KSS18, HL18].

2We allow auxiliary variables here because they might make it easier to describe the set P. The algorithms
we consider depend on the algebraic description of P we choose and different descriptions can lead to
different algorithmic guarantees. In general, it is not clear which description is best. However, typically, the
more auxiliary variables the better.

3In order to be able to state running times in a simple way, we assume that the total bit-complexity of
(x , y , z) and the vector-valued polynomial p (in the monomial basis) is bounded by a fixed polynomial in n.
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Proof. Let D be a degree-d pseudo-distribution D with D
x ,z A. Since degree-d sum-of-

squares proofs are sound for degree-d pseudo-distributions, we have D d
x ,z {‖x∗−x‖2 6 ε}.

In particular, �̃D(x ,z)‖x∗−x‖2 6 ε. ByCauchy–Schwarz for pseudo-distributions (Claim 1.5),
every vector u ∈ �n satisfies

〈u , �̃
D(x ,z)

x∗ − x〉 � �̃
D(x ,z)

〈u , x∗ − x〉 6
(
�̃‖u‖2

)1/2 ·
(
�̃‖x∗ − x‖2

)1/2
6 ‖u‖ · ε1/2 .

By choosing u � �̃D(x ,z) x∗ − x, we obtain the desired conclusion about �̃D(x ,z) x.
Given a measurement y∗, the algorithm computes a degree-d pseudo-distribution

D(x , z) that satisfiesA up to error 2−n100d and outputs x̂(y∗) � �̃D(x ,z) x. We are guaranteed
that such a pseudo-distribution exists, e.g. the distribution that places all its probability
mass on the vector x∗. If the proofA d

x {‖x∗ − x‖2 6 ε} has bit-complexity nd , it follows
that D(x) satisfies {‖x∗− x‖2 6 ε} up to error 2−nd . In particular, �̃D(x)‖x∗− x‖2 6 ε+2−nd .
By the same argument as before, it follows that ‖x∗ − x̂(y∗)‖2 6 ε + 2−nd . �

2.2 Matrix and tensor completion

In matrix completion, we observe a few entries of a low-rank matrix and the goal is to fill in
the missing entries. This problem is studied extensively both from practical and theoretical
perspectives. One of its practical applications is in recommender systems, which was the
basis of the famous Netflix Prize competition. Here, we may observe a few movie ratings
for each user and the goal is to infer a user’s preferences for movies that the user hasn’t
rated yet.

In terms of provable guarantees, the best known polynomial time algorithm for matrix
completion is based on a semidefinite programming relaxation. Let X �

∑r
i�1 σi · uivi

T ∈
�n×n be a rank-r matrix such that its left and right singular vectors u1, . . . , ur , v1, . . . , vr ∈
�n are µ-incoherent4, i.e., they satisfy 〈ui , e j〉2 6 µ/n and 〈vi , e j〉2 6 µ/n for all i ∈ [r] and
j ∈ [n]. The algorithm observes the partial matrix XΩ that contains a random cardinality m
subset Ω ⊆ [n] × [n] of the entries of X. If m > µrn · O(log n)2, then with high probability
over the choice of Ω the algorithm recovers X exactly [CR09, Gro11, Rec11, Che15]. This
bound on m is nearly optimal in that m > Ω(rn) appears to be necessary because an n-by-n
rank-r matrix has Ω(rn) degrees of freedom (the entries of its singular vectors).

In this section, we will show how the above algorithm is captured by sum-of-squares
and, in particular, Theorem 2.1. We remark that this fact follows directly by inspecting
the analysis of the original algorithm [CR09, Gro11, Rec11, Che15]. The advantage of
sum-of-squares here is two-fold: First, it provides a unified perspective on algorithms for
matrix completion and other estimation problems. Second, the sum-of-squares approach
for matrix completion extends in a natural way to tensor completion (in a way that the
original approach for matrix completion does not).

4Random unit vectors satisfy this notion of µ-incoherence for µ 6 O(log n). In this sense, incoherent
vectors behave similar to random vectors.
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Identifiability proof for matrix completion. For the sake of clarity, we consider a simpli-
fied setup where the matrix X is assumed to be a rank-r projector so that X �

∑r
i�1 ai ai

T

for µ-incoherent orthonormal vectors a1, . . . , ar ∈ �n . The following theorem shows that,
with high probability over the choice of Ω, the matrix X is identified by the partial matrix
XΩ. Furthermore, the proof of this fact is captured by sum-of-squares. Together with
Theorem 2.1, the following theorem implies that there exists a polynomial-time algorithm
to recover X from XΩ.

Theorem 2.2 (implicit in [CR09, Gro11, Rec11, Che15]). Let X �
∑r

i�1 aiai
T ∈ �n×n be an

r-dimensional projector and a1, . . . , ar ∈ �n orthonormal with incoherence µ � maxi , j n · 〈ai , e j〉2.
LetΩ ⊆ [n]×[n] be a random symmetric subset of size |Ω| � m. Consider the system of polynomial
equations in the n-by-r matrix variable B,

A �
{(

BBT)
Ω
� XΩ, BTB � Idr

}
.

Suppose m > µrn · O(log n)2. Then, with high probability over the choice of Ω,

A 4
B {

BBT − X




F � 0

}
.

Proof. The analyses of the aforementioned algorithm for matrix completion [CR09, Gro11,
Rec11, Che15] show the following: let Ω be the complement of Ω in [n] × [n]. Then if X
satisfies our incoherence assumptions, with high probability over the choice of Ω, there
exists5 a symmetric matrix M with M

Ω
� 0 and −0.9(Idn − X) � M − X � 0.9(Idn − X). As

we will see, this matrix also implies that the above proof of identifiability exists.
Since 0 � X and X − 0.9(Idn − X) � M, we have

〈M,X〉 > 〈X,X〉 − 0.9〈Idn − X,X〉 � 〈X,X〉 � r .

Since M
Ω

� 0 and A contains the equation (BBT)Ω � XΩ, we have A B 〈M, BBT〉 �
〈M,X〉 > r. At the same time, we have

A 〈M, BBT〉 6 〈X, BBT〉 + 0.9〈Idn − X, BBT〉 � 0.1〈X, BBT〉 + 0.9r ,

where the first step uses M � X + 0.9(Id−X) and the second step usesA 〈Idn , BBT〉 � r
because 〈Idn , BBT〉 � Tr BTB andA contains the equation BTB � Idr . Combining the lower
and upper bound on 〈M, BBT〉, we obtain

A 〈X, BBT〉 > r .

Together with the facts ‖X‖2F � r andA


BBT



2
F � r, we obtainA



X − BBT


2

F � 0 as
desired. �

5Current proofs of the existence of this matrix proceed by an ingenious iterative construction of this
matrix (alternatingly projecting to two affine subspaces). The analysis of this iterative construction is based
on matrix concentration bounds. We refer to prior literature for details of this proof [Gro11, Rec11, Che15].
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Identifiability proof for tensor completion. Tensor completion is the analog of matrix
completion for tensors. We observe a few of the entries of an unknown low-rank tensor and
the goal is to fill in the missing entries. In terms of provable guarantees, the best known
polynomial-time algorithms are based on sum-of-squares, both for exact recovery [PS17]
(of tensors with orthogonal low-rank decompositions) and approximate recovery [BM16]
(of tensors with general low-rank decompositions).

Unlike for matrix completion, there appears to be a big gap between the number
of observed entries required by efficient and inefficient algorithms. For 3-tensors, all
known efficient algorithms require r · Õ(n1.5) observed entries (ignoring the dependence
on incoherence) whereas information-theoretically r · O(n) observed entries are enough.
The gap for higher-order tensors becomes even larger. It is an interesting open question to
close this gap or give formal evidence that the gap is inherent.

As for matrix completion, we consider the simplified setup that the unknown tensor has
the form X �

∑r
i�1 a⊗3

i for incoherent, orthonormal vectors a1, . . . , ar ∈ �n . The following
theorem shows that with high probability, X is identifiable from rn1.5 · (µ log n)O(1) random
entries of X and this fact has a low-degree sum-of-squares proof.

Theorem 2.3 ([PS17]). Let a1, . . . , ar ∈ �n be orthonormal vectors with incoherence µ �

maxi , j n · 〈ai , e j〉2 and let X �
∑r

i�1 a⊗3
i be their 3-tensor. Let Ω ⊆ [n]3 be a random symmetric

subset of size |Ω| � m. Consider the system of polynomial equations in the n-by-r matrix variable
B with columns b1, . . . , br ,

A �

{(
r∑

i�1
b⊗3

i

)
Ω

� XΩ, BTB � Idr

}
Suppose m > rn1.5 · (µ log n)O(1). Then, with high probability over the choice of Ω,

A O(1)
B







 r∑

i�1
b⊗3

i − X






2

F

� 0


Proof. Let A ∈ �n×r be the matrix with columns a1, . . . , ar . Analogous to the proof for
matrix completion, the heart of the proof is the existence of a 3-tensor T that satisfies the
following properties: T

Ω
� 0, 〈T, a⊗3

i 〉 � 1, and

{‖x‖2 � 1} 6
x 〈T, x⊗3〉 6 1 − 1

100
(
1 −∑r

i�1〈ai , x〉2
)
− 1

100

(∑
i, j 〈ai , x〉2〈a j , x〉2

)
. (2.1)

These properties imply that a1, . . . , ar are the unique global maximizers of the cubic
polynomial 〈T, x⊗3〉 over the unit sphere. (We remark that for matrix completion, the
spectral properties of the matrix M imply that the unique global optimizers of the quadratic
polynomial 〈M, x⊗2〉 are the unit vectors in the span of a1, . . . , ar .)

The proof that this tensor T exists follows the same approach as the proof of existence
of the matrix M for matrix completion in Theorem 2.2 and proceeds by an iterative
construction [Rec11, Gro11]. The main difference is due to the fact that for M we only
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need to ensure spectral properties, whereas for T we need to ensure the existence of
(higher-degree) sum-of-squares proofs Eq. (2.1). We refer to previous literature for details
of the proof that such T exists with high probability over the choice of Ω [PS17].

Similar to the proof for matrix completion, we have by the properties of T that 〈T,X〉 � r
andA

{
〈T,∑r

i�1 b⊗3
i 〉 � 〈T,X〉 � r

}
. By Eq. (2.1) and linearity,

A 〈T,∑r
i�1 b⊗3

i 〉 6 r − 1
100

∑r
i�1(1 −

∑r
j�1〈a j , bi〉2) − 1

100
∑r

i�1
∑

j,k 〈a j , bi〉2〈ak , bi〉2 .

Because A includes the equations ‖b1‖2 � · · · � ‖br ‖2 � 1 and because the final term
is a sum of squares, we conclude that A ∑r

j�1〈a j , bi〉2 � 1 for all i ∈ [r] and A
〈a j , bi〉2〈ak , bi〉2 � 0 for all i , j, k ∈ [r]with j , k. We also have the following claim:

Claim 2.4. When {ai}i∈[r] are orthogonal and A
{∑

j∈[r]〈a j , bi〉2 � 1
}

i∈[r] and A
{〈a j1 , bi〉2〈a j2 , bi〉2 � 0} j1, j2∈[r], thenA ‖b⊗3

i −
∑r

j�1〈a j , bi〉3a⊗3
j ‖

2 � 0 .
We give the (easy) proof of Claim 2.4 in Appendix A. Thus, from the orthonormality of

the ai ,

A r �

〈
T,

r∑
i�1

b⊗3
i

〉
�

∑
i , j

〈a j , bi〉3〈T, a⊗3
j 〉 �

∑
i , j

〈a j , bi〉3 �

〈
X,

r∑
i�1

b⊗3
i

〉
.

Together with the facts ‖X‖2F � r and A



∑r

j�1 b⊗3
i




2

F
� r, we obtain A


X −∑r

j�1 b⊗3
i




2

F
� 0 as desired. �

2.3 Overcomplete tensor decomposition

Tensor decomposition refers to the following general class of estimation problems: Given
(a noisy version of) a k-tensor of the form

∑r
i�1 a⊗k

i , the goal is to (approximately) recover
one, most, or all of the component vectors a1, . . . , ar ∈ �n . It turns out that under mild
conditions on the components a1, . . . , ar , the noise, and the tensor order k, this estimation
task is possible information theoretically. For example, generic components a1, . . . , ar ∈ �n

with r 6 Ω(n2) are identified by their 3-tensor
∑r

i�1 a⊗3
i [CO12] (up to a permutation of the

components). Our concern will be what conditions on the components, the noise, and the
tensor order allow us to efficiently recover the components.

Besides being significant in its own right, tensor decomposition is a surprisingly versatile
and useful primitive to solve other estimation problems. Concrete examples of problems
that can be reduced to tensor decomposition are latent Dirichlet allocationmodels, mixtures
of Gaussians, independent component analysis, noisy-or Bayes nets, and phylogenetic
tree reconstruction [LCC07, MR05, AFH+12, HK13, BCMV14, BKS15, MSS16, AGMR17].
Through these reductions, better algorithms for tensor decomposition can lead to better
algorithms for a large number of other estimation problems.

Toward better understanding the capabilities of efficient algorithms for tensor de-
composition, we focus in this section on the following more concrete version of the
problem.
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Problem 2.5 (Tensor decomposition, single component recovery, constant error). Given an
order-k tensor

∑r
i�1 a⊗k

i with component vectors a1, . . . , ar ∈ �n , find a vector u ∈ �n that
is close6 to one of the component vectors in the sense that maxi∈[r]

1
‖ai ‖·‖u‖ |〈ai , u〉| > 0.9.

Algorithms for Problem 2.5 can often be used to solve a priori more difficult versions of
the tensor decomposition that ask to recover most or all of the components or that require
the error to be arbitrarily small.

A classical spectral algorithm attributed to Jennrich [Har70, LRA93] can solve Prob-
lem 2.5 for up to r 6 n generic components if the tensor order is at least 3. (Concretely,
the algorithm works for 3-tensors with linearly independent components.) Essentially
the same algorithm works up to Ω(n2) generic7 components if the tensor order is at least
5. A more sophisticated algorithm [LCC07] solves Problem 2.5 for up to Ω(n2) generic8
components if the tensor order is at least 4. However, these algorithms and their analyses
break down if the tensor order is only 3 and the number of components is n1+Ω(1), even if
the components are random vectors.

In this and the subsequent section, we will discuss a polynomial-time algorithm based
on sum-of-squares that goes beyond these limitations of previous approaches.

Theorem 2.6 ([MSS16] building on [BKS15, GM15, HSSS16]). There exists a polynomial-time
algorithm to solve Problem 2.5 for tensor order 3 and Ω̃(n1.5) components drawn uniformly at
random from the unit sphere.

The strategy for this algorithm consists of two steps:

1. use sum-of-squares in order to lift the given order-3 tensor to a noisy version of the
order-6 tensor with the same components,

2. apply Jennrich’s classical algorithm to decompose this order-6 tensor.

While Problem 2.5 falls outside of the scope of Theorem 2.1 (Meta-theorem for efficient
estimation) because the components are only identified up to permutation, the problem
of lifting a 3-tensor to a 6-tensor with the same components is captured by Theorem 2.1.
Concretely, we can formalize this lifting problem as the following set of parameter–
measurement pairs,

P3,6;r �

{
(X,Y)

����� X �

r∑
i�1

a⊗6
i , Y �

r∑
i�1

a⊗3
i , a1, . . . , ar ∈ �n

}
⊆ �n6 ×�n3

.

In Section 2.4, we give the kind of sum-of-squares proofs that Theorem 2.1 requires in order
to obtain an efficient algorithm to solve the above estimation problem of lifting 3-tensors to
6-tensors with the same components.

6This notion of closeness ignores the sign of the components. If the tensor order is odd, the sign can often
be recovered as part of some postprocessing. If the tensor order is even, the sign of the components is not
identified.

7Here, the vectors a⊗2
1 , . . . , a⊗2

r are assumed to be linearly independent.
8Concretely, the vectors {a⊗2

i ⊗ a⊗2
j | i , j} ∪ {(ai ⊗ a j)⊗2 | i , j} are assumed to be linearly independent.
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The following theorem gives an analysis of Jennrich’s algorithm that we can use to
implement the second step of the above strategy for Theorem 2.6.

Theorem2.7 (Robust Jennrich’s algorithm [MSS16, SS17]). There exists ε > 0 and a randomized
polynomial-time algorithm that given a 3-tensor T ∈ (�n)⊗3 outputs a unit vector u ∈ �n with the
following guarantees: Let a1, . . . , ar ∈ �n be unit vectorswith orthogonality defect ‖Idr−ATA‖ 6 ε,
where A ∈ �n×r is the matrix with columns a1, . . . , ar . Suppose



T −∑
i a⊗3

i



2
F 6 ε · r and

that max{‖T‖{1,3}{2} , ‖T‖{1}{2,3}} 6 10. Then, with at least inverse polynomial probability,
maxi∈[r]〈ai , u〉 > 0.9.

We will apply Theorem 2.7 to the noisy copy of the 6-tensor X returned by the SoS
algorithm, viewing it as a 3-tensor in the lifted/squared components a1 ⊗ a1, . . . , ar ⊗ ar ∈
�n2 ; these lifted components are in n2 dimensions, and may be linearly independent and
close to orthogonal for r � n.9 To ensure that our approximation to X meets the conditions
of the theorem, we can add constraints to the SoS SDP to bound the spectral norm of
rectangular reshapings of X; see [MSS16] for details.

Proof sketch. Weapply the following version of Jennrich’s algorithm toT: Choose aGaussian
vector 1 ∼ N(0, Id) and compute the d × d matrix T(1) given by the random contraction,

T(1) �
∑
j∈[n]

1 j · Ti ,

where Ti is the n × n matrix resulting from the restriction of T to coordinate i in the third
mode. Then, output the top eigenvector of T(1).

To analyze this algorithm, write T as a sum of signal and noise terms T � S + E, where
S �

∑r
i�1 a⊗3

i and ‖E‖F 6 ε · r. Notice that when E � 0,

T(1) �
∑
i∈[r]
〈1 , ai〉 · aia>i ,

and with probability 1 the values 〈ai , 1〉 are distinct. So when ‖Idr − A>A‖ � 0, the
eigenvectors of T(1) are exactly the ai . To establish the theorem, it remains to show that
when ‖E‖2F 6 εr and when the orthogonality defect is at most ε, the top eigenvector is still
close to some ai with reasonable probability. Though the full proof is not complicated, we
defer it to Appendix A. �

2.4 Tensor decomposition: lifting to higher order

In this section, we give low-degree sum-of-squares proofs of identifiability for the different
version of the estimation problem of lifting 3-tensors to 6-tensorswith the same components.
These sum-of-squares proofs are a key ingredient of the algorithms for overcomplete tensor
decomposition discussed in Section 2.3.

9To ensure that the lifted/squared components are close to orthogonal, we must stipulate conditions for T.
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We first consider the problem of lifting 3-tensors with orthonormal components. By
itself, this lifting theorem cannot be used for overcomplete tensor decomposition. However
it turns out that this special case best illustrates the basic strategy for lifting tensors to
higher-order tensors with the same components.

Orthonormal components. The following lemma shows that for orthonormal compo-
nents, the 3-tensor identifies the 6-tensor with the same set of components and that this
fact has a low-degree sum-of-squares proof.

Lemma 2.8. Let a1, . . . , ar ∈ �n be orthonormal. LetA � {∑r
i�1 a⊗3

i �
∑r

i�1 b⊗3
i , BT · B � Id},

where B is an n-by-r matrix of variables and b1, . . . , br are the columns of B. Then,

A 12
B







 r∑

i�1
a⊗6

i −
r∑

i�1
b⊗6

i






2

F

� 0
 .

Proof. By orthonormality,


∑r

i�1 a⊗6
i



2
F �



∑r
i�1 a⊗3

i



2
F � r and from the constraint B>B � Id,

A B 

∑r
i�1 b⊗6

i



2
F �



∑r
i�1 b⊗3

i



2
F � r. Thus, by the equality

∑
i a⊗3

i �
∑

j b⊗3
j , we have

A ∑
i , j 〈ai , b j〉3 � r. It suffices to showA ∑

i , j 〈ai , b j〉6 > r.
Using

∑r
i�1 aiai

T � Id, a sum-of-squares version of Cauchy–Schwarz, and the fact that
A contains the constraints ‖b1‖2 � · · · � ‖br ‖2 � 1,

A r �

∑
i , j

〈ai , b j〉3 6 1
2

∑
i , j

〈ai , b j〉2 + 1
2

∑
i , j

〈ai , b j〉4 6 1
2 r + 1

2

∑
i , j

〈ai , b j〉4 .

We conclude that A ∑
i , j 〈ai , b j〉4 � r. Applying the same reasoning to

∑
i , j 〈ai , b j〉4

instead of
∑

i , j 〈ai , b j〉3 yieldsA
∑

i , j 〈ai , b j〉6 � r as desired. �

Incoherent components. The following lemma shows that a 6-tensor is identifiable
from a 3-tensor with the same components if the components satisfy a set of simple
deterministic conditions . Furthermore, this fact has a low-degree sum-of-squares proof.
These conditions allow for overcomplete tensors with components a1, . . . , ar ∈ �n such that
r > n1+Ω(1). In fact, together with the techniques in Section 2.3, the following lemma gives
a polynomial-time algorithm to solve Problem 2.5 for tensor order 3 and up to Ω̃(n1.25)
components that are drawn uniformly at random from the unit sphere.

For σ > 1 and ρ > 0, we say that unit vectors a1, . . . , ar ∈ �n are (σ, ρ)-incoherent if∑r
i�1 ai ai

T � σ · Id and |〈ai , a j〉| 6 ρ for all i , j. Random unit vectors satisfy this property
for σ 6 Õ(r/n) and ρ 6 Õ(1/

√
n).

Let B be an n-by-r matrix of variables and let b1, . . . , br be the columns of B. Consider
the following system of polynomial constraints

Bε �
{
‖bi ‖2 � 1 ∀i ∈ [r],



∑r
i�1 b⊗3

i



2
F > (1 − ε) · r,



∑r
i�1 b⊗6

i



2
F 6 (1 + ε) · r

}
. (2.2)
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We observe that (σ, ρ)-incoherent unit vectors satisfy Bε for ε � ρσ. In particular, if
a1, . . . , ar are (σ, ρ)-incoherent unit vectors, then



∑r
i�1 a⊗3

i



2
F � r+

∑
i, j 〈ai , a j〉3 > (1−ρσ)·r.

For a similar reason,


∑r

i�1 a⊗6
i



2
F 6 (1 + ρ4σ) · r 6 (1 + ρσ) · r.

Lemma 2.9. Let a1, . . . , ar ∈ �n be (σ, ρ)-incoherent unit vectors. Let B be an n-by-r matrix of
variables, b1, . . . , br the columns of B, andA the following system of polynomial constraints,

A � Bρσ
⋃ {

r∑
i�1

a⊗3
i �

r∑
i�1

b⊗3
i

}
.

Then,

A 12
B







 r∑

i�1
a⊗6

i −
r∑

i�1
b⊗6

i






2

F

6 O(ρσ2) ·





 r∑

i�1
a⊗6

i +

r∑
i�1

b⊗6
i






2

F

 .

The proof follows the same strategy as our proof of Lemma 2.8. We aim to lower bound
first

∑
i , j 〈ai , b j〉4 and then

∑
i , j 〈ai , b j〉6.

Proof. Since


∑r

i�1 a⊗3
i



2
F > (1 − ρσ) · r and A



∑r
i�1 b⊗3

i



2
F > (1 − ρσ) · r, it holds that

A ∑
i , j 〈ai , b j〉3 > (1 − ρσ) · r. At the same time, since



∑r
i�1 a⊗6

i



2
F 6 (1 + ρσ) · r and

A


∑r

i�1 b⊗6
i



2
F 6 (1 + ρσ) · r, it suffices to show A ∑

i , j 〈ai , b j〉6 > (1 − 10ρσ2) · r.
Indeed,

A (1 − ρσ) · r 6 ∑
i , j 〈ai , b j〉3

�
∑

j
〈
b j ,

∑
i 〈ai , b j〉2ai

〉
6

∑
j

1
2 ‖b j ‖2 + 1

2



∑
i 〈ai , b j〉2ai



2

�
1
2 r + 1

2
∑

i , j 〈ai , b j〉4 + 1
2
∑

j
∑

i,i′〈ai , ai′〉〈ai , b j〉2〈ai′ , b j〉2

6 1
2 r + 1

2

∑
i , j

〈ai , b j〉4 + 1
2ρσ

2r, .

where to obtain the final line we have used that |〈ai , ai′〉| 6 ρ and
∑r

i�1〈ai , b j〉2 �

b>j
(∑r

i�1 aia>i
)

b j 6 σ by the assumption that
∑

i ai a>i � σId. It follows that A∑
i , j 〈ai , b j〉4 > (1 − ρσ2 − 2ρσ) · r. By applying the above reasoning to

∑
i , j 〈ai , b j〉4

instead of
∑

i , j 〈ai , b j〉3, we obtainA ∑
i , j 〈ai , b j〉6 > (1 − 3ρσ2 − 4ρσ) · r > (1 − 10ρσ2) · r

as desired. Concretely,

A (1 − ρσ2 − 2ρσ) · r 6 ∑
i , j 〈ai , b j〉4

�
∑

j
〈
b j ,

∑
i 〈ai , b j〉3ai

〉
6 1

2 r + 1
2
∑

i , j 〈ai , b j〉6 + 1
2
∑

j
∑

i,i′〈ai , ai′〉〈ai , b j〉3〈ai′ , b j〉3

6 1
2 r + 1

2
∑

i , j 〈ai , b j〉6 + 1
2ρ

∑
j
∑

i,i′〈ai , b j〉2〈ai′ , b j〉2

6 1
2(1 + ρσ2) · r + 1

2

∑
i , j

〈ai , b j〉6 . �

9A formal reason for these bounds is that the assignment bi � ai satisfies the constraintsA.
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Random components. Let a1, . . . , ar ∈ �n be uniformly random unit vectors with r 6
nO(1). Let B be an n-by-r matrix of variables and let b1, . . . , br be the columns of B. With
high probability, the vectors a1, . . . , ar satisfy Bε for ε 6 Õ(r/n1.5), as defined in Eq. (2.2).
Concretely, with high probability, every pair (i , j) ∈ [r]2 with i , j satisfies 〈ai , a j〉2 6
Õ(1/n). Thus,



∑r
i�1 b⊗3

i



2
F � r +

∑
i, j 〈bi , b j〉3 > (1 + Õ(r/n1.5)) · r and



∑r
i�1 b⊗6

i



2
F 6

(1 + Õ(r/n3)) · r.

Lemma 2.10 (implicit in [GM15]). Let ε > 0 and a1, . . . , ar ∈ �n be random unit vectors with
r 6 ε · Ω̃(n1.5). Let B be an n-by-r matrix of variables, b1, . . . , br the columns of B, and A the
following system of polynomial constraints,

A � Bε
⋃ {

r∑
i�1

a⊗3
i �

r∑
i�1

b⊗3
i

}
.

Then,

A 12
B







 r∑

i�1
a⊗6

i −
r∑

i�1
b⊗6

i






2

F

6 O(ε) ·





 r∑

i�1
a⊗6

i +

r∑
i�1

b⊗6
i






2

F

 .

Proof. With high probability over the choice of a1, . . . , an , we have


∑r

i�1 a⊗3
i




F > (1 − ε) · r

and


∑r

i�1 a⊗6
i




F > (1 + ε) · r. Therefore, it holdsA ∑

i , j 〈ai , b j〉3 > 1 − ε and it suffices to
showA ∑

i , j 〈ai , b j〉6 > 1 − 10ε.
The work [GM15] shows that, with high probability over the choice of a1, . . . , an ,

{
‖x‖2 � 1

} 
∑
i, j

〈ai , a j〉〈ai , x〉2〈a j , x〉2 6 ε∑
i, j

〈ai , a j〉〈ai , x〉3〈a j , x〉3 6 ε


.

Under these conditions, the same reasoning as in the proof of Lemma 2.9 allows us to
concludeA ∑

i , j 〈ai , b j〉4 > (1 − 3ε) · r andA ∑
i , j 〈ai , b j〉6 > (1 − 7ε) · r. �

2.5 Clustering

We consider the following clustering problem: given a set of points y1, . . . , yn ∈ �d , the
goal is to output a k-clustering matrix X ∈ {0, 1}n×n of the points such that the points in
each cluster are close to each other as possible. Here, we say that a matrix X ∈ {0, 1}n×n is
a k-clustering if there is a partition S1, . . . , Sk of [n] such that Xi j � 1 if and only if there
exists ` ∈ [k]with i , j ∈ S` .

In this section, we will discuss how SoS allows us to efficiently find clusterings with
provable guarantees that are significantly stronger than for previous approaches. For
concreteness, we consider in the following theorem the extensively studied special case
that the points are drawn from a mixture of spherical Gaussians such that the means are
sufficiently separated [Das99, AK01, VW04, AM05, KMV10, MV10, BS10]. Another key
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advantage of the approach we discuss is that it continues to work even if the points are
not drawn from a mixture of Gaussians and the clusters only satisfy mild bounds on their
empirical moment tensors.

Theorem 2.11 ([HL18, KSS18, DKS18]). There exists an algorithm that given k ∈ � with
k 6 n and vectors ŷ1, . . . , ŷn ∈ �d outputs a k-clustering matrix X ∈ {0, 1}n×n in quasi-
polynomial time n + (dk)(log k)O(1) with the following guarantees: Let ŷ1, . . . , ŷn be a sample from
the uniform mixture of k spherical Gaussians N(µ1, Id), . . . ,N(µk , Id) with mean separation
mini, j ‖µi − µ j ‖ > O(

√
log k) and n > (dk)(log k)O(1) . Let X∗ ∈ {0, 1}n×n be the k-clustering

matrix corresponding to the Gaussian components (so that X∗i j � 1 if ŷi and ŷ j were drawn from
the same Gaussian component and X∗i j � 0 otherwise). Then with high probability,

‖X − X∗‖2F 6 0.1 · ‖X∗‖2F .

We remark that the same techniques also give a sequence of polynomial-time algorithms
that approach the logarithmic separation of the algorithm above. Concretely, for every
ε > 0, there exists an algorithm that works if the mean separation is at least Oε(kε).

These algorithms for clustering points drawn from mixtures of separated spherical
Gaussians constitute a significant improvement over previous algorithms that require
separation at least O(k1/4) [VW04].

Sum-of-squares approach to learning mixtures of spherical Gaussians. In order to
apply Theorem 2.1, we view the clustering matrix X corresponding to the Gaussian
components as the parameter and a “typical sample” Y � y1, . . . , yn of the mixture as the
measurement. Here, typical means that the empirical moments in each cluster are close to
the moments of a spherical Gaussian distribution. Concretely, we consider the following
set of parameter–measurement pairs,

Pk ,ε,` �

(X,Y)
������

X is k-clustering matrix w/clusters S1, . . . , Sk ⊆ [n]
∀κ ∈ [k],

�i∈Sκ(1, yi − µκ)⊗` −�1∼N(0,Id)(1, 1)⊗`




F 6 ε

 ⊆ {0, 1}n×n×�d×n ,

where µκ � �i∈Sκ yi is the mean of cluster Sκ ⊆ [n], and where (1, v) is the vector of
dimension dim(v) + 1 with a 1 in the first coordinate (we extend yi and 1 in this way so
that the bound includes all moments of order at most `).

It is straightforward to express Pk ,ε,` in terms of a system of polynomial constraints
A � {p(X,Y, z) � 0}, so that Pk ,ε,` � {(X,Y) | ∃z. p(X,Y, z) � 0}. Theorem 2.11 follows
from Theorem 2.1 using the fact that under the conditions of Theorem 2.11, the following
sum-of-squares proof exists with high probability for ` 6 (log k)O(1),

A(Ŷ) `

X,z
{
‖X − X∗‖2F 6 0.1 · ‖X∗‖2F

}
,

whereX∗ is the ground-truth clusteringmatrix (corresponding to theGaussian components),
and Ŷ � ŷ1, . . . , ŷn is the input samples observed.
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3 Lower bounds

In this section, we will be concerned with showing lower bounds on the minimum degree
of sum-of-squares refutations for polynomial systems, especially those arising out of
estimation problems.

The turn of the millennium saw several works that rule out degree-2 sum-of-squares
refutations for a variety of problems, such as max cut [FS02], k-clique [FK00], and sparsest
cut [KV15], among others. These works, rather than explicitly taking place in the context
of sum-of-squares proofs, were motivated by the desire to show tightness for specific SDP
relaxations.

Around the same time, Grigoriev proved linear lower bounds on the degree of sum-of-
squares refutations for k-XOR, k-SAT, and knapsack [Gri01b, Gri01a] (the first two of these
bounds were later independently rediscovered by Schoenebeck [Sch08]). Few other lower
bounds against SoS were known. Most of the subsequent works (e.g. [Tul09, BCV+12])
built on the k-SAT lower bounds via reductions; in essence, techniques for proving lower
bounds against higher-degree sum-of-squares refutations were ad hoc and few.

In recent years, a series of papers [MPW15, DM15, HKP+16] introduced higher-degree
sum-of-squares lower bounds for k-clique, culminating in thework of Barak et al. [BHK+16].
Barak et al. go beyond proving lower bounds for the k-clique problem specifically,
introducing a beautiful and general framework, called pseudocalibration, for proving SoS
lower bounds. Though their work settles the degree of SoS refutations for k-clique in
�(n , 1

2), it brings up intriguing new questions. In particular, it gives rise to a compelling
conjecture, which if proven, would settle the degree needed to refute a broad class of
estimation problems, including densest k-subgraph, community detection problems, graph
coloring, andmore. We devote this section to describing the technique of pseudocalibration.

Let us begin by recalling some notation. Let P � {pi(x , y) > 0}i∈[m] be a polynomial
system associated with an estimation problem. The polynomial system is over hidden
variables x ∈ �n , with coefficients that are functions of themeasurement/instance variables
y ∈ �N . We will use Py to denote the polynomial system for a fixed y. Let P have degree
at most dx in x and degree at most Dy in y. If D∅ denotes the null distribution, then
Py is infeasible w.h.p. when y ∼ D∅, and we are interested in the minimum degree of
sum-of-squares refutation.

Pseudodensities. By Theorem 1.4, to rule out degree-d sum-of-squares refutations for Py

, it is sufficient to construct the dual pseudoexpectation functional �̃y with the properties
outlined in Section 1.2. However, it turns out to be conceptually cleaner to think about
constructing related objects called pseudodensities rather than pseudoexpectation functionals.
Towards defining pseudodensities, we first pick a natural background measure σ for
x ∈ �n , and we use �x to denote the expectation over the background measure σ. The
choice of background measure itself is not too important, but for the example we will
consider, it will be convenient to pick σ to be uniform distribution over {0, 1}n .

Definition 3.1. A function µ̄ : {0, 1}n → � is a pseudodensity for a polynomial system
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P � {pi(x) > 0}i∈[m] if �̃µ̄ : �[x]6d → � defined as follows:

�̃
µ̄
[p(x)] def

� �
x
µ̄(x)p(x)

is a valid pseudoexpectation operator, namely, it satisfies the constraints outlined in
Section 1.2.

To show that Py does not admit a degree d SoS refutation for most y ∼ D∅, it suffices
for us to show that with high probability over y ∼ D∅, we can construct a pseudodensity
µ̄y : {0, 1}n → �. More precisely, with high probability over the choice of y ∼ D∅, the
following must hold:

(scaling) �
x
µ̄y(x) � 1 (3.1)

(PSDness) �
x

q(x)2µ̄y(x) > 0 ∀q ∈ �[x]6d/2 (3.2)

(P constraints) �
x

p(x)a2(x) · µ̄y(x) > 0 ∀p ∈ P , a ∈ �[x], deg(a2 · p) 6 d. (3.3)

3.1 Pseudocalibration

Pseudocalibration is a heuristic for constructing pseudodensities for non-feasible systems
in such settings. It was first introduced in [BHK+16] for the k-clique problem, but the
heuristic is quite general and can be seen to yield lower bounds for other problems as well
(e.g. [Gri01b, Sch08]).

At a high level, pseudocalibration leverages the existence of a structured distribution
of estimation problems to construct pseudodensities. For each x ∈ {0, 1}n , let Dx be a
distribution over {±1}N such that (x , y) are a feasible pair for P.10 Let J∗ denote the
joint structured distribution over feasible pairs y∗ ∈ {±1}N and x∗ sampled from σ, i.e.
�J∗{(x , y)} � σ(x) · �Dx {y}. Let us define a joint null distribution J∅ on pairs (x , y) to be

J∅
def
� σ × D∅ .

As we describe pseudocalibration, J∅ will serve as the background measure for us. Let
µ∗ : {0, 1}n × {±1}N → �+ denote the density of the joint structured distribution J∗ with
respect to the background measure J∅, namely

µ∗(x , y) �
�J∗(x , y)
�J∅(x , y) �

�D∗{y}
�D∅{y}

·
�J∗{x |y}
σ(x)

At first glance, a candidate construction of a pseudodensity µ̄y for y ∼ D∅ would be
the partially-evaluated relative joint density µ∗ namely

µ̄y � µ∗(·, y) .

10Again, the choice y ∈ {±1}N is not fundamental, and we make it for for simplicity of presentation.
Also, for calculations it will sometimes be convenient to defineDx so that (x , y) is feasible only with high
probability over y ∼ Dx ; however this does not greatly impact the arguments, and we neglect this detail in
our exposition.
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This construction µ̄y already satisfies two of the three conditions for being a pseudo-
density (Eq. (3.2) and Eq. (3.3)). This is because for any polynomial p(x , y),

�
x

p(x)µ̄y(x) �
�D∗{y}
�D∅{y}

· �
x

p(x)
�J∗{x |y}
σ(x) �

�D∗{y}
�D∅{y}

· �
x∼J∗(·|y)

p(x) .

From the above equality, Eq. (3.2) follows directly because

�
x

q(x)2µ̄y(x) �
�D∗{y}
�D∅{y}

· �
x∼J∗(·|y)

q2(x) > 0 .

Similarly, Eq. (3.3) is again an immediate consequence of the fact that J∗ is supported on
feasible pairs for P,

�
x

p(x)a2(x)µ̄y(x) �
�D∗{y}
�D∅{y}

· �
x∼J∗(·|y)

p(x)a2(x) > 0 .

However, the scaling constraint Eq. (3.1) is far from satisfied because,

�
x
µ̄y(x) �

�D∗{y}
�D∅{y}

· �
x∼J(·|y)

1 �
�D∗{y}
�D∅{y}

is a quantity that may be really large for y ∈ supp(D∗) and 0 otherwise (recall thatD∗ has
low entropy compared to D∅). As a saving grace, the constraint Eq. (3.1) is satisfied in
expectation over y, i.e.,

�
y∼D∅
�
x
µ̄y(x) � �

y∼D∅
�
x
µ∗(x , y) � �

(x ,y)∼J∅
µ∗(x , y) � 1 ,

since µ∗ is a density.
The relative joint density µ∗(x , y) faces an inherent limitation in that it is only nonzero

on supp(D∗), which accounts for a negligible fraction of y ∼ D∅. Intuitively, the constraints
of P are low-degree polynomials in x and y. Therefore, our goal is to construct a µ̄y that
has the same low-degree structure as µ∗, but has a much higher entropy: that is, its mass is
not concentrated on a small fraction of instances.

A natural way to achieve this is to simply project the joint density µ∗ in to the space of
low-degree polynomials. Formally, let L2(J∅) denote the vector space of functions over
�N ×�n equipped with the inner product 〈 f , 1〉J∅ � �(x ,y)∼J∅ f (x , y)1(x , y). For d ,D ∈ �,
let Vd ,D ⊆ L2(J∅) denote the following vector space

Vd ,D � span{q(x , y) ∈ �[x , y]| degx(q) 6 d , degy(q) 6 D}

If Πd ,D denotes the projection on to Vd ,D , then the pseudo-calibration recipe suggests the
use of the following candidate pseudodensity:

Definition 3.2. For D ∈ �, the D-pseudocalibrated function µ̄(x , y) is defined as

µ̄y(x) � Πd ,D ◦ µ∗(x , y) (3.4)

where d is the target degree for the pseudodistribution.
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Consider a constraint in the polynomial system {p(x , y) > 0} ∈ P. As long as
degx(p) 6 d and degy(p) 6 D, the pseudodensity µ̄y satisfies the constraint in expectation
over y. This is immediate from the following calculation,

� µ̄y(x)p(x , y) � �
(x ,y)∼J∅

(Πd ,D ◦ µ∗(x , y))p(x , y)

� �
(x ,y)∼J∅

µ∗(x , y)p(x , y) (because p ∈ Vd ,D)

� �
(x ,y)∼J∗

p(x , y) > 0 .

We additionally require that the constraints of this form are satisfied for each y ∼ D∅,
and not just in expectation. Often, this follows using fairly straightforward arguments. In
fact, for equality constraints constraints of the form {p(x , y) � 0}, one can show that the
pseudocalibrated construction satisfies these constraints with high probability under very
mild conditions on the joint distribution J∗. Specifically, the following theorem holds.

Theorem 3.3. Suppose {p(x , y) � 0} ∈ P is always satisfied for (x , y) ∼ J∗ and let B :�
max(x ,y)∈J∅ |p(x , y)| and let Dy :� degy(p) and dx :� degx(p). If d > dx and µ̄y is the
D-pseudocalibrated function defined in Eq. (3.4) then

�
y∼D∅
[|�

x
p(x , y)µ̄y(x)| > ε] 6

B2

ε2 ·


Πd ,D+2Dy ◦ µ∗ −Πd ,D−1 ◦ µ∗



2
2,J∅

where Πd ,D for d ,D ∈ � denotes the projection on to Vd ,D , the span of polynomials of degree at
most D in y and degree d in x.

The theorem suggests that if the projection of the structured density µ∗ decays with
increasing degree in y, then for D chosen large enough, the D-pseudocalibrated function
µ̄y satisfies the same equality constraints as those satisfied by µ∗, with high probability.
This decay in the Fourier spectrum of the structured density is a common feature in
all known applications of pseudocalibration. We defer the proof of the Theorem 3.3 to
Appendix B.

Verifying non-negativity of squares. The chief obstacle in establishing µ̄(·, y) as a valid
pseudodensity is in proving that it satisfies the constraint �x p(x , y)2µ̄(x , y) > 0, for every
polynomial p of degree at most d

2 in x. As we will see in Claim 3.4, this condition is
equivalent to establishing the positive-semidefiniteness (PSDness) of the matrix

Md(y)
def
� �

x

[(
x6d/2

) (
x6d/2

)>
· µ̄(x , y)

]
, (3.5)

where x6d/2 is the O(nd/2) × 1 vector whose entries contain all monomials of degree at
most d

2 in x.

Claim 3.4. �x q(x , y)2µ̄(x , y) > 0 for all polynomials q(x , y) of degree at most d/2 in x if
and only if the matrix Md(y) is positive semidefinite.
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Proof. The first direction is given by expressing q(x , y) with its vector of coefficients of
monomials of x, q̂(y), so that 〈q̂(y), x6d/2〉 � q(x , y). Then

�
x

q(x , y)2µ̄(x , y) � �
x
[q̂(y)>(x6d/2)(x6d/2)> q̂(y) · µ(x , y)] � q̂(y)>Md(y)q̂(y) > 0,

by the positive-semidefiniteness of M(y).
To prove the contrapositive, we note that if Md(y) is not positive-semidefinite, then

there is some negative eigenvector v(y) so that v(y)>Md(y)v(y) < 0. Taking q(x , y) �
〈v(y), x6d/2〉, we have our conclusion. �

Each entry of Md(y) is a degree-D polynomial in y ∼ D∅. Since the entries of Md(y)
are not independent, and because Md(y) cannot be decomposed easily into a sum of
independent random matrices, standard black-box matrix concentration arguments such
as matrix Chernoff bounds and Wigner-type laws do not go far towards characterizing
the spectrum of Md(y). For this reason proving PSDness for Md(y) is a delicate process.
Though the known lower bounds for planted clique, random SAT refutation, and other
problems all use the same construction for µ̄, the current proofs of PSDness are very
tailored to the specific choice of D∅, and in some cases they are quite technical. We will
expand further in Section 3.3.

Pseudocalibration: a partial answer, and many questions

While Theorem 3.3 establishes some desirable properties for the pseudocalibrated function
µ̄, we are left with many unanswered questions. Ideally, we would be able to identify
simple, general sufficient conditions on the structured distributionD∗ and on d the degree
in x and D the degree in y, for which µ̄ yields a valid pseudodensity. The following
conjecture stipulates one such choice of conditions:

Conjecture 3.5. Suppose that P contains no polynomial of degree more than k in y. Let
D � O(kd log n) and D � Ω(kd). Then the D-pseudocalibrated function µ̄(·, y) is a valid
degree-d pseudodistribution which satisfies P with high probability over y ∼ D∅ if and only if there
is no polynomial q(y) of degree at most D in y such that �y∼D∅[q(y)] � 0 and

nω(d) ·
√
�

y∼D∅
[q(y)2] < �

y∼D∗
[q(y)].

The upper and lower bounds on D stated in Conjecture 3.5 may not be precise; what is
important is that D not be too much larger than O(kd). In support of this conjecture, we list
several refutation problems for which the conjecture has been proven: k-clique [BHK+16],
tensor PCA [HKP+17], and random k-SAT and k-XOR [Gri01b, Sch08]. However, in each
of these cases, the proofs have been somewhat ad hoc, and do not generalize well to
other problems of interest, such as densest-k-subgraph, community detection, and graph
coloring.

Resolving this conjecture, which will likely involve discovering the “book” proof of the
above results, is an open problem which we find especially compelling.
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Variations. The incompleteness of our understanding of the pseudocalibration technique
begs the question, is there a different choice of function µ′(x , y) such that µ′(·, y) is a valid
pseudodensity satisfying P with high probability over y ∼ D∅?

Indeed, already among the known constructions there is some variation in the imple-
mentation of the low-degree projection: the truncation threshold is not always a sharp
degree D, and is sometimes done in a gradual fashion to ease the proofs (see e.g. [BHK+16]).
It is a necessary condition that µ′ and µ∗ agree at least on the moments of y which span
the constraints of P (otherwise µ′ cannot satisfy P in expectation). However, there are
alternative ways to ensure this, while also choosing µ′ to have higher entropy than µ∗.

In [HKP+17], the authors give a different construction, in which rather than setting
µ′ � Πd ,Dµ∗, they choose the function µ′ which minimizes the Frobenius norm under the
constraint that�x x6d/2(x6d/2)>µ′(x , y) is positive semidefinite for every y ∈ supp(D∅), and
that Πd ,Dµ′(x , y) � Πd ,Dµ∗(x , y). Though in [HKP+17] this did not lead to unconditional
lower bounds, it was used to obtain a characterization of sum-of-squares algorithms in
terms of spectral algorithms, which we discuss further in Section 4.

3.2 Example: k-clique

In the remainder of this section, we will work out the pseudocalibration construction for
the k-clique problem (see Example 1.1 for a definition). We’ll follow the pseudocalibration
recipe laid out in Eq. (3.4).

The null and structured distributions. Recall that D∅ is the uniform distribution over
the hypercube {±1}(

[n]
2 ), corresponding to �(n , 1

2). For J∗ we use the joint distribution over
tuples of instance and hidden variables (y∗, x∗) described in Example 1.1, with a small twist
designed to ease calculations: Rather than sampling x∗ from π the uniform distribution
over the indicators 1S ∈ {0, 1}n for |S | � k, we sample x∗ by choosing every coordinate to
be 1 with probability 2k

n , and 0 otherwise.

Pseudomoments. Instead of describing the pseudodensity µ̄, it will be more convenient
for us to workwith the pseudomoments. So for eachmonomial xA where themultiset A ⊂ [n]
has cardinality at most d, we will directly define the function �̃µ̄y [xA] : {±1}(

[n]
2 ) → �. For

convenience, and to emphasize the dependence on y, we will equivalently write �̃[xA](y).
Let E6D be the set of subsets of edges with cardinality at most D. Following the

pseudocalibration recipe from Eq. (3.4), we project into the span of low-degree polynomials
in y using the monomial basis: for each α ∈ A we will compute the Fourier coefficient

�
y∼D∅

[
yα · �̃[xA](y)

]
�

∑
y∈{±1}E

yα · �
D∅
{y} · �

x∼σ
xA · µ̄y � �

(x ,y)∼D∗
[yαxA].

The right-hand side can be simplified further. For (x , y) ∼ J∗, if any vertices of A are not
chosen to be in the clique, then xA is zero. Similarly, if any edge e ∈ α has an endpoint not
in the clique, then y{e} is independent of yA\{e} and of expectation 0. Thus, the expression
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is equal to the probability that all vertices of α and A, which we denote v(α) ∪ A, are
contained in the clique:

�
(x ,y)∼D∗

[xA yα] � �
x∼D∗
[xi � 1, ∀i ∈ v(α) ∪ A] �

(
2k
n

) |v(α)∪A|
.

Now expressing �̃[xA](y) via its Fourier decomposition, we have

�̃(y)[xA] �
∑
α∈E6D

(
2k
n

) |v(α)∪A|
· yα . (3.6)

It is an exercise to verify that scaling (Eq. (3.1)) holds up to errors of o(1) for the
pseudodistribution given by these moments when k2 � n and D � log n, since for such
n , k ,D, the projection ‖(Π0,D −Π0,0)µ∗‖ 6 o(1).11 In a similar way one can also verify that
the P constraints (Eq. (3.3)) are satisfied (since the conditions of Theorem 3.3 are met for
the natural polynomial system for clique) and that the condition of Conjecture 3.5 holds. In
the following subsection, we will discuss at a high level [BHK+16]’s proof that the positive
semidefiniteness constraint (Eq. (3.2)) holds.

3.3 Positive-semidefiniteness of matrix polynomials

To prove that the pseudocalibrated function µ̄ is a valid pseudodistribution, it remains to
show that µ̄ satisfies the PSDness constraint Eq. (3.2). From Claim 3.4, we have that this is
equivalent to proving that the matrix Md(y) defined in Eq. (3.5) is positive-semidefinite
with high probability over y ∼ D∅. Here we discuss, at a very high level, the proof of this
fact for the planted clique problem from [BHK+16].

Let S, T ⊂ [n]6d/2 be multisets that index the rows and columns of Md . In Eq. (3.6), we
have shown that the entries of Md have the form

[Md(y)]S,T � �̃[xS∪T] �
∑
α∈E6D

(
2k
n

) |v(α)∪S∪T |
· yα ,

where E6D is the set of all subsets of edge variables with cardinality at most D. Each
entry of Md is a degree-D polynomial in the random variable y, and because Md does not
correspond in a natural way to a sum of independent random matrices, we cannot apply
black-box matrix concentration results to Md .

Since α ∈ E6D corresponds to a subset of edge variables, it is natural to associate with
each α, S, T a colored subgraph or shape σ on |v(α) ∪ S∪T | vertices. The shape σ is a graph
Hσ with vertex set isomorphic to v(α) ∪ S ∪ T, and edge set isomorphic to α. Further,
vertices isomorphic to S are assigned colors L � `1, . . . , ` |S |, and vertices isomorphic to T
are assigned colors R � r1, . . . , r|T | (note that a single vertex may receive more than one
color). For example, if S � {a , b , k}, T � {i , j, k}, and α � {(a , i), (b , u), (u , j)}, we would
have the corresponding shape

11This is equivalent to checking that the variance of Eq. (3.6) is o(1) for A � ∅.
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S T

`1

`2

`3, r3

r1

r2
L R

S, T, α shape(S, T, α)

For each such shape σ, we define the n6d × n6d σ-matrix polynomial Mσ(y), so that for
S, T ∈ [n]6d ,

[Mσ(y)]S,T �

∑
α∈E6D

1[shape(S, T, α) � σ] · yα . (3.7)

Or alternatively for S, T, L ⊂ [n], let Hσ(S, T,U) be the labeled copy of Hσ in which R
is labeled with S, L with T, and the remaining vertices with U, and every vertex of Hσ

receives a unique, single label. Then Eq. (3.7) is equivalent to summing over products of
edges for all valid labelings of the uncolored vertices of Hσ:

[Mσ(y)]S,T �

∑
U∈( [n]\(S∪T)

|V(H)\(L∪R)|)
1[Hσ(S, T,U) valid ] · yE(Hσ(S,T,U)).

The matrices {Mσ} form a natural basis for expressing Md(y):

Md(y) �
∑
σ

(
2k
n

) |v(σ)|
·Mσ(y) .

In [BHK+16], the authors characterize the spectrum of Mσ(y). Incredibly, the spectral
properties of the σ-matrix polynomials determined by the connectivity of Hσ.

Theorem 3.6 ([BHK+16, MP16]). Suppose that Hσ has t � O(log n) vertices, and that Hσ has
exactly p vertex-disjoint paths from L \R to R \ L, and that |R∩ L | � c. Then with high probability
over y ∼ {±1}N , 

Mσ(y)



 6 2O(t)(log n)O(t+p−c) · n
t−p−c

2 .

In order to characterize the spectrum of Md(y), it does not suffice to understand the
spectrum of each Mσ individually; one must account for the interactions of the spectra
of the Mσ. This is challenging because different shapes exhibit very different spectral
characteristics. For example, for σ1 the shape given by two horizontal parallel paths of
length 1, the matrix Mσ1 has spectral norm of magnitude Õ(n).

`1

`2

r1

r2
L R

σ1

`1

`2

r1

r2
L R

σ2
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On the other hand, for σ2 the shape given by two vertical parallel paths of length 1,the
matrix Mσ2 has spectral norm Ω(n2).12

To prove that Md(y) is indeed PSD with high probability, [BHK+16] employ a delicate
iterative charging scheme, partitioning the σ into groups according to the number of
disjoint paths from L \ R to R \ L and charging the spectral norm of each such group to
the positive-semidefinite shapes. We will not give further details, and refer the interested
reader to [BHK+16].

Symmetric matrix polynomials. The matrix Md(y) is not completely devoid of structure:
it is what we call a symmetric matrix polynomial, since the matrix remains fixed under
permutations of the elements of [n]. Specifically, if we let π ∈ Sn , and if π(M) and π(y)
are the natural action induced by permutations of the vertices of G on the rows/columns
of M and edges in y, then

π(Mσ(π(y))) � Mσ(y).

For a familiar example of a symmetric matrix polynomial, consider the adjacency matrix of
G with entries expressed as degree-1 polynomials of y.

One compelling question is whether the symmetry of Md can be useful in characterizing
its spectrum.

Question 3.7. Suppose that A(y) is a symmetric matrix polynomial. What are sufficient
conditions on A such that A(y) � 0 with high probability over y ∼ D∅?

For some classes of symmetric matrices, such as association scheme matrices, the above
question is fully answered (see e.g. [GS]). There is hope that if this question is answered in
greater generality, it will lead to a “book proof” of the pseudocalibration method.

4 Connection to spectral algorithms

Sum-of-squares SDPs yield a systematic framework that captures and generalizes a loosely
defined class of algorithms often referred to as spectral algorithms. We say that an algorithm
is a “spectral algorithm” if on input y the algorithm constructs a matrix M(y) that can be
easily computed from y, whose eigenvalues or eigenvectors manifestly yield a solution to
the problem at hand.13 We will give a more concrete definition for the notion of a spectral
algorithm a little later in this section.

Although spectral algorithms are typically subsumed by sum-of-squares SDPs, they
tend to be simpler to implement and more efficient. Furthermore, in many cases such

12Another way to see that this is true without Theorem 3.6 is that if A is the signed adjacency matrix
of the random graph, then ‖A‖2F � n(n − 1) and with high probability ‖A‖ � n, and (excluding entries
corresponding to S, T with nontrivial intersection) Mσ1 � A ⊗ A, while Mσ2 � v(A)v(A)> where v(A) is the
n2 × 1 reshaping of A.

13In other contexts, “spectral algorithms” may sometimes describe algorithms that also modify M(y) as
the algorithm proceeds; for simplicity and because our main result will be an equivalence between SoS and
spectral algorithms, we consider only this narrower class.
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as k-clique [AKS98b] and tensor decomposition [Har70], the first algorithms discovered
for the problem were spectral. From a theoretical standpoint, spectral algorithms are
much simpler to study and could serve as stepping stones to understanding the limits of
sum-of-squares SDPs.

In the worst case, sum-of-squares SDPs often yield strictly better guarantees than corre-
sponding spectral algorithms. For instance, the Goemans-Williamson SDP (corresponding
to an SoS SDP of degree 2) yields a 0.878 approximation for max cut [GW95], and has no
known analogues among spectral algorithms. Contrary to this, in many random settings,
the best known SoS algorithms yield guarantees that are no better than the corresponding
spectral algorithms. Recent work explains this phenomenon by showing an equivalence
between spectral algorithms and their sum-of-squares counterparts for a broad family of
problems [HKP+17].

4.1 Spectral algorithms and sum-of-squares proofs

Before formally stating the equivalence of SoS and spectral algorithms from [HKP+17], we
first demonstrate that SoS often captures spectral algorithms. Let us begin by considering
a classic example of a simple spectral algorithm for the k-clique problem.

Spectral algorithms for k-clique. In a graph G � (V, E) with adjacency matrix AG, if a
subset S ⊂ V of k vertices forms a clique then,〈

1S ,
(
AG − 1

2 J
)

1S
〉
�

k(k − 1)
2

.

where J ∈ �n×n denotes the n × n matrix consisting of all ones. On the other hand, we can
upper bound the left-hand side by〈

1S ,
(
AG − 1

2 J
)

1S
〉
6 ‖1S‖22 ·



AG − 1
2 J




op � k · λmax

(
AG − 1

2 J
)
.

The eigenvalue of this matrix thus certifies an upper bound on the size of the clique k,
namely,

k 6 2λmax

(
AG − J

2

)
+ 2 .

In particular, for a graph G drawn from the null distribution �(n , 1
2), the matrix AG − 1

2 J is
a random symmetric matrix whose off-diagonal entries are i.i.d uniform over {±1

2}. By a
classical result in random matrix theory (Bai-Yin’s law, see e.g. [Tao12]), we will have that
λmax

(
AG − 1

2 J
)
� O(

√
n) with high probability. Thus one can certify an upper bound of

O(
√

n) on the size of the clique in a random graph drawn from �(n , 1
2) by computing the

largest eigenvalue of the associated matrix valued function P(G) � AG − 1
2 J.

This algorithm also gives a degree-2 sum-of-squares proof; if x ∈ {0, 1}n are the indicator
variables for vertex membership in the clique polynomial systemA (as in Example 1.1),
then we have that the clique size k �

∑
i xi , and

A (∑i xi)2 �

∑
i , j

xix j − 2xix j · 1[(i , j) < E(G)]
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� x>(2AG + 2Id − J)x
� x>

(
2 · λmax(AG + Id − 1

2 J) · Id
)

x +
∑

j s j(x)2

� ‖x‖2 · (2 · λmax(AG − 1
2 J) + 2) +∑

j s j(x)2

� (∑i xi) · (2 · λmax(AG − 1
2 J) + 2) +∑

j s j(x)2,

where in the first line we have used that {xix j � 0}(i , j)<E(G) ∈ A, to derive the third line we
have used that for a symmetric matrix M, λmax(M) · Id −M is positive-semidefinite and
therefore its eigendecomposition gives that x> (λmax(M) · Id −M) x is a sum-of-squares.
To derive the last line we have used that {x2

i � xi}i∈[n] ∈ A.

Spectral algorithms for injective tensor norm. Now we will see another example of a
more complex spectral algorithm which is captured by sum-of-squares. Recall that the
injective tensor norm (see Example 1.2) of a symmetric 4-tensor T ∈ �[n]×[n]×[n]×[n] is given
by max‖x‖61〈x⊗4,T〉. The injective tensor norm ‖T‖inj is computationally intractable in the
worst case [HL13]. We will now describe a sequence of spectral algorithms that certify
tighter bounds for the injective tensor norm of a tensor T drawn from the null distribution
(with entries drawn i.i.d fromN(0, 1)).

Let T � T{1,2},{3,4} denote the n2 × n2 matrix obtained by reshaping the tensor T. Then,

‖T‖inj � argmax‖x‖261〈T, x⊗4〉 � argmax‖x‖261〈x⊗2, Tx⊗2〉 6 λmax(T)

Thus λmax(T) is a spectral upper bound on ‖T‖inj. Since each entry of T is drawn
independently fromN(0, 1), we have from the Bai-Yin law that λmax(T) 6 O(n) with high
probability [Tao12]. We also recall that the injective norm of a randomN(0, 1) tensor T is
at most O(

√
n) with high probability [ABAC̆, MR14] . Taking these facts together, λmax(T)

certifies an upper bound that is O(
√

n)-factor approximation to ‖T‖inj.
We will now describe a sequence of improved approximations to the injective tensor

norm via spectral methods, which also yield an analysis of the SoS SDP for tensor PCA.
Fix a positive integer k ∈ �. The polynomial T(x) � 〈x⊗4,T〉 can be written as,

T(x) � 〈x⊗2, Tx⊗2〉 � 〈x⊗2k , T⊗k x⊗2k〉1/k .

The tensored vector x⊗2k is symmetric, and is invariant under permutations of its modes.
Let Σ2k denote the set of all permutations of {1, . . . , 2k}. For a permutation Π ∈ Σ2k and a
2k-tensor A ∈ �[n]2k , let Π ◦ A denote the 2k-tensor obtained by applying the permutation
Π to the modes of A. By averaging over all permutations Π,Π′ ∈ Σ2k , we can write

T(x) �
(
�

Π,Π′∈Σ2k

〈
Π ◦ x⊗2k , T⊗k(Π′ ◦ x⊗2k)

〉)1/k

�

(〈
x⊗2k ,

(
�

Π,Π′∈Σ2k
Π ◦ T⊗k ◦Π′

)
x⊗2k

〉)1/k

6 λmax

(
�

Π,Π′∈Σ2k
Π ◦ T⊗k ◦Π′

)1/k
· ‖x‖42 . (4.1)
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Therefore for every k ∈ �, if we denote

Pk(T)
def
� �

Π,Π′∈Σ2k
Π ◦ T⊗k ◦Π′

then ‖T‖inj 6 λmax(Pk(T))1/k .
The entries of Pk(T) are degree-k polynomials in the entries of T. For example, a generic

entry of P2(T) looks like,

P2(T)i jk`,abcd �
1
(4!)2 ·

(
Ti jab · Tk`cd + Ti jac · Tk`bd + Ti jad · Tk`bc + · · ·

)
,

where we sum over the (4!)2 pairs of permutations of i , j, k , ` and a , b , c , d. Thus a typical
entry of Pk(T) with no repeated indices is an average of a super-exponentially large (in k)
number of i.i.d. random variables. We will call this number Nk for convenience.

When k �
√

n, a typical entry of Pk(T) contains no repeated indices, and this implies
that the variance of a typical entry of Pk(T) is equal to 1

Nk
. For the moment, let us assume

that the spectrum of Pk(T) has a distribution that is similar to that of a random matrix
with i.i.d. Gaussian entries with variance 1

Nk
. Then, λmax(Pk(T)) 6 O(nk · 1

N1/2
k

)with high

probability, certifying that ‖T‖inj 6
n

N1/2k
k

. On accounting for the symmetries of T, it is not

difficult to see that Nk � k!
(

1
2k

2k!
k!

)2
� (k!)3. Consequently, as per this heuristic argument,

λmax(Pk(T))would certify an upper bound of ‖T‖inj 6 O( n
k3/2 ).

Unfortunately, the entries of Pk(T) are not independent random variables and not
all entries of Pk(T) are typical as described above. Although the heuristic bound on
λmax(Pk(T)) is not quite accurate, a careful analysis via the trace method shows that the
upper bound λmax(Pk(T))1/k decreases polynomially in k [BGL17, RRS17].

Theorem 4.1. [BGL17] For 4 6 k 6 n, if T is a symmetric 4-tensor with i.i.d. entries from a
subgaussian measure then

λmax(Pk(T))1/k 6 Õ
(

n
k1/2

)
then with probability 1 − o(1). Here Õ notation hides factors polylogarithmic in n.

Thus the matrix polynomial Pk(T) yields a nO(k)-time algorithm to certify an upper
bound of Õ(n/k1/2) on the injective tensor norm of random 4-tensors with Gaussian entries.

Spectral algorithms from Sum-of-Squares analyses. In fact, this spectral algorithm was
discovered in the context of analyzing SoS refutation algorithms, and the upper bound
certificate produced by the above spectral algorithm can again be cast as a degree 4k
sum-of-squares proof. In particular, if λmax(Pk(T)) 6 τ for some tensor T and τ ∈ � then,

τ − T(x)k � τ‖x‖4k
2 − 〈x

⊗2k , Pk(T)x⊗2k〉 + τ(1 − ‖x‖4k
2 )

� 〈x⊗2k , (τ · Id − Pk(T))x⊗2k〉 + τ(1 − ‖x‖4k
2 )
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� 〈x⊗2k , (τ · Id − Pk(T))x⊗2k〉 + (1 − ‖x‖22)
(
τ ·

2k−1∑
i�0
‖x‖2i

2

)
�

∑
j

s2
j (x) + (1 − ‖x‖

2
2)

(
τ ·

2k−1∑
i�0
‖x‖2i

2

)
,

The final step in the calculation again uses the fact that if a matrix M � 0, then the
polynomial 〈x⊗2k ,Mx⊗2k〉 is a sum-of-squares

∑
j s2

j (x). Therefore, the degree-4k sum-of-
squares obtains an approximation guarantee that is no worse than the somewhat ad hoc
spectral algorithm described above.

This is a recurrent theme where the sum-of-squares SDP yields a unified and systematic
algorithm that subsumes a vast majority of more ad hoc algorithms. It also exemplifies
the trend of SoS inspiring new spectral algorithms which take advantage of polynomial
identities and problem symmetry to improve upon simpler spectral algorithms (see also
[HSS15, AOW15, BGL17, RRS17]). There is a line of work in which the spectral certificates
used by SoS for refutation are modified and compressed to give efficient, lightweight
spectral algorithms that run in subquadratic or near-linear time; we refer the interested
reader to [HSSS16, MS16, SS17].

Refuting Random CSPs. The basic scheme used to upper bound the injective tensor
norm (see Eq. (4.1)) can be harnessed towards refuting random constraint satisfaction
problems (CSPs). Fix a positive integer k ∈ �. In general, a random k-CSP instance
consists of a set of variables V over a finite domain, and a set of randomly sampled
constraints each of which is on a subset of at most k variables. The problem of refuting
random CSPs has been extensively studied for its numerous connections and applications
[Fei02, BB02, DLS14, BKS13, CLP02]. For the sake of concreteness, let us consider the
example of random 4-xor.

Example 4.2 (4-xor). In the 4-xor problem, the input consists of a homogeneous degree-4
linear system of m equations over n variables {X1, . . . ,Xn} in �2. A random 4-xor instance
is one where each equation is sampled uniformly at random (avoiding repetition). For
m � n, with high probability over the choice of the constraints, no assignment satisfies
more than a 1

2 + o(1) fraction of constraints.
To formulate a polynomial system, we will use the natural {±1}-encoding of �2,

i.e., xi � 1 ⇐⇒ Xi � 0 and xi � −1 ⇐⇒ Xi � 1. An equation of the form
Xi + X j + Xk + X` � 0/1 translates in to xi x jxk x` � ±1. We can specify the instance using a
symmetric 4-tensor {Ti jk`}i , j,k ,`∈([n]4 ), with Ti jk` � ±1 if we have the equation xix jxk x` � ±1,
and Ti jk � 0 otherwise. To certify that no assignment satisfies more than εm constraints,
we will need to refute the following polynomial system.{

x2
i − 1

}
i∈[n] and

{
〈T, x⊗4〉 > ε · m

}
(4.2)

A refutation for this system with ε < 1 − η for η independent of m , n is called a strong
refutation. This system is analogous to the injective tensor norm, except the maximization
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is over the Boolean hypercube x ∈ {±1}n , as opposed to the unit ball. Unlike the case of
random Gaussian tensors, the tensor T of interest in 4-xor is a sparse tensor with about
n1+o(1) non-zero entries. While this poses a few technical challenges, the basic schema from
Eq. (4.1) can still be utilized to obtain the following strong refutation algorithm.

Theorem 4.3. [RRS17] For all δ ∈ [0, 1), the degree nδ sum-of-squares SDP can strongly refute
random 4-xor instances with m > Ω̃(n2−δ) with high probability.

The refutation algorithm for XOR can be used as a building block to obtain sum-of-
squares refutations for all random k-CSPs [RRS17]. Moreover, these bounds on the degree
of sum-of-squares refutations tightly match corresponding lower bounds for CSPs shown
in [KMOW17, BCK15].

4.2 Equivalence of spectral algorithms and sum-of-squares refutations

The algorithms described above will serve as blueprints for a class of spectral algorithms
that will characterize the power of SoS SDPs.

Defining spectral algorithms. Here, we will consider spectral algorithms for distinguish-
ing problems. Recall that in a distinguishing problem, the input consists of a sample y
drawn from one of two distributions, say a structured distributionD∗ or a null distribution
D∅, and the algorithm’s goal is to identify the distribution the sample is drawn from. We
think of samples from the structured distribution D∗ as having an underlying hidden
structure, while samples from the null distributionD∅ typically do not.

A spectral algorithmA for the distinguishing problem proceeds as follows. Given an
instance y, the algorithmA computes a matrix P(y)whose entries are given by low-degree
polynomials in y, such that λmax(P(y)) indicates whether y ∼ D∗ or y ∼ D∅.

Definition 4.4. (Spectral Algorithm) A spectral algorithmA consists of a matrix valued
polynomial P : P → �N×N . The algorithmA is said to distinguish between samples from
structured distributionD∗ and a null distributionD∅ if,

�
y∼D∗

λ+
max(P(y)) � �

y∼D∅
λ+

max(P(y))

where λ+
max(M)

def
� max(λmax(M), 0) for a matrix M.

In general, a spectral algorithm could conceivably use the entire spectrum of the matrix
P(y) instead of the largest eigenvalue, and perform some additional computations on the
spectrum. However, a broad range of spectral algorithms can be cast into this framework
and as we will describe in this section, this restricted class of spectral algorithms already
subsumes the sum-of-squares SDP in a wide variety of settings.

Spectral algorithms as defined in Theorem 4.4 are a simple and highly structured class
of algorithms, in contrast to algorithms for solving a sum-of-squares SDP. The feasible
region for a sum-of-squares SDP is the intersection of the positive semidefinite cone
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with polynomially many constraints, some of which are equality constraints. Finding a
feasible solution to the SDP involves an iterated sequence of eigenvalue computations.
Furthermore, the feasible solution returned by the SDP solver is by no-means guaranteed
to be a low-degree function of the input instance. On the other hand, a spectral algorithm
involves exactly one eigenvalue computation of a matrix whose entries are low-degree
polynomials in the instance. In spite of their apparent simplicity, we will now argue
that spectral algorithms are no weaker than sum-of-squares SDPs for a wide variety of
estimation problems.

Robust inference. Many estimation problems share the "robust inference" property.
Specifically, the structured distributions underlying these estimation problems are such
that a randomly chosen subsampling of the instance is sufficient to recover a non-negligible
fraction of the planted structure. For example, consider the structured distribution D∗
for the k-clique problem. A graph G ∼ D∗ consists of a k-clique embedded in to an
Erdős-Rényi random graph. Suppose we subsample an induced subgraph G′ of G, by
randomly sampling a subset S ⊂ V of vertices of size |S | � δ |V |. With high probability, G′

contains Ω(δ · k) of the planted clique in G. Therefore, the maximum clique in G′ yields
a clique of size Ω(δ · k) in the original graph G. This is an example of the robust inference
property, where a random subsample G′ can reveal non-trivial structure in the instance.

Though the subsample does not determine the planted clique in G, the information
revealed is substantial. For example, as long as δ · k � 2 log n, observing G′ allows
us to distinguish whether G is sampled from the structured distribution D∗ or the null
distribution D∅. Moreover, the maximum clique in G′ can be thought of as a feasible
solution to a relaxed polynomial system where the clique size sought after is δ · k, instead
of k.

Let P denote a polynomial system defined on instance variables y ∈ �N and in solution
variables x ∈ �n . We define the subsampling distribution Υ to be a probability distribution
over subsets of instance variables [N]. Given an instance y ∈ �N , a subsample z can be
sampled by first picking S ∼ Υ and setting z � yS. Let I denote the collection of all
instances, and I↓ denote the collection of all sub-instances.

Definition 4.5 (Robust inference). A polynomial system P is ε-robustly inferable with
respect to a subsampling distribution Υ and a structured distributionD∗, if there exists a
map ζ : I↓→ �n such that,

�
y∼D∗
S∼Υ

[ζ(yS) is feasible for P] > 1 − ε

The robust inference property arises in a broad range of estimation problems including
stochastic block models, densest k-subgraph, tensor PCA, sparse PCA and random CSPs
(see [HKP+17] for a detailed discussion). The existence of the robust inference property
has a dramatic implication for the power of low-degree sum-of-squares SDPs: they are
no more powerful than spectral algorithms. This assertion is formalized in the following
theorem.
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Theorem 4.6 ([HKP+17]). Suppose P � {pi(x , y) > 0}i∈[m] is a polynomial system with degree
dx and dy over x and y respectively. Fix B > dx · dy ∈ �. If the degree-d sum-of-squares
SDP relaxation can be used to distinguish between the structured distribution D∗ and the null
distributionD∅, namely,

• For y ∼ D∗, the polynomial system P is not only satisfiable, but is 1/n8B-robustly inferable
with respect to a sub-sampling distribution Υ.

• For y ∼ D∅, the polynomial system P is not only infeasible but admits a degree-d sum-of-
squares refutation with numbers bounded by nB with probability at least 1 − 1/n8B.

Then, there exists a degree-2D matrix polynomial Q : I → �[n]6d×[n]6d such that,

�y∼D∗[λ+
max(Q(y))]

�y∼D∅[λ+
max(Q(y))]

> nB/2

where D ∈ � is smallest integer such that for every subset α ⊂ [N] with |α | > D − 2dxdy ,
�S∼Υ[α ⊆ S] 6 1

n8B .

The degree D of the spectral distinguisher depends on the sub-sampling distribution.
Intuitively, the more robustly inferable (a.k.a inferable from smaller subsamples) the
problem is, the smaller the degree of the distinguisher D. For the k-clique problem with a
clique size of n1/2−ε, we have D � O(d/ε). For the typical parameter settings of random
CSPs, community detection and densest subgraph we have D � O(d log n) (see [HKP+17]
for details).

From a practical standpoint, the above theorem shows that sum-of-squares SDPs
can often be replaced by their more efficient spectral counterparts.14 From a theoretical
standpoint, it reduces the task of showing lower bounds against the complicated sum-of-
squares SDP to that of understanding the spectrum of low-degree matrix polynomials over
the two distributions.

Future directions. The connection in Theorem 4.6 could potentially be tightened, leading
to a fine-grained understanding of the power of sum-of-squares SDPs. We will use a
concrete example to expound on the questions suggested by Theorem 4.6, but the discussion
is applicable more broadly too.

Consider the problemof certifying anupper boundon the size ofmaximum independent
sets in sparse random graphs. Formally, let G be a sparse random graph drawn from
�(n , k/n) by sampling each edge independently with probability k/n. There exists a
constant αk ∈ (0, 1) such that the size of the largest independent set in G is (αk ± o(1)) · n
with high probability. For every β ∈ (0, 1), the existence of a size β · n-independent set can

14We comment however that the matrix polynomial Q(y) is non-constructive and non-uniform, and
arises as the dual object of a exponentially-sized convex program. For this reason, the theorem does not
automatically give efficient spectral algorithms matching the guarantees of SoS.
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be formulated as the following polynomial system.

Pβ(G) :
{xi(1 − xi) � 0}i∈[n], {xi x j � 0}(i , j)∈E(G),

∑
i∈[n]

xi > β · n .


For each degree-d ∈ � define the degree-d SoS SDP refutation threshold to be

α(d)k
def
� smallest β such that �

G∼�([n],k/n)

[
Pβ(G) d

x ⊥
]
� 1 − on(1)

It is natural to ask if the degree-d sum-of-squares SDP refutation threshold steadily
improves with k.

Question 4.7. Is {α(d)k }k∈� a strictly decreasing sequence?

A natural structured distributionDβ for the problem is the following: For each subset
S ∈

([n]
β·n

)
, define µS as �(n , k/n) conditioned on S being an independent set. For D ∈ �

let γ(D)k ∈ (0, 1) be the largest value of β for which distribution of eigenvalues of every
degree-D matrix polynomial in the structured distribution Dβ and null distribution D∅
converge to each other in distribution. In other words, γ(D)k is the precise threshold of
independent set size β below which the spectrum of degree-D matrix polynomials fails
to distinguish the structured and null distributions. It is natural to conjecture that if the
empirical distribution of eigenvalues looks alike then the sum-of-squares SDP cannot
distinguish between the two. Roughly speaking, the conjecture formalizes the notion that
sum-of-squares SDPs are no more powerful than spectral algorithms.

Question 4.8. Is there a universal constant C > 0 such that α(d)k > γ
(C·d)
k ?

This question strengthens Theorem 4.6 in that we ask for the degree d of the SoS
refutation to differ from the degree of the spectral algorithm by only a constant factor; in
Theorem 4.6, the degrees differ by a factor that depends on the robustness of the polynomial
system, which may growwith n. On the other hand, this question differs from Theorem 4.6
because if we ask for the spectra of matrices from the structured and null distributions
to converge in distribution, we are working with a different class of spectral algorithms.
Depending on the notion of convergence, we may not be able to reason about the value of
the maximum positive eigenvalue, or other non-smooth tests. Question 4.8 and its variants
are an intriguing direction for future research.

5 Concluding remarks

We have now seen how the sum-of-squares algorithm may be used as a tool for solving
estimation problems, via low-degree SoS proofs of identifiability of parameters from
measurements. This proofs-to-algorithms perspective has unified and simplified previous
algorithmic results, as well as lead to stronger novel ones.
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On the other hand, we have surveyed recent progress towards characterizing the
limitations of SoS algorithms for estimation problems in the regime where the estimation
problem is information-theoretically solvable (but perhaps not computationally tractable).
The pseudocalibration heuristic of [BHK+16] suggests exposing the limitations of SoS
by comparing structured and null distributions over measurements; when SoS fails to
distinguish these distributions, the SoS algorithm fails to solve the estimation problem. But
many questions remain: which properties of the structured distribution dictate whether
low-degree SoS proofs of identifiability (and therefore algorithms) exist? How does the
degree of SoS proofs scale with the amount of information in the measurement?

Remarkably, all current evidence is consistent with the conjecture that low-degree
sum-of-squares proofs are only as powerful as low-degree polynomial tests for a broad
family of estimation problems (Conjecture 3.5). Affirming this conjecture will establish a
beautiful theory of the power of semidefinite programs, and bring new insight to the study
of information-computation gaps. Refuting this conjecture may lead to exciting algorithmic
discoveries, and a fine-grained understanding of the difficulty of estimation problems.
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A Continued proofs of identifiability

Here, we fill in some details from the proofs in Section 2.

Claim (Restatement of Claim 2.4). When {ai}i∈[r] are orthogonal and

1. A
{∑

j∈[r]〈a j , bi〉2 � 1
}

i∈[r], and

2. A {〈a j1 , bi〉2〈a j2 , bi〉2 � 0} j1, j2∈[r],

then

A ‖b⊗3
i −

r∑
j�1
〈a j , bi〉3a⊗3

j ‖
2
� 0.

Proof. It follows from the orthogonality of the ai and from the first condition that A
‖bi −

∑r
j�1〈a j , bi〉a j ‖2 � 0. To prove the claim, we now use that in turn, A ‖b⊗3

i −
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(∑r
j�1〈a j , bi〉a j)⊗3‖2 � 0 and verify

A




(∑r

j�1〈a j , bi〉a j

)⊗3
−∑r

j�1〈a j , bi〉3 · a⊗3
j





2

�










∑

j1 , j2 , j3∈[r]
not all equal

〈a j1 , bi〉〈a j2 , bi〉〈a j3 , bi〉 · a j1 ⊗ a j2 ⊗ a j3










2

6 C(r)
∑

j1 , j2 , j3∈[r]
not all equal

〈a j1 , bi〉2〈a j2 , bi〉2〈a j3 , bi〉2

� 0 .

Where we have used that x {(x1 + · · ·+ xr)2 6 C(r) · (x2
1 + · · ·+ x2

r )} for some function C(r),
and the second condition of the claim. We conclude that

A







 r∑
i�1

b⊗3
i −

∑
i , j

〈a j , bi〉3a⊗3
j








2

F

� 0 .

as desired. �

We now give a full proof of the robust version of Jennrich’s algorithm.

Theorem (Restatement of Theorem 2.7). There exists ε > 0 and a randomized polynomial-time
algorithm that given a 3-tensor T ∈ (�n)⊗3 outputs a unit vector u ∈ �n with the following
guarantees: Let a1, . . . , ar ∈ �n be unit vectors with orthogonality defect ‖Idr − ATA‖ 6 ε,
where A ∈ �n×r is the matrix with columns a1, . . . , ar . Suppose



T −∑
i a⊗3

i



2
F 6 ε · r and

that max{‖T‖{1,3}{2} , ‖T‖{1}{2,3}} 6 10. Then, with at least inverse polynomial probability,
maxi∈[r]〈ai , u〉 > 0.9.

Proof. For a vector v ∈ �n , define the linear operatorMv � Id ⊗ Id ⊗ v> from (�n)⊗3 →
(�n)⊗2. We apply the following version of Jennrich’s algorithm to T: Choose a Gaussian
vector 1 ∼ N(0, Id) and applyM1 to the d3 × 1 reshaping of T. Reshape the resulting
vectorM1T to an n × n matrix:

(M1T){1}{2} �
∑
j∈[n]

1 j · Ti ,

where Ti is the n × n matrix resulting from the restriction of T to coordinate i in the third
mode. Then, output the top eigenvector of (M1T){1}{2}.

We let T � S + E where S �
∑

i a⊗3
i . First, we claim that



Mai E


2

F 6 4ε for at least half
of the indices i ∈ [r]. This claim follows by averaging from the following bound
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r∑
i�1



Mai E


2

F �
〈
E,

(∑r
i�1Mai

TMai

)
E
〉

6 ‖E‖2F · λmax
(∑r

i�1Mai
TMai

)
� ‖E‖2F · λmax(AAT) 6 (1 + ε)εr 6 2εr . (A.1)

Second, we claim ‖(Mai S){1}{2} − aiai
T‖ 6 2ε for all i ∈ [r]. Indeed, by our assumption that

the orthogonality defect is bounded,

(Mai S){1}{2} − aiai
T
�

∑
j,i

〈ai , a j〉 · a ja j
T � ε · AAT � (1 + ε)ε · Id

and, by the same reasoning, (Mai S){1}{2} − aiai
T � −(1 + ε)ε · Id. Taken together, these

bounds imply ‖(Mai T){1}{2} − ai ai
T‖ 6 6ε for at least half of the indices i ∈ [r].

To finish the analysis, we consider an index i ∈ [r] that satisfies ‖(Mai T){1}{2} − ai ai
T‖ 6

6ε. Decomposing 1 �
∑

i 〈ai , 1〉 · ai + 1
′, we writeM1T as the sumM1T � 〈1 , ai〉Mai T +

M1′T. By a matrix Chernoff bound, the assumption max{‖T‖{1,3}{2} , ‖T‖{1}{2,3}} 6 10
implies that with high probability ‖M1′T‖{1}{2} 6 O(

√
log n). (See [MSS16] for details.)

Since 〈1 , ai〉 is independent of 1′, the event 〈1 , ai〉 > 1/ε · ‖M1′T‖{1}{2} has inverse
polynomial probability in n (but exponentially small probability in 1/ε). It is straightforward
to verify that in this event 1

〈1 ,ai〉 · (M1T){1}{2} is at most 7ε far from ai ai
T in spectral norm.

For small enough ε, these events imply that the algorithm outputs a unit vector u that
satisfies the conclusion of the theorem. �

B Approximate preservation of equalities under low-

degree projection

We now prove Theorem 3.3.

Theorem (Restatement of Theorem 3.3). Suppose {p(x , y) � 0} ∈ P is always satisfied for
(x , y) ∼ J∗ and let B :� max(x ,y)∈J∅ |p(x , y)| and let Dy :� degy(p) and dx :� degx(p). If
d > dx and µ̄y is the D-pseudocalibrated function defined in Eq. (3.4) then

�
y∼D∅
[|�

x
p(x , y)µ̄y(x)| > ε] 6

B2

ε2 ·


Πd ,D+2Dy ◦ µ∗ −Πd ,D−1 ◦ µ∗



2
2,J∅

where Πd ,D for d ,D ∈ � denotes the projection on to Vd ,D , the span of polynomials of degree at
most D in y and degree d in x.

We begin with a couple of observations. Notice that L2(J∅) � L2(D∅) ⊗ L2(σ) since the
distribution J∅(x , y) � D∅(y) · σ(x). By Gram-Schmidt orthogonalization, the vector space
L2(D∅) can be written as a direct sum of

L2(D∅) �
∞⊕

i�0
Yi

such that the following properties hold:
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1. If f ∈ Yi and 1 ∈ Yj with i < j, then 〈 f , 1〉D∅ � 0.

2. For each i ∈ � and f ∈ Yi , degy( f ) 6 i.

Similarly, one can decompose L2(σ) �
⊕∞

i�0Xi with similar properties. Abusing notation,
we will use ΠYi to also denote the projection operator on to the spaceYi . Let ΠY6D denote
the projection operator on to the space

⊕D
i�0Yi , and let ΠY[a ,b] denote the projection on to⊕b

i�aYi . Let ΠX6d , X[a ,b] be similar operators for L2(σ). Both ΠY6D and ΠX
6d operators have

a natural action on tensor product space L2(J∅). In fact, the pseudocalibrated function can
be defined as µ̄ � ΠY6D ◦Π

X
6d ◦ µ∗.

We will require the following lemma, which relates the product of projections of
polynomials to the projection of their product:

Lemma B.1. Suppose f , 1 ∈ L2(J∅) are polynomials and that degy(1) � Dy . Then the following
relationship between the the projection of the product and the product of projections holds:

ΠY6D+Dy
◦ ( f 1) � (ΠY6D ◦ f )1 +ΠY6D+Dy

◦
(
(ΠY[D ,D+2Dy] ◦ f )1

)
. (B.1)

Proof. Using the decomposition of the projector ΠY � ΠY<D +ΠY[D ,D+2Dy] +Π
Y
>D+2Dy

and
that f ∈ L2(J∅), we can express the left-hand-side term of Eq. (B.1) as

ΠY6D+Dy
◦ ( f 1) � ΠY6D+Dy

◦
((
ΠY<D ◦ f +ΠY[D ,D+2Dy] ◦ f +ΠY>D+2Dy

◦ f
)
1

)
,

� ΠY6D+Dy
◦

(
(ΠY6D ◦ f )1

)
+ ΠY6D+Dy

◦
(
(ΠY[D ,D+2Dy] ◦ f )1

)
+ (ΠY>D+2Dy

◦ f )1 .

In the first term, deg((ΠY6D ◦ f )1) 6 D +Dy , so we may drop the leading projector to obtain
the first right-hand-side of Eq. (B.1). For the third term, note that

ΠY6D+Dy
◦

(
(ΠY>D+2Dy

◦ f )1
)
� 0,

for otherwise, we would have a polynomial h ∈ Y6D+Dy such that〈
h ,

(
ΠY>D+2Dy

◦ f
)
1

〉
D∅

�

〈
h1 ,ΠY>D+2Dy

◦ f
〉
, 0 ,

a contradiction since degy(h1) 6 D + 2Dy while ΠY>D+2Dy
◦ f ∈ Y>D+2Dy . Putting these

facts together, Eq. (B.1) follows immediately. �

Proof of Theorem 3.3. Set f � ΠX
6d ◦ µ∗ and 1 � p in the statement of Theorem B.1. Rear-

ranging, we have

(ΠY6D ◦Π
X
6d ◦ µ∗)p � ΠY6D+Dy

◦
(
(ΠX6d ◦ µ∗)p

)
−ΠY6D+Dy

◦
(
(ΠY[D ,D+2Dy] ◦Π

X
6d ◦ µ∗)p

)
,

and applying the �x operator on both sides, we get

�
x

[
(ΠY6D ◦Π

X
6d ◦ µ∗)p

]
� ΠY6D+Dy

◦
(
�
x

[
(ΠX6d ◦ µ∗)p

] )
−ΠY6D+Dy

◦
(
�
x

[
(ΠY[D ,D+2Dy] ◦Π

X
6d ◦ µ∗)p

] )
.
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By definition of the pseudocalibrated function µ̄y , the left hand side is equal to
�x p(x , y)µ̄y(x). Since degx(p) 6 d, we have �x(ΠX6d ◦ µ∗)p � �x µ∗p. Further p(x , y) � 0
for each (x , y) ∈ supp(µ∗) implies that that �x µ∗(x , y)p(x , y) � 0 for all y. Thus the first
term in the right-hand side, given by ΠY6D+Dy

◦
(
�x

[
(ΠX
6d ◦ µ∗)p

] )
, is 0.

Therefore we have the following inequality for each y,

�
x

p(x , y)µ̄y(x) > −ΠY6D+Dy
◦

(
�
x

[
(ΠY[D ,D+2Dy] ◦Π

X
6d ◦ µ∗)p

] )
.

Now, we apply Chebyshev’s inequality to the right-hand side of the above,

�
y∼D∅
[|�

x
p(x , y)µ̄y(x)| > ε] 6

1
ε2 �y∼D∅

(
ΠY6D+Dy

◦
(
�
x
(ΠY[D ,D+2Dy] ◦Π

X
6d ◦ µ∗)p

))2
,

�
1
ε2




ΠY6D+Dy
◦ (�

x
(ΠY[D ,D+2Dy] ◦ (Π

X
6d ◦ µ∗))p)




2

2,J∅
,

And since norms decrease under projection,

6
1
ε2




�
x
(ΠY[D ,D+2Dy] ◦Π

X
6d ◦ µ∗)p




2

2,J∅
,

Now, since we have assumed that max(x ,y)∈J∅ |p(x , y)| 6 B,

6
B2

ε2 �y∼D∅

(
�
x

���(ΠY[D ,D+2Dy] ◦Π
X
6d ◦ µ∗)

���)2
,

6
B2

ε2 �y∼D∅
�
x

���(ΠY[D ,D+2Dy] ◦Π
X
6d ◦ µ∗)

���2 ,
�

B2

ε2




ΠY[D ,D+2Dy] ◦Π
X
6d ◦ µ∗




2

2,J∅
.

This concludes the proof. �
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