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Abstract

We introduce amethod for proving lower bounds on the efficacy of semidefinite programming
(SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and
stable set polytopes on n-vertex graphs are not the linear image of the feasible region of any
SDP (i.e., any spectrahedron) of dimension less than 2nδ , for some constant δ > 0. This result
yields the first super-polynomial lower bounds on the semidefinite extension complexity of any
explicit family of polytopes.

Our results follow from a general technique for proving lower bounds on the positive
semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary
SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum
constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power
to those arising from degree-O(1) sum-of-squares relaxations. This result implies, for instance,
that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation
for max 3-sat.
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1 Introduction

Convex characterizations and relaxations of combinatorial problems have been a consistent, powerful
theme in the theory of algorithms since its inception. Linear and semidefinite programming
relaxations have been particularly useful for the efficient computation of approximate solutions
to NP-hard problems (see, for instance, the books [WS11, Vaz01]). In some sense, semidefinite
programs (SDPs) can be seen as combining the rich expressiveness of linear programs with the
global geometric power of spectral methods. For many fundamental combinatorial problems,
this provides a genuinely new structural and computational perspective [GW95, KMS98, ARV09].
Indeed, for an array of optimization problems, the best-known approximation algorithms can only
be achieved via SDP relaxations.

It has long been known that integrality gaps for linear programs (LPs) can often lead to gadgets
for NP-hardness of approximation reductions (see, e.g., [LY93, CGH+05, HK03]). Furthermore,
assuming the Unique Games Conjecture [Kho02], it is known that integrality gaps for SDPs can be
translated directly into hardness of approximation results [KKMO04, Aus10, Rag08]. All of this
suggests that the computational model underlying LPs and SDPs is remarkably powerful.

Thus it is a natural (albeit ambitious) goal to characterize the computational power of this model.
If P , NP, we do not expect to find polynomial-size families of SDPs that yield arbitrarily good
approximations to NP-hard problems. (See [Rot13, BDP13] for a discussion of how this follows
formally from the assumption NP * P/poly.)

In the setting of linear programs (LPs), the search for a model and characterization began in a
remarkable work of Yannakakis [Yan91]. He proved that the TSP and matching polytopes do not
admit symmetric linear programming formulations of size 2o(n), where n is the number of vertices in
the underlying graph. In the process, he laid the structural framework (in terms of nonnegative
factorizations) that would underlie all future work in the subject. It took over 20 years before Fiorini,
Massar, Pokutta, Tiwary, and de Wolf [FMP+12] were able to remove the symmetry assumption
and obtain a lower bound of 2Ω(

√
n) on the size of any LP formulation. Soon afterward, Rothvoß

[Rot14] gave a lower bound of 2Ω(n) on the size of any LP formulation for the matching polytope
(and also TSP), completing Yannakakis’ vision.

Despite the progress in understanding the power of LP formulations, it remained a mystery
whether there were similar strong lower bounds in the setting of SDPs. An analogous positive
semidefinite factorization framework was provided in [FMP+12, GPT11]. Following the LPmethods
of [CLRS13], the papers [LRST14, FSP13] proved exponential lower bounds on the size of symmetric
SDP formulations for NP-hard constraint satisfaction problems (CSPs).

In the present work, we prove strong lower bounds on the size of general SDP formulations for
the cut, TSP, and stable set polytopes. Moreover, we show that polynomial-size SDP relaxations
cannot achieve arbitrarily good approximations for many NP-hard constraint satisfaction problems.
For instance, no polynomial-size family of relaxations can achieve better than a 7/8-approximation
for max 3-sat. More generally, we show that the low-degree sum-of-squares SDP relaxations yield
the best approximation among all polynomial-sized families of relaxations for max-CSPs.

This is achieved by relating arbitrary SDP formulations to those coming from the sum-of-squares
SDP hierarchy1 [Las01, Par00, Sho87], analogous to our previous work with Chan relating LP
formulations to the Sherali–Adams hierarchy [CLRS13]. The SDP setting poses a number of
significant challenges. At a very high level, our approach can be summarized as follows: Given an
arbitrary SDP formulation of small size, we use methods from quantum entropy maximization and

1This hierarchy is also frequently referred to as the Lasserre SDP hierarchy.
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online convex optimization (often going by the name “matrix multiplicative weights update”) to
learn an approximate low-degree sum-of-squares formulation on a subset of the input variables. In
the next section, we present a formal overview of our results, and a discussion of the connections to
quantum information theory, real algebraic geometry, and proof complexity.

Organization. The results of thiswork fall along two broad themes, lower bounds on spectrahedral
lifts of specific polytopes and lower bounds on SDP relaxations for constraint satisfaction problems.
Both sets of results are consequences of a general method for proving lower bounds on positive
semidefinite rank. For the convenience of the reader, we have organized the two themes in two
self-contained trajectories. Thus, lower bounds on spectrahedral lifts can be accessed via Section 1.1,
Section 1.3, Section 2, Section 3 and Section 5. The lower bounds for constraint satisfaction problems
can be reached through Section 1.2, Section 1.3, Section 2, Section 3 and Section 6.

We also present general results on approximating density operators against families of linear
tests through quantum learning in Section 4. Finally, in Section 7, we exhibit applications of our
techniques to non-negative rank; in particular, this is used to give a simple, self-contained proof of
a lower bound on the nonnegative rank of the unique disjointness matrix.

1.1 Spectrahedral lifts of polytopes

Polytopes are an appealing andusefulway to encodemany combinatorial optimizationproblems. For
example, the traveling salesman problem on n cities is equivalent to optimizing linear functions over
the traveling salesman polytope, i.e., the convex hull of characteristic vectors 1C ∈ {0, 1}(n

2) ⊆ �(n
2)

of n-vertex Hamiltonian cycles C (viewed as edge sets). If a polytope admits polynomial-size
LP or SDP formulations, then we can optimize linear functions over the polytope in polynomial
time (exactly for LP formulations and up to arbitrary accuracy in the case of SDP formulations).
Indeed, a large number of efficient, exact algorithms for combinatorial optimization problems can
be explained by small LP or SDP formulations of the underlying polytope. (For approximation
algorithms, the characterization in terms of compact formulations of polytopes is not as direct
[BFPS12]. In Section 1.2, we will give a direct characterization for approximation algorithms in
terms of the original combinatorial problem.)

Positive semidefinite lifts. Fix a polytope P ⊆ �n (e.g., the traveling salesman polytope described
above). We are interested in the question of whether there exists a low-dimensional SDP that
captures P. Let Sk

+ denote the cone of symmetric, k × k positive semidefinite matrices embedded
naturally in �k×k . If there exists an affine subspace L ⊆ �k×k and a linear map π : �k×k

→ �n such
that

P � π(Sk
+ ∩ L) ,

one says that P admits a positive-semidefinite (psd) lift of size k. (This terminology is taken from
[FGP+14].) We remark that the intersection of a PSD cone with an affine subspace is often referred
to as a spectrahedron.

The point is that in order to optimize a linear function ` : �n
→ � over the polytope P, it is

enough to optimize the linear function ` ◦ π : �k×k
→ � over the set Sk

+ ∩ L instead,

min
x∈P

`(x) � min
y∈Sk

+∩L

` ◦ π(y) .

Here, the optimization problem on the right is a semidefinite programming problem in k-by-k
matrices. This idea also goes under the name of a semidefinite extended formulation [FMP+12].
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The positive-semidefinite rank of explicit polytopes. We define the positive-semidefinite (psd) rank
of a polytope P, denoted rkpsd(P), to be the smallest number k such that there exists a psd lift of size
k. (Our use of the word “rank” will make sense soon—see Section 1.3.) Briët, Dadush, and Pokutta
[BDP13] showed (via a counting argument) that there exist 0/1 polytopes in �n with exponential
psd rank. In this work, we prove the first super-polynomial lower bounds on the psd rank of explicit
polytopes: The correlation polytope corrn ⊆ �

n2 is given by

corrn � conv
�{xxT : x ∈ {0, 1}n}�

.

In Section 5.1, we show the following strong lower bound on its psd rank.

Theorem 1.1. For every n > 1, we have

rkpsd(corrn) > 2Ω(n2/13) .

The importance of the correlation polytope corrn lies in the fact that a number of interesting
polytopes from combinatorial optimization contain a face that linearly projects to corrn . We first
define a few different families of polytopes and then recall their relation to corrn .

For n > 1, let Kn � ([n], �[n]2
�) be the complete graph on n vertices. For a set S ⊆ [n], we use

∂S ⊆
�[n]

2
�
to denote the set of edges with one endpoint in S and the other in S̄, and we use the

notation 1∂S ∈ �
(n

2) to denote the characteristic vector of S. The cut polytope on n vertices is defined by

cutn � conv ({1∂S : S ⊆ [n]}) .
Similarly, if τ is a salesman tour of Kn (i.e., a Hamiltonian cycle), we use 1E(τ) ∈ �(n

2) to denote the
corresponding indicator of the edges contained in τ. In that case, the TSP polytope is given by

tspn � conv
�{1E(τ) : τ is a Hamiltonian cycle}�

.

Finally, consider an arbitrary n-vertex graph G � ([n], E). We recall that a subset of vertices S ⊆ [n]
is an independent set (also called a stable set) if there are no edges between vertices in S. The stable
set polytope of G is given by

stabn(G) � conv
�{1S ∈ �

n : S is an independent set in G}�
.

By results of [DS90] and [FMP+12] (see Proposition 5.2), Theorem 1.1 directly implies the following
lower bounds on the psd rank of the cut, TSP, and stable set polytopes.

Corollary 1.2. The following lower bounds hold for every n > 1,

rkpsd(cutn) > 2Ω(n2/13) ,

rkpsd(tspn) > 2Ω(n1/13) ,

max
n-vertex G

rkpsd(stabn(G)) > 2Ω(n1/13).

1.2 Semidefinite relaxations and constraint satisfaction

We now formalize a computational model of semidefinite relaxations for combinatorial optimization
problems and prove strong lower bounds for it. Unlike the polytope setting in the previous section,
this model also allows us to capture approximation algorithms directly.
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Consider the following general optimization problem:2 Given a low-degree function
f : {0, 1}n

→ �, represented by its coefficients as a multilinear polynomial,

maximize f (x)
subject to x ∈ {0, 1}n .

(1.1)

Many basic optimization problems are special cases of this general problem, corresponding to
functions f of a particular form: For the problem of finding the maximum cut in a graph G with
n vertices, the function f outputs on input x ∈ {0, 1}n the number of edges in G that cross the
bipartition represented by x, i.e., f (x) is the number of edges {i , j} ∈ E(G)with xi , x j . Similarly,
for max 3-sat on a 3CNF formula ϕ with n variables, f (x) is the number of clauses in ϕ satisfied
by the assignment x. More generally, for any k-ary boolean constraint satisfaction problem, the
function f counts the number of satisfied constraints. Note that in these examples, the functions
have at most degree 2, degree 3, and degree k, respectively.

Algorithmswithprovable guarantees for these kindsofproblems—either implicitly or explicitly—
certify upper bounds on the optimal value of instances. (Indeed, for solving the decision version
of these optimization problems, it is enough to provide such certificates.) It turns out that the
best-known algorithms for these problems are captured by certificates of a particularly simple form,
namely sums of squares of low-degree polynomials. The following upper bounds on problems
of the form (1.1) are equivalent to the relaxations obtained by the sum-of-squares SDP hierarchy
[Las01, Par00, Sho87]. For f : {0, 1}n

→ �, we use deg( f ) to denote the degree of the unique
multilinear real polynomial agreeing with f on {0, 1}n ; see Section 2.1.

Definition 1.3. The degree-d sum-of-squares upper bound for a function f : {0, 1}n
→ �, denoted

sosd( f ), is the smallest number c ∈ � such that c − f is a sum of squares of functions of
degree at most d/2, i.e., there exists functions 11 , . . . , 1t : {0, 1}n

→ � for some t ∈ � with
deg(11), . . . , deg(1t) 6 d/2 such that the following identity between functions on the discrete cube
holds:

c − f � 12
1 + · · · 12

t .

Every function f satisfies sosd( f ) > max( f ) since sums of squares of real-valued functions
are nonnegative pointwise. For d > 1, the problem of computing sosd( f ) for a given function
f : {0, 1}n

→ � (of degree at most d) is a semidefinite program of size at most 1 + nd/2 (see, e.g.,
Theorem 3.8).3

The sosd upper bound is equivalent to the degree-d sum-of-squares (also known as the
level-d/2 Lasserre) SDP bound, and for small values of d, these upper bounds underlie the best-
known approximation algorithms for several optimization problems. For example, the Goemans–
Williamson algorithm for max cut is based on the upper bound sos2. If we let αGW ≈ 0.878 be the
approximation ratio of this algorithm, then every graph G satisfies max( fG) > αGW · sos2( fG)where
the function fG measures cuts in G, i.e., fG(x) B ∑

i j∈E(G)(xi − x j)2.
A natural generalization of low-degree sum-of-squares certificates is obtained by summing

squares of functions in a low-dimensional subspace. We can formulate this generalization as a
non-uniform model of computation that captures general semidefinite programming relaxations.
First, we make the following definition for a subspace of functions.

2In this section, we restrict our discussion to optimization problems over the discrete cube. Some of our results also
apply to other problems, e.g., the traveling salesman problem (albeit only for exact algorithms).

3Moreover, for every d ∈ �, there exists an nO(d)-time algorithm based on the ellipsoid method that, given f , c, and
ε > 0, distinguishes between the cases sosd( f ) > c and sosd( f ) 6 c − ε (assuming the binary encoding of f , c, and ε is
bounded by nO(d)).
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Definition 1.4. For a subspace U of real-valued functions on {0, 1}n , the subspace-U sum-of-squares
upper bound for a function f : {0, 1}n

→ �, denoted sosU( f ), is the smallest number c ∈ � such
that c − f is a sum of squares of functions from U, i.e., there exist a 11 , . . . , 1t ∈ U such that
c − f � 12

1 + · · · + 12
t is an identity of functions on {0, 1}n .

Here, the subspace U can be thought of as “non-uniform advice” to an algorithm, where its
dimension dim(U) is the size of advice. In fact, if we fix this advice U, the problem of computing
sosU( f ) for a given function f has a semidefinite programming formulation of size dim(U).4
Moreover, it turns out that the generalization captures, in a certain precise sense, all possible
semidefinite programming relaxations for (1.1). The dimension of the subspace corresponds to the
size of the SDP. See Section 6.1 for a detailed discussion of the model.

In this work, we exhibit unconditional lower bounds in this powerful non-uniform model of
computation. For example, we show that the max 3-sat problem cannot be approximated to a factor
better than 7/8 using a polynomial-size family of SDP relaxations. Formally, we show the following
lower bound for max 3-sat.

Theorem 1.5. For every s > 7/8, there exists a constant α > 0 such that for every n ∈ � and every linear
subspace U of functions f : {0, 1}n

→ �with

dim U 6 nα
log n

log log n ,

there exists a max 3-sat instance = on n variables such that max(=) 6 s but sosU(=) � 1 (i.e., U fails to
achieve a factor-s approximation for max 3-sat).

Our main result is a characterization of an optimal semidefinite programming relaxation for
the class of constraint satisfaction problems among all families of SDP relaxations of similar size.
Roughly speaking, we show that the O(1)-degree sum-of-squares relaxations are optimal among all
polynomial-sized SDP relaxations for constraint satisfaction problems. Towards stating our main
result, we define the class of constraint satisfaction problems. For the sake of clarity, we restrict
ourselves to boolean constraint satisfaction problems although the results hold in greater generality.

For a finite collection P of k-ary predicates P : {0, 1}k
→ {0, 1}, we let max-P denote the

following optimization problem: An instance = consists of boolean variables X1 , . . . ,Xn and a
collection of P-constraints P1(X) � 1, . . . , PM(X) � 1 over these variables. A P-constraint is a
predicate P0 : {0, 1}n

→ {0, 1} such that P0(X) � P(Xi1 , . . . ,Xik ) for some P ∈P and distinct indices
i1 , . . . , ik ∈ [n]. The objective is to find an assignment x ∈ {0, 1}n that satisfies as many of the
constraints as possible, that is, which maximizes

=(x) def
�

1
M

M∑
i�1

Pi(x) .

We denote the optimal value of an assignment for = as opt(=) � maxx∈{0,1}n =(x). For example,
max cut corresponds to the case whereP consists of the binary inequality predicate. For max 3-sat,
P contains all eight 3-literal disjunctions, e.g., X1 ∨ X̄2 ∨ X̄3.

4Under mild conditions on the subspace U, there exists a boolean circuit of size (dim U)O(1) that given a constant-
degree function f , and number c ∈ � and ε > 0, distinguishes between the cases sosU ( f ) > c and sosU ( f ) 6 c − ε
(assuming the bit encoding length of f , c, and ε is bounded by (dim U)O(1).). Note that since we will prove lower bounds
against this model, the possibility that some subspaces might not correspond to small circuits does not weaken our
results.
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Next, we discuss how to compare the quality of upper bound certificates of the form sosU . Let
Π be a boolean CSP and let Πn be the restriction of Π to instances with n boolean variables. As
discussed before, the problem Πn could for example be max cut on graphs with n vertices or max
3-sat on formulaswith n variables. We say that a subspace U ⊆ �{0,1}n achieves a (c , s)-approximation
for Πn if every instance = ∈ Πn satisfies

max(=) 6 s �⇒ sosU(=) 6 c . (1.2)

In other words, the upper bound sosU allows us to distinguish5 between the cases max(=) 6 s and
max(=) > c for all instances = ∈ Πn .

We prove the following theorem, which shows that for every boolean CSP, the approximation
guarantees obtained by the degree-d sum-of-squares upper bound (also known as the the level-d/2
Lasserre SDP relaxation) are optimal among all semidefinite programming relaxations of size at
most ncd for some universal constant c > 0.

Theorem 1.6. Let Π be boolean constraint satisfaction problem and let Πn be the set of instances of Π on
n variables. Suppose that for some m , d ∈ �, the subspace of degree-d functions f : {0, 1}m

→ � fails to
achieve a (c , s)-approximation forΠm (in the sense of (1.2)). Then there exists a number α � α(Πm , c , s) > 0
such that for all n ∈ �, every subspace U of functions f : {0, 1}n

→ �with dim U 6 α · (n/ log n)d/4 fails
to achieve a (c , s)-approximation for Πn .

The theorem has several immediate concrete consequences for specific boolean CSPs. First, we
know that O(1)-degree sos upper bounds do not achieve an approximation ratio better than 7/8 for
max 3-sat [Gri01b, Sch08], therefore Theorem 1.6 implies that polynomial-size SDP relaxations for
max 3-sat cannot achieve an approximation ratio better than 7/8. In fact, a quantitatively stronger
version of the above theorem yields Theorem 1.5.

Another concrete consequence of this theorem is that if there exists a polynomial-size family of
semidefinite programming relaxations for max cut that achieves an approximation ratio better than
αGW, then also a O(1)-degree sum-of-squares upper bound achieves such a ratio. This assertion is
especially significant in light of the notorious Unique Games Conjecture one of whose implications
is that it is NP-hard to approximate max cut to a ratio strictly better than αGW .

1.3 Positive semidefinite rank and sum-of-squares degree

In order to prove our results on spectrahedral lifts and semidefinite relaxations, the factorization
perspective will be essential. In the LP setting, the characterization of polyhedral lifts and LP
relaxations in terms of nonnegative factorizations is a significant contribution of Yannakakis [Yan91].
In the SDP setting, the analogous characterization is in terms of positive semidefinite factorizations
[FMP+12, GPT11].

Definition1.7 (PSD rank). LetM ∈ �p×q
+ be amatrixwithnon-negative entries. We say thatM admits

a rank-r psd factorization if there exist positive semidefinite matrices {Ai : i ∈ [p]}, {B j : j ∈ [q]} ⊆ Sr
+

such that Mi , j � Tr(AiB j) for all i ∈ [p], j ∈ [q]. We define rkpsd(M) to be the smallest r such that M
admits a rank-r psd factorization. We refer to this value as the psd rank of M.

5In order to distinguish between the cases max(=) 6 s and max(=) > c it is enough to check whether = satisfies
sosU (=) 6 c. In the case max(=) 6 s, we know that sosU (=) 6 c by (1.2). On the other hand, in the case max(=) > c, we
know that sosU (=) > c because sosU (=) is always an upper bound on max(=).
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Nonnegative factorizations correspond to the special case that the matrices {Ai} and {B j} are
restricted to be diagonal. A rank-r nonnegative factorization can equivalently be viewed as a sum of
r rank-1 nonnegative factorizations (nonnegative rectangles). Indeed, this viewpoint is crucial for
all lower bounds on nonnegative factorization. In contrast, rank-r psd factorizations do not seem to
admit a good characterization in terms of rank-1 psd factorizations. This difference captures one of
the main difficulties of proving psd rank lower bounds.

Main theorem. Consider a nonnegative function f : {0, 1}n
→ �+ on the n-dimensional dis-

crete cube. We say that f has a sum-of-squares (sos) certificate of degree d if there exist functions
11 , . . . , 1k : {0, 1}n

→ � such that deg(11), . . . , deg(1k) 6 d/2, and f (x) �
∑k

i�1 1i(x)2 for all
x ∈ {0, 1}n . (Here, the deg(1) denotes the degree of 1 as a multilinear polynomial. We refer to
Section 2.1 for the precise definition.) We then define the sos degree of f , denoted degsos( f ), to be
the minimal d such that f has a degree-d sos certificate.

This notion is closely related6 to (a special case of) the Positivstellensatz proof system of Grigoriev
and Vorobjov [GV02]. We refer to the surveys [Lau09, BS14] and the introduction of [OZ12] for a
review of such proof systems and their relationship to semidefinite programming.

With this notion in place, we can now present a representative theorem that embodies our
approach. For a point x ∈ �n and a subset S ⊆ [n], we denote by xS ∈ �

|S| the vector xS �

(xi1 , xi2 , . . . , xi |S| )where S � {i1 , i2 , . . . , i |S|} and i1 < i2 < · · · < i |S|. For a function f : {0, 1}m
→ �+

and a number n > m, we define the following central object: The
� n

m

�
× 2n-dimensional real matrix

M f
n is given by

M f
n (S, x) def

� f (xS) , (1.3)

where S ⊆ [n] runs over all subsets of size m and x ∈ {0, 1}n .

Theorem 1.8 (Sum-of-squares degree vs. psd rank). For every m , d > 1 and f : {0, 1}m
→ �+ with

degsos( f ) � d + 2, there exists a constant C > 0 such that the following holds for all n > 2m,

1 + n1+d/2 > rkpsd(M f
n ) > C

(
n

log n

)d/4

.

Remark 1.9. The reader might observe that the matrix in (1.3) looks very similar to the “pattern
matrices” defined by Sherstov [She11]. This comparison is not unfounded; some high-level aspects
of our proof are quite similar to his. Random restrictions are a powerful tool for analyzing functions
over the discrete cube. We refer to [O’D14, Ch. 4] for a discussion of their utility in the context
of discrete Fourier analysis. They were also an important tool in the work [CLRS13] on lower
bounds for LPs. Accordingly, one hopes that our methods may have additional applications
in communication complexity. This would not be surprising, as there is a model of quantum
communication that exactly captures psd rank (see [FMP+12]).

Connection to spectrahedral lifts of polytopes. The connection to psd lifts proceeds as follows.
Let {x1 , x2 , . . . , xv} ⊆ P be such thatP � conv(V) is the convexhull ofV , and also fix a representation

P �

{
x ∈ �n : 〈ai , x〉 6 bi ∀i ∈ [m]} .

The slack matrix S associated to P (and our chosen representation) is the matrix S ∈ �m×v
+ given

by Si , j � bi − 〈ai , x j〉. It is not difficult to see that rkpsd(S) does not depend on the choice of
representation. It turns out that the psd rank of S is precisely the minimum size of a psd lift of P.

6For the sake of simplicity, we have only defined this notion for functions on the discrete cube. In more general
settings, one has to be a bit more careful; we refer to [GV02].
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Proposition 1.10 ([FMP+12, GPT11]). For every n , k > 1, every polytope P ⊆ �n and every slack matrix
S associated to P, it holds that rkpsd(S) 6 k if and only if P admits a psd lift of size k.

Thus our goal in this paper becomes one of proving lower bounds on psd rank. With this
notation, we have a precise way to characterize the lack of previous progress: Before this work, there
was no reasonable method available to prove lower bounds on the psd rank of explicit matrices.
The characterization of Proposition 1.10 explains our abuse of notation in Theorem 1.1, writing
rkpsd(P) to denote the psd rank of any slack matrix associated to a polytope P.

Theorem 1.8 is already enough to show that rkpsd(corrn)must grow faster than any polynomial
in n, as we will argue momentarily. In Section 3.1, we present a more refined version (using
a more robust version of sos degree) that will allow us to achieve a lower bound of the form
rkpsd(corrn) > 2Ω(nδ) for some δ > 0.

Given Theorem 1.8, in order to prove a lower bound on rkpsd(corrn), we should find, for every
d > 1, a number m and a function f : {0, 1}m

→ �+ such that degsos( f ) > d and such that M f
n is a

submatrix of some slack matrix associated to corrn . To this end, it helps to observe the following
(we recall the proof in Section 5).

Proposition 1.11. If f : {0, 1}m
→ �+ is a nonnegative quadratic function over {0, 1}m , then for any

n > m, the matrix M f
n is a submatrix of some slack matrix associated to corrn .

Given the preceding proposition, the following result of Grigoriev on the Knapsack tautologies
completes our quest for a lower bound.

Theorem 1.12 ([Gri01a]). For every odd integer m > 1, the function f : {0, 1}m
→ �+ given by

f (x) � *
,

m
2
−

m∑
i�1

xi+
-

2

−
1
4

(1.4)

has degsos( f ) > m + 1.

Note that since m/2 is not an integer, (1.4) is nonnegative for all x ∈ {0, 1}m . It turns out that in
order to prove stronger lower bounds for corrn , we will require a lower bound on the approximate
sos degree of f . Thus the Knapsack tautologies (1.4) will be studied carefully in Section 5.1. In
Section 2.2, we discuss the proof of Theorem 1.8 in some detail. Then in Section 3, we present a
quantitatively stronger theorem and its proof.

Connection to semidefinite relaxations and constraint satisfaction. Fix now numbers k , n > 1
and a boolean CSP Π. Fix a pair of constants 0 6 s 6 c 6 1. Suppose our goal is to show a lower
bound on the size of SDP relaxations that yield a (c , s)-approximation on instances of size n. It
turns out that this task reduces to proving a lower bound on the positive semidefinite rank of an
explicit matrix M indexed by problem instances and problem solutions (points on the discrete cube
in our case).

Proposition 1.13. For any boolean CSP Πn and any constants 0 6 s < c 6 1, let U be a subspace of
minimal dimension that achieves a (c , s)-approximation for Πn . Denote the set of instances

Π6s
n � {= | max(=) 6 s} .

Let M : Π6s
n × {0, 1}n

→ � denote the matrix

M(=, x) � c − =(x) .
Then, rkpsd(M)2 > dim(U) > rkpsd(M).
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Before describing the proof of this proposition, observe that together with our main theorem the
proposition implies Theorem 1.6 (optimality of degree-d sum-of-squares for approximating boolean
CSPs): If=0 is a max-P instance on m variables with max(=0) 6 s and sosd(=0) > c, then f � c −=0
has sos degree larger than d. Our main theorem gives a lower bound on the psd rank of the matrix
M f

n . Since this matrix is a submatrix of the matrix in Proposition 1.13, our psd rank lower bound
implies a lower bound on the minimum dimension of a subspace achieving a (c , s)-approximation
for max-Pn .

Proof of Proposition 1.13. Set r � dim(U). Fix a basis q1 , . . . , qr : {0, 1}n
→ � for the subspace U.

Define the function Q : {0, 1}n
→ S

+
r by setting (Q(x))i j :� qi(x)q j(x) for all i , j ∈ [r]. Notice that

for any q ∈ U, we can write q �
∑r

i�1 λi qi and thus q(x)2 � Tr(ΛQ(x))where Λ ∈ S+
r is defined by

Λi j :� λiλ j .
Since U achieves a (c , s)-approximation for Πn , for every instance = ∈ Π6s

n we will have
sosU(=) 6 c. By definition of sosU(=), this implies that c − = �

∑
i 1

2
i for 1i ∈ U. By expressing

each 12
i as 12

i � Tr(ΛiQ(x)) for some Λi ∈ S
+
r we get,

M(=, x) � c − =(x) �
∑

i

Tr(ΛiQ(x)) � Tr (Λ=Q(x)) .

This yields an explicit psd factorization of M certifying that rkpsd(M) 6 dim(U).
Conversely, by definition of rkpsd(M) there exists positive semidefinite matrices {Λ= : = ∈ Π6s

n },
{Q(x) : x ∈ {0, 1}n} ⊆ S+

r such that M(=, x) � Tr(Λ=Q(x)). Denote by R(x) :� Q(x)1/2 the positive
semidefinite square root, and consider the subspace Ũ :� span{(R(x))i j} ⊆ �{0,1}n . Clearly, the
dimension of Ũ is at most rkpsd(M)2. Further, for each instance = ∈ Π6s

n , we can write

c − = � M=,x � Tr(Λ=Q(x)) � Tr(Λ=R(x)2) � 
√
Λ=R(x)

2

F
.

Observe that 
√
Λ=R(x)

2

F
is a sum of squares of functions from the subspace Ũ.7 Therefore we

have sosŨ(=) 6 c, showing that sosŨ yields a (c , s)-approximation to Πn . Since U is the minimal
subspace yielding a (c , s)-approximation, we have dim(U) 6 dim(Ũ) 6 rkpsd(M)2. �

2 Proof overview and setup

2.1 Preliminaries

We write [n] def
� {1, 2, . . . , n} for n ∈ �. We will often use the notation �x to denote a uniform

averaging operator where x assumes values over a finite set. For instance, if x ∈ {−1, 1}n , then
�x f (x) � 2−n ∑

x∈{−1,1}n f (x). The domain of the operator should always be readily apparent from
context. We also use asymptotic notation: For two expressions A and B, we write A 6 O(B) if
there exists a universal constant C such that A 6 C · B. We also sometimes write A . B to denote
A 6 O(B). The notation A > Ω(B) similarly denotes B . A, and the notations A � Θ(B) and A � B
are both used to denote the conjunction of A . B and B . A. For a real number x > 0, we use log x
to denote the natural logarithm of x.

Inner product spaces and norms. Let H denote a finite-dimensional vector space over � equipped
with an inner product 〈·, ·〉 and the induced Euclidean norm | · |. All vector spaces we consider
here will be of this kind. We useM(H) to denote the set of self-adjoint linear operators on H, and

7Here,‖ · ‖F denotes the Frobenius norm.
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D(H) ⊆ M(H) for the set of density operators on H, i.e., those positive semidefinite operators with
trace one. We will use the standard Loewner ordering � onM(H).

If H comes equipped with a canonical (ordered) orthonormal basis (as will always be the case
throughout), we represent linear operators on H by matrices with rows and columns indexed by the
basis elements. In this case,M(H) consists of symmetric matrices andD(H) consists of symmetric,
positive semidefinite matrices whose diagonal entries summing to one. If A ∈ M(H) is positive
semidefinite, we use A1/2 to denote the positive semidefinite square root of A.

Given a linear operator A : H → H, we define the operator, trace, and Frobenius norms,
respectively:

‖A‖ � max
x,0

|Ax |
|x |

‖A‖∗ � Tr(√ATA)
‖A‖F �

√
Tr(ATA) .

Recall Tr(AT B) 6 ‖A‖ · ‖B‖∗ and the Cauchy-Schwarz inequality Tr(AT B) 6 ‖A‖F‖B‖F . For a matrix
M, we use ‖M‖∞ to denote the maximum absolute value of an entry in M.

Fourier analysis and degree over the discrete cube. We use L2({−1, 1}n) to denote the Hilbert
space of real-valued functions f : {−1, 1}n

→ �. This space is equipped with the natural inner
product under the uniform measure: 〈 f , 1〉 � �x f (x)1(x). We recall the Fourier basis: For S ⊆ [n],
one has χS(x) � ∏

i∈S xi . The functions {χS : S ⊆ [n]} form an orthonormal basis for L2({−1, 1}n).
We can decompose f in the Fourier basis as f �

∑
S⊆[n] f̂ (S)χS.

We will use deg( f ) to denote the degree of f as a multi-linear polynomial on the discrete cube:
deg( f ) def

� max{|S| : f̂ (S) , 0}. Note that by identifying {0, 1} and {−1, 1}, we can define deg( f )
for functions f : {0, 1}n

→ � as well. (Since the change of domains is given by the linear map
x 7→ 2x − 1, the degree of polynomial representations do not change.)

If we are given a matrix-valued function M : {−1, 1}n
→ �p×q , we can decompose M as

M �
∑

S⊆[n] M̂SχS where (M̂S)i j � FMi j(S), and deg(M) � max{deg(Mi j) : i ∈ [p], j ∈ [q]}. We refer
to the book [O’D14] for additional background on boolean Fourier analysis.

Quantum information theory. The von-Neumann entropy of a density operator X is denoted
S(X) � −Tr(X log X). For two density operators X and Y over the same vector space, the quantum
relative entropy of X with respect to Y is the quantity S(X ‖ Y) � Tr(X · (log X − log Y)). Here, the
operator function log is defined on positive operators as log X � −

∑
∞

k�0
1
k (Id−X)k . In general, for a

function 1 : I → � analytic on an open interval I ⊆ � and a symmetric operator X ∈ M(H), we
define 1(X) via its Taylor series, with the understanding that the spectrum of X should lie in I.
Finally, we will often use the notation U �

Id
Tr(Id) to denote the uniform density matrix (i.e., the

maximally mixed state), where the dimension of the identity matrix Id is clear from context. We
refer to [Wil13] for a detailed account of quantum information theory.

2.2 Factorizations, quantum learning, and pseudo-densities

First, we recall the setup of the main theorem in the paper. Fix m > 1, a function f : {0, 1}m
→ �+

and let d + 2 � degsos( f ). We define the matrix M f
n as in (1.3). Our goal is to show a lower bound

on the positive semidefinite rank of the matrix M f
n .
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Suppose we had a psd factorization

M f
n (S, x) � Tr(P(S)Q(x)) (2.1)

witnessing rkpsd(M) 6 r. First, we observe that lower bound on degsos( f ) already precludes certain
low degree psd factorizations. More precisely, if R(x) � Q(x)1/2 then deg(R) is constrained to be at
least d/2. For the sake of contradiction, let us suppose deg(R) < d/2. For any row M f

n (S, ·) of the
matrix M f

n we will have,

f (xS) � Tr(P(S)R(x)2) � ‖√P(S)R(x)‖2
F .

This contradicts degsos( f ) � d + 2 since ‖√P(S)R(x)‖2
F is a sum of squares of a polynomials of

degree less than d/2.

Pseudo-densities and lowdegree psd factorizations. By appealing to convex duality, it is possible
to construct a certificate that the matrix M f

n does not admit low degree factorizations. The certificate
consists of a linear functional that separates M f

n from the convex hull of matrices that admit low
degree psd factorizations. Formally, if we define the convex set Cd of non-negative matrices as,

Cd
def
�

{
N :

(
n
m

)
× {0, 1}n

→ �
�����

N(S, x) � Tr(P(S)R(x)2), P(S) � 0, deg(R(x)) < d/2
}

then we will construct a linear functional L on
� n

m

�
× 2n matrices such that

L(M f
n ) < 0, but L(N) > 0 for all N ∈ Cd . (2.2)

The linear functional is precisely the one derived from what we refer to as a pseudo-density.
A degree-d pseudo-density is amappingD : {0, 1}m

→ �such that�x D(x) � 1 and�x D(x)1(x)2 >
0 for all functions 1 : {0, 1}m

→ �with deg(1) 6 d/2.8 Observe that for any probability distribution
over {0, 1}n , its density function relative to the uniformdistribution on {0, 1}n satisfies the conditions
of a degree-d pseudo-density for every d ∈ �. One has the following characterization:

degsos( f ) � min
{

d > 0 : �
x

D(x) f (x) > 0 for every degree-d pseudo-density D
}
. (2.3)

In other words, the sos degree of a function is larger than d if and only if there exists a degree-d
pseudo-density D such that �x D(x) f (x) < 0. To verify this, note that if degsos( f ) > d, then f is not
in the closed, convex cone generated by the squares of polynomials of degree at most d/2. Now the
required pseudo-density D corresponds exactly to (the normal vector of) a hyperplane separating f
from this cone.

Of course, if D is an actual density (with respect to the uniform measure on {0, 1}m), then
�x D(x) f (x) is precisely the expectation of f under D. For a pseudo-density D, the corresponding
linear functional f 7→ �x D(x) f (x) is referred to as a pseudo-expectation in previous papers (see,
e.g., [BBH+12, CLRS13]), and the map D is called a pseudo-distribution in [BKS14]. Over finite
domains, these notions are interchangeable. We use the language of densities here in anticipation
of future applications to infinite domains and non-uniform background measures (in the context of
nonnegative rank, this occurs already in Section 7.2).

8Note that a degree-d pseudo-density does not necessarily have degree d as a function on the discrete cube.
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Now fix a degree-d pseudo-density D with �x D(x) f (x) < 0.We define the following linear
functional on matrices N :

�[n]
m

�
× {0, 1}n

→ �:

LD(N) def
� �|S|�m

�
x

D(xS) · N(S, x) . (2.4)

Consider a matrix N ∈ Cd which admits a low degree psd factorization given by N(S, x) �

Tr(P(S)R(x)2). Then since D is a degree-d pseudo-density, we would have

LD(N) � �|S|�m
�
x

D(xS)Tr
�
P(S)R(x)2�

� �|S|�m
�
x

D(xS)‖
√

P(S)R(x)‖2
F > 0 .

However, since D is negatively correlated with f ,

LD(M f
n ) � �|S|�m

�
x

D(xS) ·M f
n (S, x) � �|S|�m

�
x

D(xS) · f (xS) < −ε . (2.5)

for some ε > 0.
The core of our psd rank lower bound is to show that the linear functional LD in fact separates

the matrix M f
n from all low rank psd factorizations, thereby certifying a lower bound on rkpsd(M f

n ).
Roughly speaking, the idea is to approximate an arbitrary psd factorization using low degree
factorizations with respect to the linear functional LD , and then appeal to the lower bound (2.2) for
low degree factorizations.

Formally, for a number r > 1, consider the following set Cr of nonnegative matrices,

Cr
def
�

{
N ∈ �(n

m)×{0,1}n

+ : rkpsd(N) 6 r · ‖N‖1 , ‖N‖∞ 6 1
}
.

Here, ‖N‖1 is the average of the entries of N and ‖N‖∞ is the maximum entry of N . In the rest of
the section, we will present an argument that unless r is very large, every matrix N ∈ Cr satisfies
LD(N) > −ε. Since LD(M f

n ) < −ε, this implies that the linear functional LD separates M f
n from the

convex hull of Cr , thereby certifying a lower bound on rkpsd(M f
n ).

Fix a matrix N ∈ Cr . It is instructive to have the situation ‖N‖1 , ‖N‖∞ � Θ(1) in mind for the
rest of this outline. By definition of Cr , the matrix N admits a psd factorization of rank O(r). In
light of the above discussion, our goal is to approximate the matrix N by a low degree factorization
with respect to the functional LD . A low degree approximation for N is constructed in two steps.

Well-behaved factorizations. The first step involves obtaining a nicer factorization of N . Toward
this end, we define the quantity

γr(M) def
� sup

{
max

i , j
‖Ai‖ · ‖B j‖∗ : Ni j � Tr(AiB j),Ai , B j ∈ S

r
+ ∀i ∈ [p], j ∈ [q]

}
,

associated with a matrix M ∈ �p×q
+ . The following lemma is proved by Briët, Dadush, and Pokutta

[BDP13] (see also the discussion in [FGP+14]).

Lemma 2.1 (Factorization rescaling). For every nonnegative matrix M with rkpsd(M) 6 r, the following
holds:

γr(M) 6 r2 ‖M‖∞ .
Applying the above lemma to the matrix N at hand, we get a psd factorization N(S, x) �

Tr(P(S)Q(x)) wherein ‖P(S)‖ and ‖Q(x)‖∗ are bounded polynomially in r. This analytic control
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on the factorization will be important for controlling error bounds, but also—in a more subtle
way—for the next step.

Learning a low-degree quantum approximation. The next step of the argument exploits the
following phenomenon concerning quantum learning. Fix a k > 1 and consider a matrix-valued
function Q : {0, 1}n

→ S
k
+ such that �x Tr(Q(x)) � 1. We will try to approximate Q by a simpler

mapping with respect to a certain class of test functionalsΛ : {0, 1}n
→ S

k
+. If Q̃ is the approximator,

we would like that
����x Tr

(
Λ(x)(Q(x) − Q̃(x))) ��� 6 ε (2.6)

for some parameter ε > 0. (In this case, Q̃ and Q are indistinguishable to the test Λ up to accuracy
ε.) One can set this up as a quantum learning problem in the following way. We define the
density matrix UQ � �x(ex eT

x ⊗ Q(x)) and the PSD matrix VΛ �
∑

x(ex eT
x ⊗ Λ(x)).9 Note that

�x Tr(Λ(x)Q(x)) � Tr(VΛUQ).
Now, ifT is a family of test functionals, then a canonical way of finding a “simple” approximation

toUQ that satisfies all the tests is via the followingmaximum-entropy (convex) optimization problem:

max
�
S(Ũ) : Tr(Ũ) � 1, Ũ � 0, | Tr(VΛ(UQ − Ũ))| 6 ε ∀Λ ∈ T 	

, (2.7)

wherewe recall that S(·)denotes the quantumentropy functional. Moreover, one can attempt to solve
this optimization by some form of projected sub-gradient descent. Interpretations of this algorithm
go bymany names, notably the “matrixmultiplicativeweights updatemethod” and “mirror descent”
with quantum entropy as the regularizer; see, e.g., [NY83, BT03, TRW05, AK07, WK12] and the
recent survey [Bub14].

In our setting, we are not directly concerned with efficiency, but instead simplicity of the
approximator. A key phenomenon is that when the class of tests T is simple, the approximator
inherits this simplicity. Moreover, one can tailor the nature of the approximator by choosing the
sub-gradient steps wisely. In Section 4.2 (Theorem 4.5), we prove a generalization of the following
approximation theorem. (Recall thatU � Id /Tr(Id) is the uniform density matrix.)

Theorem 2.2 (Approximation by a low-degree square). Let κ > 1 and ω > 0 be given. Define

Tκ,ω �

{
Λ : {0, 1}n

→ S
k
+ : deg(Λ) 6 κ, ‖Λ(x)‖ 6 ω ∀x ∈ {0, 1}n

}
.

For any Q : {0, 1}n
→ S

k
+ with �x Tr(Q(x)) � 1, there is a matrix-valued function R : {0, 1}n

→ S
k
+ with

�x Tr(R(x)2) � 1 satisfying
deg(R)
κ
.

�
1 + S(UQ ‖U)� ω

ε
, (2.8)

and for all tests Λ ∈ Tκ,ω, �����x Tr
(
Λ(x)(Q(x) − R(x)2)) ���� 6 ε .

In other words, the learning algorithm produces a hypothesis with error at most ε for all the
tests in Tκ,ω; moreover, the hypothesis is the square of a polynomial whose degree is not much
larger than that of the tests. The value ω corresponds to the ubiquitous “width” parameter and, as
in most applications of the multiplicative weights method, bounding ω will be centrally important.
The reader should also take note of the appearance of the relative entropy in the degree bound (2.8).
It will turn out that low psd rank factorizations will give us functions Q : {0, 1}n

→ S
k
+ with high

9In the quantum information literature, these are sometimes called QC states for “quantum/classical.”
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entropy (and thus small relative entropy with respect to the uniform state); this is actually a direct
consequence of the factorization rescaling in Lemma 2.1.

Notice that the separating functional LD induces a test of degree at most m. Therefore, if one
takes for granted, as claimed above, that S(UQ ‖ Id

Tr(Id) ) is small when Q comes from a low psd rank
factorization, then Theorem 2.2 suggests that we might think of Q(x) as being a low-degree square.

Proof sketch for Theorem 1.8. We have all the ingredients to sketch a proof of Theorem 1.8.
First, suppose that degsos( f ) > d so that by (2.3), there exists a degree-d pseudo-density D with
�x f (x)D(x) < −ε‖ f ‖∞ for some ε > 0. (We do not specify any quantitative bound on ε at the
moment, but we write it this way to indicate how one can get improved bounds under stronger
assumptions.)

Then from the definition of M f
n , we have

LD(M f
n ) < −ε‖M f

n ‖∞ . (2.9)

On the other hand, we will prove the following theorem in Section 3.1.

Theorem 2.3. For every m , d > 1, every ε ∈ (0, 1], and every degree-d pseudo-density D : {0, 1}m
→ �,

there exists a number α > 0 such that for every n > 2m and every nonnegative matrix N :
�[n]

m

�
×{0, 1}n

→ �

satisfying

‖N‖∞ 6 1 , and
1
‖N‖1

rkpsd(N)2 6 α(n/ log n)d/2 ,

we have LD(N) > −ε.
Now if we consider the normalized matrix N � M f

n/‖M
f
n ‖∞, we see that it satisfies the first

premise ‖N‖∞ 6 1 but violates the conclusion of the theorem (because of (2.9)). Therefore we know
that the second premise is violated, which gives the lower bound

rkpsd(N)2 > α(n/ log n)d/2
· ‖N‖1 � α(n/ log n)d/2�

x
f (x) .

Since this achieves our goal, we are left to explain why Theorem 2.3 should be true, at least when
we apply it with N � M f

n/‖M f
n ‖∞. If we apply LD to the right-hand side of (2.1)—our presumed

factorization for M f
n—we arrive at the expression

LD(M f
n ) � �x Tr

(
�|S|�m

D(xS)P(S)Q(x)
)
. (2.10)

We can view this as a test on Q in the sense of Theorem 2.2. Since deg(D) 6 m (because D is only a
function of m variables), this is a low-degree test. Theorem 2.2 then suggests that we can replace Q
by a low-degree approximator R2, while losing only ε in the “accuracy” of the test.

Since the approximation property implies that Q(x) and R(x)2 should perform similarly under
the test (up to the “accuracy” ε), we would conclude that LD(M f

n ) > −ε, yielding the conclusion of
Theorem 2.3.

Random restriction and degree reduction. The one serious issue with the preceding argument
is that our supposition is far too strong: One cannot expect to have deg(R) 6 d/2. Indeed, the
guarantee of Theorem 2.2 tells us that the approximator R(x) has degree at most K · deg(D) for
some (possibly large) number K (which itself depends on many parameters). To overcome this
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problem, we use another crucial property of our functional (2.4): It is an expectation over small sets
S ⊆ [n]. If we randomly choose such a subset with |S| � m � n and randomly choose values yS̄ for
the variables in S̄, we expect that the resulting (partially evaluated) polynomial R(xS , xS̄)|xS̄�yS̄

will
satisfy deg(R(xS , xS̄)|xS̄�yS̄

) � deg(R). (Strictly speaking, this will only be true in an approximate
sense.)

It is precisely this degree reduction property of random restriction that saves the preceding
sketch. In the next sections, we perform a more delicate quantitative analysis capable of achieving
much stronger lower bounds. The norm ‖D‖∞ of the pseudo-density will play a central role in this
study. Thus in Section 5.1, we show that Grigoriev’s proof of Theorem 1.12 can be carefully recast
in the language of pseudo-densities such that the resulting pseudo-density has small norm.

3 PSD rank and sum-of-squares degree

We now move to proving the main technical theorems of the paper along the lines of the informal
overview presented in Section 2.2.

3.1 Analysis of the separating functional

Recall that for a pseudo-density D : {0, 1}m
→ � and n > 1, we define a linear functional LD on

matrices N :
�[n]

m

�
× {0, 1}n

→ �

LD(N) def
� �

x
�
S

D(xS)N(S, x) ,

where the expectation over S is a uniform average over all S ⊆ [n] with |S| � m (as will be the case
throughout this section). We will use the notation ‖N‖∞ � maxS,x N(S, x) and ‖N‖1 � �S,x N(S, x).

We prove the following quantitative version of Theorem 3.1. As discussed in Section 2.2, this
theorem implies a lower bound on the rkpsd(M f

n ) in terms of degsos( f ). This implication will be
proved formally in Section 3.3.

Theorem 3.1 (Strengthening of Theorem 2.3). For every m , d > 1, every ε ∈ (0, 1], and every degree-d
pseudo-density D : {0, 1}m

→ �, there exists a number α > 0 such that whenever n > 2m and a nonnegative
matrix N :

�[n]
m

�
× {0, 1}n

→ � satisfies

‖N‖∞ 6 1 ,
1
‖N‖1

rkpsd(N)2 6 α(n/ log n)d/2 ,

we have LD(N) > −ε. Moreover, this holds for

α �

(
Cε

dm2‖D‖∞

)d/2 (
ε
‖D‖∞

)3

,

where C > 0 is a universal constant.

The proof of this theorem consists of two parts. First, we observe that if D is a degree-d
pseudo-density, then LD(N) is nonnegative for all matrices N that admit a factorization in terms of
squares of low-degree polynomials, i.e., a factorization N(S, x) � Tr(A2

SB2
x) for symmetric matrics
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{AS} and {Bx} such that the function x 7→ Bx has degree at most d/2 over {0, 1}n .10 Indeed,
consider such a factorization. Then,

LD(N) � �
x
�
S

D(xS)Tr(A2
SB2

x) � �S
(
�
x

D(xS)‖ASBx‖2
F

)
> 0 ,

where the inequality used the fact that D is a degree-d pseudo-density (hence �x D(x)1(x)2 > 0
whenever deg(1) 6 d/2).

As explained in Section 2.2, this guarantee is not sufficient for us. The following theorem
(proved in Section 3.2) allows us to analyze LD even when the degree of the map x 7→ Bx is much
larger than d/2. (For m 6 no(1), it will be the case that the linear functional LD is approximately
nonnegative on N even when x 7→ Bx has degree up to no(1)).

Theorem 3.2 (Degree reduction). Consider postive numbers n > 1 and d , k ,m 6 n. Let D : {0, 1}m
→ R

be a degree-d pseudo-density. Let N′ :
�[n]

m

�
× {0, 1}n

→ � be a matrix that admits a factorization
N′(S, x) � Tr A2

SB2
x for symmetric matrices {AS} and {Bx} such that the matrix-valued function x 7→ Bx

has degree at most `. Then,

LD(N′) % −
(
`m

n − m

)d/4
‖D‖∞ ·

((
max

S
‖A2

S‖ · �x
Tr(B2

x)
)
·

(
�
x
�
S

N′(S, x)))1/2
.

With this theorem in place, our goal is to approximate every matrix N with low psd rank by a
matrix N′ that satisfies the premise of Theorem 3.2 for a reasonable value of `. Here, our notion of
approximation is fairly weak. We only require LD(N) > LD(N′) − ε for sufficiently small ε > 0. As
a preliminary step, the following general theorem about psd factorizations allows us to assume that
the factorization for N is appropriately scaled. Recall thatU � Id /Tr(Id) is the uniform density
matrix.

Theorem 3.3 (psd factorization scaling). For every nonnegative matrix M ∈ �p×q and every η ∈ (0, 1],
there exist psd matrices {Pi}i∈[p] and {Q j} j∈[q] with the following properties:

1. Mi , j 6 Tr(PiQ j) 6 Mi , j + η‖M‖∞,
2. 1

p
∑p

i�1 Pi � Id,

3. ‖Pi ‖ 6 2rkpsd(M)2/η for all i ∈ [p],
4. Q j � ‖M‖∞(η + rkpsd(M)2)rkpsd(M)U for all j ∈ [q].

Proof. Let r � rkpsd(M). By Lemma 2.1, we have γ :� γr(M) 6 r2
‖M‖∞. Fix a factorization

Mi , j � Tr(AiB j) such that maxi , j ‖Ai ‖ · ‖B j ‖∗ � ‖M‖∞ · rkpsd(M)2 and Ai , B j ∈ �
r×r . By an

appropriate normalization, we may assume Ai , B j � 0 and ‖Ai‖ 6 γ, ‖B j‖∗ 6 1. To construct psd
matrices {Pi} and {Q j} with the desired properties, make the following definitions:

A � η‖M‖∞ Id+
1
p

p∑
i�1

Ai

Pi � A−1/2(η‖M‖∞ Id+Ai)A−1/2

Q j � A1/2B jA1/2 .

10For the convenience of the reader, we recall that the degree of the matrix-valued function x 7→ Bx is defined as the
maximum degree of the functions x 7→ (Bx)i j where i , j range over the indices of Bx .
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Note that Item 2 holds by construction. Also observe that

Tr(PiQ j) � Mi , j + η‖M‖∞ Tr(A−1A1/2B jA1/2) � Mi , j + η‖M‖∞ Tr(B j) ,
verifying Item 1. Finally, we have the inequalities for all i ∈ [p], j ∈ [q],

‖Pi‖ 6 1
η‖M‖∞ (η‖M‖∞ + ‖Ai‖) 6 1 +

γ

η‖M‖∞ ,
‖Q j‖∗ 6 ‖A‖ · ‖B j‖∗ 6 γ + η‖M‖∞ .

The first inequality verifies Item 3 since r > 1 and η 6 1. The last inequality implies that

Q j � (γ + η‖M‖∞)r Id
Tr(Id) � r‖M‖∞(η + r2) Id

Tr(Id)
for all j ∈ [q], verifying Item 4. �

Consider a matrix of the form N :
�[n]

m

�
× {0, 1}n

→ �+ with ‖N‖∞ 6 1 and let ε > 0 be given.
Apply Theorem 3.3 with a value η ∈ (0, 1] to be chosen later to obtain a factorization

N(S, x) � Tr(PSQx)
satisfying the conclusions of the theorem.

We can view the matrix-valued function x 7→ Qx as a density matrix Q �
1

�x(Tr Qx) �x(ex eT
x ⊗Qx).

(The first n bits in this density matrix are “classical” and their marginal distribution has density
x 7→ Tr Qx . If we condition Q on an assignment x ∈ {0, 1}n to the first n bits, the resulting quantum
state is 1

Tr Qx
Qx). Here, the normalization factor τ � �x Tr Qx for the density matrix Q satisfies

τ � �
x

Tr Qx
(Thm 3.3(2))

� �
x
�
S

Tr PSQx




(Thm 3.3(1)
> �S �x N(S, x) � ‖N‖1 ,

(Thm 3.3(1))
6 �S �x N(S, x) + η 6 1 + η ,

(3.1)

where the last inequality has used ‖N‖∞ 6 1.
From Theorem 3.3(4), the density matrix Q satisfies

Q �
(η + rkpsd(N)2)rkpsd(N)

τ
U .

Therefore,
S(Q ‖U) - log(ηrkpsd(N)/τ) 6 log

�
rkpsd(N)/‖N‖1�

. (3.2)

Theorem 3.3(1) allows us to lower bound LD(N) in terms of the matrix (S, x) 7→ Tr(PSQx) and value
‖D‖∞:

LD(N) � �
x
�
S

D(xS)N(S, x)
> �

x
�
S

D(xS) · Tr(PSQx) − η‖D‖∞ (by Theorem 3.3(1))

� τ · Tr(FQ) − η‖D‖∞ , (3.3)

where F is the symmetric matrix

F �

∑
x∈{0,1}n

ex eT
x ⊗ Fx with Fx � �

S
D(xS)PS . (3.4)
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Theorem 3.3(2) allows us to upper bound the spectral norm of F by

‖F‖ 6 max
x

�S D(xS)PS
 6 ‖D‖∞ ·

�S PS


(Thm 3.3(2))
� ‖D‖∞. (3.5)

The next theorem allows us to lower bound Tr(FQ) by replacing Q with a simpler density matrix
that is a low-degree polynomial in F. (See Theorem 4.1, where a slightly more general version is
proved.)

Theorem 3.4 (Density matrix approximation). Let H be some finite-dimensional real inner-product space.
Let F ∈ M(H) be a symmetric matrix and let Q ∈ D(H) be a density matrix. Then, for every ε > 0, there
exists a degree-k univariate polynomial p with k - (1 + S(Q ‖U)) · ‖F‖/ε such that the density matrix
Q̃ �

1
Tr p(F)2 p(F)2 satisfies

Tr
(
FQ̃

)
6 Tr(FQ) + ε . (3.6)

Apply Theorem 3.4 to the density matrix Q and the symmetric matrix F defined above with the
value ε (which is already fixed). Let p be the resulting degree-k polynomial, with k satisfying the
bounds of the theorem.

Since the function x 7→ Fx has deg(F) 6 deg(D) 6 m (since D : {0, 1}m
→ �), the degree of the

map x 7→ Q̃x �
1

�x Tr(p(Fx)2)p(Fx)2 is at most deg(p) · m � k · m. Applying Theorem 3.2 to the matrix
given by N′(S, x) � Tr(PS · p(Fx)2), we can give a lower bound:(
�
x

Tr p(Fx)2
)
· Tr

�
F · Q̃

�
� �

S
�
x

D(xS)Tr
�
PS · p(Fx)2�

& −

(
km2

n − m

)d/4

· ‖D‖∞ ·
((

max
S
‖PS‖ · �

x
Tr(p(Fx)2)

)
·

(
�
x
�
S

N′(S, x)))1/2
.

Using the fact that �x �S N′(S, x) � �S �x Tr PS · p(Fx)2 � �x Tr p(Fx)2 from Theorem 3.3(2) and
the fact that maxS‖PS‖ 6 2rkpsd(N)2/η from Theorem 3.3(3) yields

Tr
�
F · Q̃

�
& −

(
km2

n − m

)d/4 ‖D‖∞
√
η

rkpsd(N) . (3.7)

We have now assembled all components of the proof of Theorem 3.1.

Proof of Theorem 3.1. We lower bound the linear functional LD(N) by

LD(N) (3.3)
> τ · Tr(FQ) − η‖D‖∞
(3.6)
> τ ·

(
Tr(F · Q̃) − ε) − η‖D‖∞

(3.7)
> −cτ ·

(
km2

n − m

)d/4

·
‖D‖∞
√
η

rkpsd(N) − τ · ε − η‖D‖∞ ,

where c > 0 is a universal constant.
Now set η :� min(ε/‖D‖∞ , 1) and use (3.1) to bound τ 6 1 + η 6 2. This yields

LD(N) > −2c
(

km2

n − m

)d/4

·
‖D‖3/2∞
√
ε

rkpsd(N) − 3ε (3.8)

Now recall that our invocation of Theorem 3.4 gives us a bound on k � deg(p):

k - (1 + S(Q ‖ U)) · ‖F‖/ε (3.5), (3.2)
- log

�
rkpsd(N)/‖N‖1� ‖D‖∞

ε
. (3.9)
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If rkpsd(N)2/‖N‖1 satisfies the upper bound in the theorem, then the degree bound (3.9) above
gives

k - 1
ε · d‖D‖∞ · log n .

Plugging this bound into (3.8) yields, for some constant c′ > 0,

LD(N) > −
(

c′d‖D‖∞m2 log n
ε(n − m)

)d/4

·
‖D‖3/2∞
√
ε

rkpsd(N) − 3ε

Since ‖N‖1 6 ‖N‖∞ 6 1, if rkpsd(N) satisfies the upper bound in the theorem (for a sufficiently
small constant α), this lower bound is LD(N) > −4ε as desired (up to scaling by a factor of 4). �

3.2 Degree reduction

The next theorem is a restatement of Theorem 3.2. One should simply note that for any symmetric
matrix A, we have ‖A‖2

F � Tr(A2).
Theorem 3.5 (Restatement of Theorem 3.2). Let positive integers n > 1 and m , d , ` 6 n be given.
Suppose A :

� n
m

�
→ �p×p and B : {0, 1}n

→ �p×p are two functions taking symmetric matrices as values.
Let D : {0, 1}m

→ � be a degree-d pseudo-density and suppose that deg(B) 6 `. Then,
�
S,x

D(xS)‖A(S)B(x)‖2F

> −2‖D‖∞
(

`m
(n − m)

)d/4

·

(
max

S
‖A(S)2‖

)1/2 (
�
S,x
‖A(S)B(x)‖2F

)1/2

·

(
�
x
‖B(x)‖2F

)1/2
,

Proof. For the sake of this lemma, which uses Fourier analysis, we will think of B and D as functions
on {−1, 1}n . Since this is a linear transformation on the domain, it does not affect their degrees as
multilinear polynomials.

For every S ⊆ [n] with |S | � m, we decompose B into two parts B � BS,low + BS,high such that
BS,low is the part of B with degree at most d/2 in the variables S:

BS,low �

∑
α⊆[n]

|α∩S |6d/2

B̂αχα .

(Recall Section 2.1 for the Fourier-analytic definitions.)
The proof consists of two steps that are captured by the following two lemmas.

Lemma 3.6. Let τ � maxS‖A(S)2‖. Then,

�
S,x

D(xS)‖A(S)B(x)‖2F > −2
√
τ‖D‖∞ ·

(
�
S,x
‖BS,high(x)‖2F

)1/2

·

(
�
S,x
‖A(S)B(x)‖2F

) 1/2

Proof. For ease of notation, we will treat A � A(S) and B � B(x) as matrix-valued random variables
that are determined by choosing x ∈ {−1.1}n and S ⊆ [n]with |S | � m uniformly and independently
at random. In this notation, we are to lower bound the expectation �D(xS)‖AB‖2F (over the joint
distribution of x, S, A, and B).

Let Blow � BS,low(x) and Bhigh � BS,high(x) be matrix-valued random variables in the same
probability space. By construction, the Fourier transforms of the functions x 7→ BS,low(x) and
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x 7→ BS,high(x) have disjoint support for every subset S. Therefore, the expectation satisfies
� BlowBT

high � 0. This fact allows us to control the expectations of ‖ABlow‖
2
F and ‖ABhigh‖

2
F,

� ‖ABlow‖
2
F +� ‖ABhigh‖

2
F � � ‖AB‖2F

Here, we have used that the quadratic formula ‖AB‖2F � ‖ABlow‖
2
F + ‖ABhigh‖

2
F + 2〈ABlow ,ABhigh〉,

where 〈·, ·〉 is the inner product that induces ‖·‖F, i.e., 〈X,Y〉 � Tr(XTY). Hence,

�
�〈ABlow ,ABhigh〉 | A

�
� Tr(A2

· � BlowBT
high) � 0 .

Therefore,

����
�
D(xS)‖AB‖2F

�
−�

�
D(xS)‖ABlow‖

2
F

����
6 ‖D‖∞ · �

[���‖AB‖F + ‖ABlow‖F
��� ·

���‖AB‖F − ‖ABlow‖F
���
]

6 ‖D‖∞ ·
(
�

���‖AB‖F + ‖ABlow‖F
���
2
· �

���‖AB‖F − ‖ABlow‖F
���
2)1/2

6 2‖D‖∞ ·
�
�‖ABhigh‖

2
F

�1/2
·

�
�‖AB‖2F

�1/2
.

The first step used the identity |x2
− y2

| � |x + y | · |x − y |. In the second step, we applied
Cauchy–Schwarz. The third step used the triangle inequality, ���‖AB‖F − ‖ABlow‖F

��� 6 ‖ABhigh‖F .

Since x 7→ ‖A(S)BS,low(x)‖2F is a sum of squares of polynomials of degree at most d/2 in the
variables S and D is a degree-d pseudo-density, the expectation �D(xS)‖ABlow‖

2
F is non-negative.

It follows that
�

�
D(xS)‖AB‖2F

�
> −2‖D‖∞ ·

�
� ‖ABhigh‖

2
F

�1/2
·

�
�‖AB‖2F

�1/2
.

We also have
� ‖ABhigh‖

2
F 6 max

S
‖A(S)2‖ · �‖Bhigh‖

2
F � τ�‖Bhigh‖

2
F .

This bound implies the desired lower bound

�D(xS)‖AB‖2F > −2
√
τ‖D‖∞ ·

�
�‖Bhigh‖

2
F

�1/2
·

�
�‖AB‖2F

�
. �

Lemma 3.7.
�
S,x
‖BS,high(x)‖2F 6

`d/2md/2

(n − m)d/2 · �S,x
‖B(x)‖2F

Proof. By construction the Fourier transform of BS,high satisfies

BS,high �

∑
α⊆[n]
|α∩S |>d/2

B̂(α)χα .

Therefore,
�
x
‖BS,high(x)‖2F �

∑
α⊆[n]
|α∩S |>d/2

‖B̂(α)‖2F .

The expectation satisfies

�
S
�
x
‖BS,high(x)‖2F �

∑
α⊆[n]
‖B̂(α)‖2F · �

{
|α ∩ S | > d/2

}
.
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Since B has degree at most `, we can upper bound the probability of the event { |α ∩ S | > d/2},

�
{
|α ∩ S | > d/2

}
6

(
`

d/2

) (
n

m − d/2

)
/

(
n
m

)
6

`d/2md/2

(n − m)d/2 .

Together with
∑
α‖B̂α‖2F � �x ‖B(x)‖2F, the desired bound on the expected norm of BS,high follows:

�
S
�
x
‖BS,high(x)‖2F 6

`d/2md/2

(n − m)d/2 · �x
‖B(x)‖2F . �

Wecombine the previous two lemmas to lower bound the correlation between the pseudo-density
D(xS) and the norms ‖A(S)B(x)‖2F,

�
S,x

D(xS)‖A(S)B(x)‖2F > −2
√
τ‖D‖∞

(
�
S,x
‖A(S)B(x)‖2F

)1/2 (
�
S,x
‖BS,high(x)‖2F

)1/2

(using Lemma 3.6)

> −2
√
τ‖D‖∞

`d/4md/4

(n − m)d/4

(
�
S,x
‖A(S)B(x)‖2F

)1/2 (
�
x
‖B(x)‖2F

)1/2

(using Lemma 3.7) . �

3.3 Proof of the main theorem

For a function f : {0, 1}m
→ [0, 1] and an integer n > m, let M f

n :
� n

m

�
× {0, 1}n

→ [0, 1] be the matrix,

M f
n (S, x) def

� f (xS) .
Theorem 3.8. For any m , d > 1, the following holds. Let f : {0, 1}m

→ [0, 1] be a nonnegative function
with d + 2 � degsos( f ). Then for n > 2m,

1 + n1+d/2 > rkpsd
(
M f

n

)
> C f

(
n

log n

) d
4

, (3.10)

where C f > 0 is a constant depending only on f .
Moreover, if there exists an ε ∈ (0, 1], and a degree-d pseudo-density D : {0, 1}m

→ � with
�x D(x) f (x) < −ε, then for every n > 2m, we have

rkpsd(M f
n ) >

(
cεn

dm2‖D‖∞ log n

)d/4 (
ε
‖D‖∞

)3/2 √
�
x

f (x) , (3.11)

where c > 0 is a universal constant.

Proof. Let d + 2 � degsos( f ) and consider a degree-d pseudo-density with �D f < −ε for some
ε > 0. Recall the linear functional LD defined in Section 3.1. One observes that LD(M f

n ) < −ε.
By (the contrapositive of) Theorem 3.1, it follows that rkpsd(M f

n )2 > α(n/ log n)d/2
· ‖M f

n ‖1, where
α is a constant depending only on the parameters ε,m , d, and the pseudo-density D. Note that
‖M f

n ‖1 � � f . This immediately implies (3.10). Likewise, (3.11) follows directly from Theorem 3.1.

Let us now prove that rkpsd(M f
n ) 6 1 + n1+d/2 by exhibiting an explicit factorization of M f

n . Let
F

def
� {A ⊆ [n] : |A| 6 1 + d/2} and set r � |F |. For x ∈ {0, 1}n , we use the notation xA :�

∏
i∈A xi .

Suppose f �
∑t

j�1 1
2
j for some {1 j : {0, 1}m

→ �} such that deg(1 j) 6 1 + d/2 for j ∈ [t].
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For each function j ∈ [t] and subset S ⊆ [n]with |S| � m, define the function 1S, j : {0, 1}n
→ �by

1S, j(x) � 1 j(xS). We associate the coefficient vector 1̂S, j : F → � associated to 1S, j by letting 1̂S, j(A)
be the coefficient of themonomial

∏
i∈A xi in 1S, j . Finally, for every |S| � m and x ∈ {0, 1}m , wedefine

r × r PSD matrices indexed by F as follows: (Qx)A,B :� xAxB and (PS)A,B :�
∑t

j�1 1̂S, j(A)1̂S, j(B). It
is easy to check that

Tr(PSQx) �
t∑

j�1

*.
,

∑
A∈F

xA 1̂S, j(A)+/
-

2

�

t∑
j�1

1S, j(x)2 � f (xS) � M f
n (S, x) ,

which yields an explicit psd factorization of M f
n with matrices {PS}, {Qx} of dimension r �∑

i61+d/2
�n

i

�
6 1 + n1+d/2. �

4 Approximations for density operators

We turn now to a central theme of our approach: High-entropy states can be approximated by
“simple” states if the approximation is only with respect to “simple” tests. In our setting, “simple”
will mean low-degree. In Section 4.1, we present a basic version of this principle with respect to a
single test functional. This suffices for essentially all our applications to psd rank lower bounds.

We believe that themaximum-entropy approximation framework is a powerful one, so Section 4.2
is devoted to a more general exploration of the principle. In particular, we state and prove
approximation theorems for density operators with respect to families of tests. In the rest of this
section, we fix a finite-dimensional real inner product space H.

4.1 Approximation against a single test

The following theorem shows that a linear functional over density matrices with high entropy is
approximately minimized at a density matrix that is the square of a low-degree polynomial in the
linear functional. We recall that U �

Id
Tr(Id) is the uniform density matrix.

Theorem 4.1 (Density matrix approximation). Let F ∈ M(H) be a symmetric matrix and let Q ∈ D(H)
be a density matrix. Then, for every ε ∈ (0, 1

2 ), there exists a degree-k univariate polynomial p with
k 6 O(‖F‖/ε) · S(Q ‖ U) + O

( log 1/ε
log log 1/ε

)
such that

Tr
(
F · 1

Tr(p(F)2)p(F)2
)
6 Tr(FQ) + ε .

Moreover, the polynomial p depends only on ε, the operator norm ‖F‖, and the relative entropy S(Q ‖ U).)
The proof consists of two steps. First, we will show that the theorem holds with 1

Tr(p(F)2)p(F)2
replaced by e−λF/Tr(e−λF) for λ 6 (1/ε)·S(Q ‖ U). Then,wewill approximate thematrix exponential
by the square of a low-degree polynomial.

Lemma 4.2. For every symmetric matrix F and every density matrix Q,

Tr
(
F · 1

Tr e−λF e−λF
)
6 Tr(FQ) + ε ,

as long as λ > 1/ε · S(Q ‖ U).
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Proof. By the duality formula for quantum entropy (see, e.g., [Car10, Thm. 2.13]), the function
f : X 7→ λ Tr(FX)+S(X ‖U) over the the set of densitymatrices isminimized at X? � e−λF/Tr(e−λF).
Therefore, using the fact S(X? ‖U) > 0, we get

λ Tr(FX?) 6 f (X?) 6 f (Q) � λ Tr(FQ) + S(Q ‖U) ,
which implies that Tr(FX?) 6 Tr(FQ) + S(Q ‖U)/λ 6 Tr(FQ) + ε, as desired. �

Next we observe that one can pass from univariate approximations of ex to approximations of
eF in the trace norm.

Lemma 4.3. Let δ ∈ (0, 1] and τ > 0 be given. Suppose there exists a univariate polynomial p(x) such that
for every x ∈ [−τ/2, τ/2], �

ex
− p(x)� 6 δex . (4.1)

Then for every F ∈ M(H) with ‖F‖ 6 τ, we have


eF

Tr(eF) −
p(F/2)2

Tr(p(F/2)2)
∗
6 6δ . (4.2)

Proof. Under the assumptions, for every x ∈ [−τ, τ], one has
�
ex
− p(x/2)2�

�
�
ex/2
− p(x/2)� · �ex/2

+ p(x/2)�
6 ex/2(2 + δ) �

ex/2
− p(x/2)�

6 δex(2 + δ)
6 3δex , (4.3)

where the last line follows from δ 6 1. Note the elementary equality: For all x , y , x′, y′ > 0,

x
y
−

x′

y′
�

x − x′

y
+

y − y′

y y′
x′ . (4.4)

Let λ1 , λ2 , . . . , λn ∈ [−τ, τ] denote the eigenvalues of F. We conclude that

n∑
i�1

�����
eλi∑n

i�1 eλi
−

p(λi/2)2∑n
i�1 p(λi/2)2

�����

(4.4)
6

n∑
i�1

�
eλi − p(λi/2)2�∑n

i�1 eλi
+

p(λi/2)2 �∑n
i�1 eλi − p(λi/2)2�

�∑n
i�1 eλi

� �∑n
i�1 p(λi/2)2�

(4.3)
6 3δ +

n∑
i�1

p(λi/2)2 �
3δ

∑n
i�1 eλi

�
�∑n

i�1 eλi
� �∑n

i�1 p(λi/2)2�

6 6δ .

Since eF and p(F) are simultaneously diagonalizable, the preceding inequality is precisely our goal
(4.2). �

The following corollary of Lemma 4.3 follows by checking that the Taylor expansion of ex

satisfies the approximation guarantee (4.1).

Corollary 4.4. For every ε ∈ (0, 1
2 ) and every symmetric matrix F ∈ M(H), there is a number k 6

3e
(‖F‖∞ +

log(1/ε)
log log(1/ε)

)
and a univariate degree-k polynomial pk with non-negative coefficients such that


eF

Tr(eF) −
pk(F/2)2

Tr(pk(F/2)2)
∗
6 ε . (4.5)
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Proof. Let pk(x) � ∑k
t�0

xk

k! . By Taylor’s theorem, we have

�
ex
− pk(x)� 6 ex xk+1

(k + 1)! .

Define τ � ‖F‖∞ and choose k �

⌊
3e

(
τ +

log(1/ε)
log log(1/ε)

)⌋
so that for x ∈ [−τ/2, τ/2], wehave xk+1

(k+1)! 6 ε/6.
Finally, apply Lemma 4.3. �

The proof of the main theorem in this section follows by combining Lemma 4.2 and Corollary 4.4.

Proof of Theorem 4.1. Fix ε ∈ (0, 1
2 ) and F ∈ M(H), q ∈ D(H). Choose λ � (2/ε) · S(Q ‖U)

and F′ � −λF. Let pk be the polynomial from Corollary 4.4 for k � 3e
(
‖F′‖ + log(1/ε′)

log log(1/ε′)
)
and

ε′ � ε/(2‖F‖). Note that k 6 O(‖F‖/ε) · S(Q ‖U) + O
( log 1/ε

log log 1/ε

)
. Moreover,

Tr
(
F · 1

Tr(pk(F′/2)2)pk(F′/2)2
)
6 Tr

(
F · 1

Tr(eF′) e
F′
)
+ ε′ · ‖F‖ (by Corollary 4.4)

6 Tr(FQ) + ε
2 + ε′ · ‖F‖ (by Lemma 4.2)

Since ε/2 + ε′ · ‖F‖ 6 ε, the polynomial p(x) � pk(−λx/2) satisfies the desired bound

Tr
(
F · 1

Tr(p(F)2)p(F)2
)
6 Tr(FQ) + ε .

�

4.2 Approximation against a family of tests

Let T ⊆ M(H) denote a compact set of matrices, and set ∆(T ) :� supA∈T ‖A‖. For A ∈ M(H), we
define the associated dual gauge

[A]T def
� sup

B∈T
Tr(BA) .

One should think of T as a set of test functionals; for A,A′ ∈ M(H), the value [A − A′]T
measures the extent to which A and A′ are distinguishable using tests from T . It is important
to note that if T is not centrally symmetric, then [·]T might also fail to be symmetric. For future
reference, we observe that fact that for any A ∈ M(H),

|[A]T | 6 ∆(T )‖A‖∗ (4.6)
[A + A′]T 6 [A]T + [A′]T . (4.7)

Our main approximation theorem asserts that, with respect to tests from a convex set T , a
high-entropy density operator can be well-approximated by the square of a low-degree polynomial
in some element of T .

Theorem 4.5 (Approximation by a low-degree square). For every ε ∈ (0, 1
2 ), the following holds. Let

T ⊆ M(H) be compact and convex, and let Q ∈ D(H) be a density matrix. Then there exists a number

k . (1 + S(Q ‖U)) ∆(T )
ε

,

a univariate degree-k polynomial p, and an element F ∈ T such that Tr(p(F)2) � 1 and
�
Q − p(F)2�

T
6 ε .
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Just as for Theorem 4.1, this is proved in two steps: First we find an initial approximator of a
simple form, and then we construct from that a low-degree approximator. In the next argument, it
is helpful to have the following fact: If X(t) is continuously differentiable matrix-valued function,
then for any β ∈ �, we have the Duhamel formula:

d
dt

eβX(t)
�

∫ β

0
eαX(t) dX(t)

dt
e(β−α)X(t) dα . (4.8)

This can be verified immediately by showing that both sides satisfy the differential equation

∂F
∂β

� eβX dX
dt

+ X(t)F(β, t)

with F(0, t) � 0 for all t. (This argument is taken from [Wil67].)
We will only require (4.8) for β � 1. For example, (4.8) and cyclicity of the trace yields

Tr
(

d
dt

eX(t)
)
� Tr

(
eX(t) dX(t)

dt

)
. (4.9)

Denote X′(t) � dX(t)
dt . If we know that X(t) is symmetric, and its eigenvalues are {λi}, then by

diagonalizing in the basis of X(t), we can also derive

Tr
(
X′(t) d

dt
eX(t)

)
�

∫ 1

0
Tr

(
X′(t)eαX(t)X′(t)e(1−α)X(t)) dα

�

∑
i , j

(X′(t))2i j eλi

∫ 1

0
eα(λ j−λi) dα

�

∑
i , j

(X′(t))2i j
eλi − eλ j

λi − λ j
using

∫ 1

0
eαx dα �

ex
− 1
x

6
∑
i , j

(X′(t))2i j emax(λi ,λ j) ,

where in the final line we have used the fact that if a > b, then

ea
− eb

a − b
�

ea(1 − eb−a)
a − b

6 ea ,

since eb−a > 1 + (b − a). Thus we have

Tr
(
X′(t) d

dt
eX(t)

)
6 2

∑
i

eλi
∑

j

(X′(t))2i j

6 2 Tr(eX(t))max
i

∑
j

(X′(t))2i j

� 2 Tr(eX(t)) ‖X′(t)‖2
2→∞

6 2 Tr(eX(t)) ‖X′(t)‖2 . (4.10)

Together these imply

Tr
(
X′(t) d

dt
eX(t)

Tr(eX(t))
)
� Tr

(
X′(t)

Tr(eX(t))
deX(t)

dt

)
−

Tr(X′(t)eX(t))
Tr(eX(t))2 Tr

(
deX(t)

dt

)
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� Tr
(

X′(t)
Tr(eX(t))

deX(t)
dt

)
−

Tr(X′(t)eX(t))
Tr(eX(t)) ·

Tr(eX(t)X′(t))
Tr(eX(t))

�
1

Tr(eX(t)) Tr
(
X′(t)deX(t)

dt

)
−

(
Tr(X′(t)eX(t))

Tr(eX(t))
)2

(4.10)
6 2‖X′(t)‖2 . (4.11)

We will use this for the following lemma.

Lemma 4.6 (Sparse approximation by mirror descent). For every ε > 0, the following holds. Let C ⊆
M(H) be a compact set, and let Q ,Q0 ∈ D(H) be density matrices. If one defines h � d 8

ε2 S(Q ‖ Q0)∆(T )2e
then there exist A1 ,A2 , . . . ,Ah ∈ T such that

Q̃ def
�

exp
(
log Q0 −

ε
4∆(T )2

∑h
i�1 Ai

)
Tr

(
exp

(
log Q0 −

ε
4∆(T )2

∑h
i�1 Ai

)) ∈ D(H) (4.12)

satisfies �
Q − Q̃

�
T
6 ε. (4.13)

Proof. Consider for t > 0, the density matrix

Qt �

exp
(
log Q0 −

∫ t
0 Λs ds

)
Tr

(
exp

(
log Q0 −

∫ t
0 Λs ds

)) ,
where s 7→ Λs ∈ T is any measurable function.

First, one calculates

d
dt

log Qt � −Λt − Id d
dt

log Tr
(
exp

(
log Q0 −

∫ t

0
Λs ds

))
(4.14)

Now, we have

d
dt

log Tr
(
exp

(
log Q0 −

∫ t

0
Λs ds

))
�

d
dt Tr

(
exp

(
log Q0 −

∫ t
0 Λs ds

))
Tr

(
exp

(
log Q0 −

∫ t
0 Λs ds

)) (4.9)
� −Tr(ΛtQt) ,

and thus

d
dt

S(Q ‖ Qt) � Tr
(
Q

d
dt

log Qt

)
� −Tr(ΛtQ) + Tr(Q)Tr(ΛtQt) � −Tr(Λt(Q −Qt)) , (4.15)

where in the final line we have used Tr(Q) � 1.
Let T �

2
εS(Q ‖ Q0). Suppose the map t 7→ Λt ∈ T is such that

Tr(Λt(Q −Qt)) > ε
2
∀ t ∈ [0, T] . (4.16)

Then from (4.15) and (4.16), we arrive at

S(Q ‖ QT) < S(Q ‖ Q0) − ε2 T � 0 ,
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which contradicts the fact that S(Q ‖ QT) > 0.
Finally, we define the elements A1 , . . . ,Ah ∈ T and corresponding approximators

Q̃0 , Q̃1 , . . . , Q̃h ∈ D(H) inductively. Define, for i � 0, 1, 2, . . . , h, the times ti � i ε
4∆(T )2 . We

will choose the map t 7→ Λt and put Q̃i � Qti .
We begin by setting Q̃0 �U and Λ0 � 0. Now if

�
Q − Q̃i

�
T
6 ε, then we are done. Otherwise,

let Ai+1 ∈ T be such that
Tr(Ai+1Q − Ai+1Q̃i) > ε , (4.17)

and define Λt � Ai+1 for t ∈ (ti , ti+1].
Finally, observe that for t ∈ (ti , ti+1), we have

d
dt

Tr(Ai+1Q − Ai+1Qt) � d
dt

Tr (ΛtQt)
(4.11)
> −2‖Λt‖2 .

where we have used the fact that Λt � −
d
dt log

(
e log Q0−

∫ t
0 Λs ds

)
. We conclude that

Tr(Ai+1Q − Ai+1Qti+1) > Tr(Ai+1Q − Ai+1Qti ) − 2‖Λt ‖2(ti+1 − ti)
> Tr(Ai+1Q − Ai+1Qti ) − ε2
>
ε
2
,

using (4.17). Thus we either find an approximator Q̃i for some i � 0, 1, . . . , h satisfying (4.13) or
(4.16) holds. But we have already seen that the latter possibility cannot happen. Observe that the
approximators Q̃i are all of the desired form (4.12). �

Proof of Theorem 4.5. First, we apply Lemma 4.6 with Q0 �U to obtain an approximation Q̃ of the
form

Q̃ �
eλF

Tr(eλF)
with |λ| . 1 +

1
δS(Q ‖ U) and which satisfies

�
Q − Q̃

�
T
6 ε/2 . (4.18)

Note here that since T is assumed to be convex, we have F ∈ T (see the form of (4.12)).
Then we apply Corollary 4.4 to λF to obtain a degree-k polynomial pk such that


Q̃ −

pk(λF/2)2
Tr(pk(λF/2)2)

∗
6

ε

2∆(T ) , (4.19)

where
k . |λ|∆(T ) + log(∆(T )/ε)

log log(∆(T )/ε) . (1 + S(Q ‖U))∆(T )
ε

.

Thus we conclude that
[
Q −

pk(λF/2)2
Tr(pk(λF/2)2)

]

T

(4.7)
6

�
Q − Q̃

�
T
+

[
Q̃ −

pk(λF/2)2
Tr(pk(λF/2)2)

]

T

(4.6)
6

�
Q − Q̃

�
T
+ ∆(T )


pk(λF/2)2

Tr(pk(λF/2)2) − Q̃
∗

(4.18)∧(4.19)
6 ε . �
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4.2.1 Junta approximation

We record here the following application to “classical” functions by restricting Lemma 4.6 to the
diagonal case. If X is a finite set, and T is a collection of real-valued functions on X, we extend the
notation ∆(T ) � sup

1∈T
‖1‖∞. If µ is a measure on X, and f : X → �+ satisfies �µ f � 1, we abuse

notation by writing
D( f ‖ µ) � �

µ
[ f log f ] .

for the relative entropy between f µ and µ. We will also allow ourselves to conflate µ with the
corresponding density by writing µ(x) for µ({x}) and x ∈ X. One should note that an analog of
Lemma 4.6 for the special case of probability distributions (instead of density matrices) can be
proved exactly along the same lines, but without the use of matrix inequalities.

Corollary 4.7 (Sparse approximation of functions by mirror descent). For every ε > 0, the following
holds. Let X be a finite set equipped with a probability measure µ. Let T ⊆ L2(X, µ) be a compact set of
functions, and let f : X → �+ be such that �µ f � 1. If one defines h � d 8

ε2 D( f ‖ µ)∆(T )2e then there
exist functions 11 , 12 , . . . , 1h ∈ T such that

f̃ def
�

exp
(

ε
4∆(T )2

∑h
i�1 1i

)
∑

x∈X exp
(

ε
4∆(T )2

∑h
i�1 1i(x)

)
µ(x) (4.20)

so that �µ f̃ � 1, and for every 1 ∈ T ,

�
x∼µ

1(x) �
f (x) − f̃ (x)� 6 ε. (4.21)

Proof. H the Euclidean space �{0,1}n , and let {ex : x ∈ {0, 1}n} be an orthornormal basis of H. We
will represent f by the diagonal matrix M( f ) ∈ D(H) defined by

M( f ) �
∑

x∈{0,1}n

f (x)ex eT
x µ(x) .

We also lift each test 1 to a matrix M(1) � ∑
x∈{0,1}n 1(x)ex eT

x and the set M(T ) now denotes a class
of matrix tests.

Furthermore, we write
Q0 �

∑
x∈{0,1}n

ex eT
x µ(x)

so that S(M( f ) ‖ Q0) � D( f ‖ µ).
Applying Lemma 4.6 yields an approximation Q̃ to M( f ) of the form

Q̃ � Q0 ·M ,

where M is a diagonal matrix. Furthermore, by construction, the function f̃ : {0, 1}n
→ � given by

f̃ (x) � 〈ex ,Mex〉 has the form (4.20). Finally, the approximation guarantee [M( f ) − Q̃]M(T ) 6 ε is
precisely (4.21). �

We now apply the preceding corollary to prove an approximation-by-juntas theorem. An
essentially equivalent result for Boolean domains is proved in [CLRS13], but it is instructive to see
that it falls easily out of the learning framework. Fix n > 1 and a finite set X. We recall that for a
subset S ⊆ {1, . . . , n}, a function f : Xn

→ � is called an S-junta if f only depends (at most) on the
coordinates in S. In other words, for all x , x′ ∈ Xn , if x |S � x′|S then f (x) � f (x′). We say that f is a
k-junta if it is an S-junta for a set with |S| � k.
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Theorem 4.8 (Junta approximation). Let X be an arbitrary finite set, and let µ denote a probability
measure on Xn . Consider a non-negative function f : Xn

→ �+ with �µ f � 1, and let T be a collection of
k-juntas. Then for every ε > 0, there exists a non-negative k′-junta f̃ : Xn

→ �+ with �µ f̃ � 1, where

k′ .
k
ε2 D( f ‖ µ)∆(T )2 ,

and such that for every 1 ∈ T ,
�

x∼µ
1(x) �

f (x) − f̃ (x)� 6 ε . (4.22)

Proof. Applying Corollary 4.7 yields an approximation f̃ . One simply notes that from (4.20), f̃ is
an hk-junta where h . 1

ε2 D( f ‖ µ)∆(T )2 �

5 The correlation polytope

Recall the correlation polytope corrn ⊆ �
n2 given by

corrn � conv
�{xxT : x ∈ {0, 1}n}�

.

This polytope is also known as the Boolean quadric polytope [Pad89] for the following reason.

Proposition 5.1 (Restatement of Proposition 1.11). If f : {0, 1}m
→ �+ is a nonnegative quadratic

function over {0, 1}m , then for any n > m, M f
n is a submatrix of some slack matrix associated to corrn .

Proof. Let 〈A, B〉 � Tr(AT B) denote the Frobenius inner product on �n2 . Suppose that f (x) �∑
i6 j ai j xi x j + a0 > 0 for all x ∈ {0, 1}n . We claim that this gives a valid linear inequality for corrn

as follows: For all x ∈ {0, 1}n ,
f (x) � 〈A, xxT〉 + a0 > 0 ,

where A is the matrix A � (ai j). Since this inequality holds at the vertices, it holds for all of
corrn . �

We now recall the relationship between the correlation, cut, TSP, and stable set polytopes. The
first fact is from [DS90], while the second two are taken from [FMP+12].

Proposition 5.2. For every n > 1, the following hold:

1. corrn is linearly isomorphic to cutn+1.

2. There exists a number an 6 O(n2) such that some face of tspan linearly projects to corrn .

3. There exists a graph Hn on bn 6 O(n2) vertices such that some face of stabbn (Hn) linearly projects to
corrn .

5.1 Positive semidefinite rank

We will now prove a lower bound on the psd rank of corrn . Our first goal is to construct a suitable
family of pseudo-densities. We will employ Grigoriev’s work [Gri01a] on degree lower bounds
for Positivstellensatz calculus refutations. The primary difficulty will be in expressing Grigoriev’s
lower bound using a pseudo-density of small norm.
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Theorem 5.3. Fix an odd integer m > 3. There exists a degree-m pseudo-density D : {0, 1}m
→ � such

that

�
x

D(x) *
,

m∑
i�1

xi −
m
2

+
-

2

� 0 ,

and
‖D‖∞ 6 m3/2 .

Proof. Grigoriev constructs a linear functional G on the space of m-variate real polynomials modulo
the ideal I generated by {X2

i − Xi : i � 1 ∈ [m]}:
G : �[X1 , . . . ,Xm]/I → � .

His functional satisfies

G
�
p(X)2�

> 0 ∀p ∈ �[X1 , . . . ,Xm]/I , deg(p) 6 m/2 , (5.1)

and

G
*.
,

*
,

m∑
i�1

Xi −
m
2

+
-

2
+/
-
� 0 . (5.2)

The functional is uniquely defined by the values

G(XS) def
�

�m/2
|S|

�
� m
|S|

� ,

for each multilinear monomial XS �
∏

i∈S Xi with S ⊆ [m]. Observe that m/2 is not an integer and
the (generalized) binomial coefficient

�m/2
k

�
is defined using the formal expression(

r
k

)
�

r · (r − 1) · · · (r − k + 1)
k · (k − 1) · · · 1 .

It is easy to check that G satisfies (5.2):

G
*.
,

*
,

m∑
i�1

Xi −
m
2

+
-

2
+/
-
�

m∑
i�1
G(X2

i ) + 2
∑
i, j

G(XiX j) − m
m∑

i�1
G(Xi) + m2

4

�
m
2

+ m(m − 1) m − 2
4(m − 1) − m

m
2

+
m2

4
� 0 .

Grigoriev shows that G satisfies (5.1) [Gri01a, Lem. 1.4].
We will construct a pseudo-density D : {0, 1}m

→ � such that �x D(x)p(x) � G(p(X1 , . . . ,Xm))
for every multilinear polynomial p. Observe that G is invariant under permutation of variables
{X1 , . . . ,Xm}. For w � 0, 1, . . . ,m, let cw denote the unique degree m polynomial such that,

cw(t) �



1 if t � w

0 if t ∈ {0, 1, . . . ,m} \ {w}
We claim that for any univariate real polynomial p with deg(p) 6 m,

m∑
w�0

p(w) · cw(t) � p(t) . (5.3)
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Both sides of the claimed identity are univariate polynomials in t of degree at most m and agree
with each other on the m + 1 points given by t ∈ {0, 1, . . . ,m}. Hence, the two polynomials are
identically equal.

For each x ∈ {0, 1}m , let |x | denote its hamming weight, and define

D(x) def
� 2m

·
c |x | (m/2)

� m
|x |

� .

We claim that D satisfies �x D(x)p(x) � G �
p(X)� for every polynomial multilinear real poly-

nomial p. To see this, consider any monomial xS �
∏

i∈S xi with S ⊆ [m]. Put ` � |S|. Then we
have:

�
x

D(x)xS
� �

x
D(x) · 1�m

`

� *.
,

∑
T⊆[m],|T |�`

xT+/
-

(symmetry of D)

� �
x

D(x) · 1�m
`

�
(|x |
`

)
�

m∑
w�0

�m
w

�

2m �x


D(x) · 1�m

`

�
(|x |
`

)
��� |x | � w



�

m∑
w�0

cw(m/2)
�w
`

�
�m
`

�

�

�m/2
`

�
�m
`

�

� G
�
XS� (using (5.3) with p(t) �

(
t
`

)
) .

Finally, in order to bound ‖D‖∞, observe that the polynomials cw(t) are given by the interpolation
formula

cw(t) �
∏m

a�0,a,w(t − a)∏m
a�0,a,w(w − a) .

For an x ∈ {0, 1}m with |x | � w we have,

|D(x)| �
������
2m
·

cw(m/2)�m
w

�
������
�

������

∏m
a�0,a,w(m − 2a)∏m
a�0,a,w(w − a) ·

1�m
w

�
������

�

������

∏m
a�0,a,w(m − 2a)

(w − 1)!(m − w)! ·
1�m
w

�
������

� m ·
1

2m−1 ·

(
m − 1
(m−1)/2

)
·

w
|m − 2w |

6
m√

3
2 (m − 1) + 1

(m + 1
2

)
6 m3/2 ,

where in the last step we have used Stirling’s approximation for the inequality
� m−1
(m−1)/2

�
6

2m−1/
√

3
2 (m − 1) + 1, valid for m > 3. �
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Theorem 5.4. There is a constant α > 0 such that for every n > 1,

rkpsd(corrn) > 2αn2/13
.

Proof. For odd integers m > 1, define f : {0, 1}m
→ �+ by

f (x) � 1
m2

*.
,

*
,

m∑
i�1

xi −
m
2

+
-

2

−
1
4

+/
-
, (5.4)

and let M f
n :

� n
m

�
× {0, 1}n

→ �+ be given by M f
n (S, x) � f (xS) as in (1.3).

By Theorem 5.3, there exists a degree-m pseudo-density D : {0, 1}m
→ � such that

�x D(x) f (x) � −
1

4m2 and ‖D‖∞ 6 m3/2. Fix ε � 1/(4m2) and d � m and apply Theorem 3.8
to conclude that there is a constant α′ > 0 such that for n > 2m, we have

rkpsd(M f
n ) >

(
α′n

m13/2 log n

)m/4

· m−21/4
· m−1/2

Choosing n > 2
α′m

13/2 log n, an easy calculation shows that

rkpsd(M f
n ) > 2Ω(n2/13) .

By Proposition 5.1, we have rkpsd(corrn) > rkpsd(M f
n ), completing the proof. �

6 Optimality of low-degree sum-of-squares for max CSPs

Constraint satisfaction problems form a broad class of discrete optimization problems that include,
for example, max cut and max 3-sat. For simplicity of presentation, we will focus on constraint
satisfaction problems with a boolean alphabet, though similar ideas extend to larger domains (see
an analogous generalization in Section 7). We begin our presentation with a formal definition of
semidefinite programming relaxations for max-CSPs.

6.1 The SDP approximation model

In order to write an SDP relaxation for a max-CSP, one needs to linearize the objective function.
For n ∈ �, let max-Πn be the set of max-Π instances on n variables. An SDP-relaxation of size r for
max-Πn consists of the following.

Linearization: Let r be a natural number. For every = ∈ max-Πn , we associate a vector =̃ ∈ �r×r

and for every assignment x ∈ {0, 1}n , we associate a point x̃ ∈ �r×r , such that =(x) � 〈=̃, x̃〉
for all = ∈ max-Πn and all x ∈ {0, 1}n .

Feasible region: The feasible region is a closed, convex (possibly unbounded) spectrahedron
S ⊆ �r×r described as the intersection of the cone of r × r PSD matrices with an affine linear
subspace:

S � {y ∈ �r×r |Ay � b , y ∈ S+
r } ,

such that x̃ ∈ S for all assignments x ∈ {0, 1}n . Note that the spectrahedron S is independent
of the instance = of max-Πn .
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Given an instance = ∈ max-Πn , the SDP relaxation S has value

S(=) def
� max

y∈S
〈=̃, y〉 .

Since x̃ ∈ S for all assignments x ∈ {0, 1}n and 〈=̃, x̃〉 � =(x), we have S(=) > opt(=) for all
instances = ∈ max-Πn .

Low-degree sum-of-squares relaxations. We will now describe the low-degree sum-of-squares
relaxation as it applies to a max-CSP. Let Π be a max-CSP with arity k. Given an instance = of
max-Πn , we recall that we think of it as a function = : {0, 1}n

→ � given by =(x) � 1
m

∑m
i�1 Pi(x)

where {Pi}i∈[m] are the constraints in =. Define the cone Csos
d ⊆ �{0,1}n as the cone generated by

squares of polynomials of degree at most d/2, i.e.,

C
sos
d � Cone

�{12 | 1 : {0, 1}n
→ �, deg(1) 6 d/2}�

.

The degree-d sos relaxation for = is given by

sosd(=) def
� min

�
c | c − = ∈ Csos

d

	
(6.1)

We will nowwrite the dual formulation of the above semidefinite program to expose the underlying
spectrahedron and linearization. The dual of (6.1) can be written as,

sosd(=) � max
D:{0,1}n→�

〈D ,=〉 (6.2)

subject to 〈D , 1〉 � 1 ,
〈D , h〉 > 0 ∀h ∈ Csos

d .

The function D : {0, 1}n
→ � is referred to as a pseudo-density over {0, 1}n , since it satisfies that

for every degree d/2 function 1, �x D(x)12(x) > 0.
Notice that all the constraints on the pseudodensity D : {0, 1}n

→ � correspond to inner
products with functions of degree at most d. Hence, without loss of generality, we may assume
deg(D) 6 d. Alternately, the convex program (6.2) can be written succinctly in terms of the
low-degree part of D. We will now carry this out explicitly and thereby identify the feasible region
associated with the degree-d sos relaxation.

To this end, set F :� {A : A ⊆ [n], |A| 6 d/2} and let r � |F | 6 ∑d/2
i�0

�n
i

�
. Recall that S+

r ⊆ �
r×r

is the cone of r × r PSD matrices. We will index the matrices in S+
r using elements of F in the

natural way. Define a matrix Y : F × F → � as follows,

Y(A, B) �
〈
D ,

∏
i∈A∪B

xi

〉
.

By definition of Y, it is clear that Y(A, B) � Y(B,A) � Y(A ∪ B, ∅) for all A, B ∈ F . Moreover, we
have Y(∅, ∅) � 〈D , 1〉 � 1. Furthermore, the matrix Y is PSD since, for all 1̂ : F → �, we have

〈1̂ ,Y 1̂〉 �
∑

A,B∈F

1̂A 1̂BY(A, B)

�

〈
D ,

∑
A,B∈F

1̂A 1̂B

∏
i∈A∪B

xi

〉
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�

〈
D , *.

,

∑
A∈F

1̂A

∏
i∈A

xi
+/
-

2〉
using x2

i � xi ∀i ∈ [n], x ∈ {0, 1}n

> 0

where the final inequality used the fact that 〈D , 12〉 > 0 for all functions 1 with deg(1) 6 d/2.
From the above discussion, it is clear that the feasible region of the degree d-sos relaxation (6.2)

corresponds to the spectrahedron,

S
def
� {Y ∈ �r×r | Y ∈ S+

r ,Y(∅, ∅) � 1 and YA,B � YB,A � YA∪B,∅ ∀A, B ∈ F }
Now we describe the linearization associated with the degree-d sos relaxation. For every

assignment x ∈ {0, 1}n , associate the matrix x̃ : F × F → � given by

x̃(A, B) def
�

∏
i∈A∪B

xi . (6.3)

By definition, we have x̃(A, B) � x̃(B,A) � x̃(A ∪ B, ∅) and x(∅, ∅) � 1. Moreover, the matrix
x̃ is positive semidefinite since it can be written as x̃ � XXT wherein X : F → � is given by
X(A) � ∏

i∈A xi . Therefore, for each assignment x, we have x̃ ∈ S.
Finally, given an instance = ∈ max-Πn its linearization =̃ is written as follows. Fix d > 2dk/2e,

and for every subset S ⊆ [d]with |S| 6 k, define a disjoint union S � AS ∪ BS where AS contains
(up to) the dk/2e smallest elements of S, and BS contains the rest (or is empty).

Each constraint P0 in= is of the form P0(X) � P(Xi1 , . . . ,Xik ) for a predicate P : {0, 1}n
→ {0, 1}

in Π. Therefore the function = : {0, 1}n
→ � given by =(x) � 1

m
∑m

i�1 Pi(x) can be expressed as a
degree-k multilinear polynomial in x,i.e.,

=(x) �
∑

A⊆[n],|A|6k

=̂A

∏
i∈A

xi .

The linearization =̃ : F × F → � is given by,

=̃(A, B) def
�




=̂S if A � AS , B � BS

0 otherwise
(6.4)

From (6.3) and (6.4), for every instance = ∈ max-Πn and every assignment x ∈ {0, 1}n we have

〈=̃, x̃〉 �
∑

A,|A|6d/2

=̂A

∏
i∈A

xi � =(x) .

Now the degree-d sos relaxation corresponding to an instance = ∈ max-Πn in (6.1) and (6.2) can
be equivalently formulated as

sosd(=) def
� max

y∈S
〈=̃, y〉 .

(c , s)-approximations. For 0 6 s 6 c 6 1, a sequence of SDP relaxations {Sn}∞n�1 for max-Π is
said to achieve a (c , s)-approximation to max-Π if for each n ∈ � and every instance = of max-Πn

with opt(=) 6 s, we have Sn(=) 6 c. In order to study (c , s)-approximations for max-Π, we recall
(from Proposition 1.13) the set of matrices {Mn ,Π

c ,s }∞n�1 associated with it, defined as:

Mn ,Π
c ,s (=, x) � c − =(x) ,

where the first index of Mn ,Π
c ,s ranges over all instances on n variables satisfying opt(=) 6 s. A

simple consequence of Proposition 1.10 is the following.
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Proposition 6.1. There exists a sequence of SDP relaxations Sn of size rn achieving a (c , s)-approximation
to max-Πn if and only if rkpsd(Mn ,Π

c ,s ) 6 rn .

6.2 General SDPs vs. sum-of-squares

Our main theorem is that general SDP relaxations for max-CSPs are no more powerful than
low-degree sum-of-squares relaxations in the polynomial-size regime.

Theorem 6.2. Fix a positive number d ∈ �, and a k-ary CSP max-Π with d > 2dk/2e. Suppose that
the degree-d sos relaxation cannot achieve a (c , s)-approximation for max-Π. Then no sequence of SDP
relaxations of size at most o

((
n

log n

)d/4)
can achieve a (c , s)-approximation for max-Π.

Proof. Given that the degree-d sos relaxation cannot achieve a (c , s)-approximation, there exists an
instance = of max-Πm for some m such that opt(=) 6 s but degsos(c − =) > d.

By Proposition 6.1, it is sufficient to lower bound the psd rank of the matrix Mn ,Π
c ,s . Fix f � c −=

and define the matrix M f
n :

� n
m

�
× {0, 1}n

→ [0, 1] as M f
n (S, x) def

� f (xS). Since M f
n is a submatrix of

Mn ,Π
c ,s , we have rkpsd(Mn ,Π

c ,s ) > rkpsd(M f
n ). By Theorem 1.8, for some constant C > 1, we have

rkpsd(M f
n ) >

(
n

C log n

)d/4

.

This implies that no sequence of SDP relaxations of size at most o(( n
log n )d/4) can achieve a (c , s)-

approximation for max-Π. �

For a stronger quantitative bound, we require the following simple fact.

Fact 6.3. For every positive even integer d, every degree-d pseudo-density D : {0, 1}m
→ � and every

subset α ⊆ [m], |α| 6 d, we have
|�

x
D(x)χα(x)| 6 1 .

Proof. Write χα � χAχB for some A, B with |A|, |B | 6 d/2 and observe that

�
x

D(x)χα(x) � �
x

D(x)
(
1 −

(χA − χB)2
2

)
6 �

x
D(x) · 1 � 1 ,

where we used the fact that �x D(x)p(x)2 > 0 whenever deg(p) 6 d/2. Using χα �
1
2 (χA + χB)2 − 1,

we get the other direction of the inequality. �

Theorem 6.4. Fix a k-ary CSP max-Π and a monotone increasing function d : � → � such that the
following three conditions are true: d(1) > 2dk/2e, and d(n) 6 n for all n > 1, and and limn→∞ d(n) � ∞.
Fix ε > 0 and 0 < s < c 6 1. There is a constant K > 0 such that the following holds.

Suppose that for every n > 1, the degree-d(n) sos relaxation cannot achieve a (c + ε, s)-approximation for
max-Πn . Then for all n > 1, no SDP relaxation of size at most Knd(n)2/8 can achieve a (c , s)-approximation
for max-ΠN for every N > n4d(n).

Proof. Without loss of generality, we may assume that d(n) > 24 is always an even integer. Given
that the degree-d(n) sos relaxation cannot achieve a (c + ε, s)-approximation for max-Πn , there
exists an instance = of max-Πn such that opt(=) 6 s, along with a degree-d(n) pseudo-density D(x)
such that �x D(x)(c − =(x)) < −ε. The pseudo-density D(x) can be written as

D(x) �
∑

α⊆[n],|α|6d(n)
�
x
[D(x)χα(x)] · χα(x) ,
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where for each α, |�x[D(x)χα(x)]| 6 1 by Fact 6.3. Hence,

‖D‖∞ 6
d(n)∑
i�0

(
n
i

)
6 1 + nd(n) .

Fix f � c − = and define the matrix M f
N :

�N
n

�
× {0, 1}n

→ [0, 1] as M f
N(S, x)

def
� f (xS). By

Theorem 3.8 (3.11), whenever N > n4d(n), we have we have rkpsd(M f
n ) > nd(n)2/8. As MN,Π

c ,s contains
M f

N as a submatrix, the same lower bound applies to MN,Π
c ,s . This implies that no SDP relaxation of

size at most nd(n)2/4 can achieve a (c , s)-approximation for max-ΠN when N > n4d(n). �

Using known lower bounds for low degree sum-of-squares relaxations for max-CSPs [Gri01b,
Sch08, Tul09], Theorem 6.4 implies lower bounds against general SDP relaxations for a range of
specific max-CSPs. For instance, the lower bounds of Grigoriev [Gri01b] and Schoenebeck [Sch08]
imply a lower bound for max 3-sat (see Theorem 1.5).

Theorem 6.5 ([Gri01b, Sch08]). For every ε > 0, there exists a constant cε such that the following holds.
For every n > 1, there is a max-Πn instance =n such that opt(=n) 6 7/8 + ε, but soscεn(=) � 1.

Observe that one can obtain the bound of Theorem 1.5 using the preceding result as follows. In
Theorem 6.4, choose n � log N and d(n) � log N

log log N so that n4d(n)
� N . In that case, the lower bound

obtained is of the order Nd(n)/32
� NΩ(log N/ log log N).

7 Nonnegative rank

Theorem 3.8 exhibits a connection between psd rank and sos degree. There is a similar connection
between nonnegative rank and junta-degree. The results of Section 7.1 generalize those of [CLRS13],
while the method of proof is closely related. As opposed to [CLRS13], we use the learning approach
of Section 4 to approximate by juntas. In Section 7.2, we demonstrate an application to the correlation
polytope.

7.1 Nonnegative rank vs. junta degree

We recall that the nonnegative rank of a matrix M ∈ �
p×q
+ is the smallest integer r > 1 such that

there exist v1 , . . . , vp , u1 , . . . , uq ∈ �
r
+ satisfying Mi j � 〈ui , v j〉 for all i ∈ [p], j ∈ [q]. We denote the

minimal value r by rk+(M).
Junta degree and pseudo-densities. Fix a finite set X. For a nonnegative function f : Xn

→ �+,
we say that f has a nonnegative junta certificate of degree d if there exist nonnegative d-juntas
11 , 12 , . . . , 1k : Xn

→ �+ such that f �
∑k

i�1 1i (as functions on the discrete cube). The junta degree
of f , denoted degJ( f ), is the minimal d such that f has a nonnegative junta certificate of degree d.

Consider an arbitrary measure µ on Xn . A function D : Xn
→ � is called a d-local pseudo-density

(with respect to the measure µ) if �µ D � 1 and furthermore �x∼µ D(x)1(x) > 0 for all nonnegative
d-juntas 1. If a measure µ is unspecified, we always refer to the uniform measure by default. The
following characterization is immediate from the fact that the set of functions satisfying degJ( f ) 6 d
is a closed convex cone.

Lemma 7.1. For every f : Xn
→ �+ and d > 0, we have degJ( f ) > d if and only if there exists a d-local

pseudo-density such that �x D(x) f (x) < 0.
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We also define a more quantitative notion: Approximate junta degree with respect to an arbitrary
measure. Given ε > 0 and a measure µ on Xn , we define

degεJ ( f ; µ) def
� 1+max

{
d : ∃ a d-local pseudo-density D wrt µ and �

x∼µ
D(x) f (x) < −ε‖D‖∞�

µ
f
}
,

where we take the maximum to be equal to −1 if no such pseudo-density exists. (See Section 7.2
for an example where a biased measure µ is used to analyze the nonnegative rank of the lopsided
disjointness matrix.) We can now state our main theorem on nonnegative rank.

For any measure µ on X, we use µn to denote the corresponding product measure on Xn . In the
following theorem, we write ‖ f ‖1 :� �µm f .

Theorem 7.2. For any finite set X, any measure µ on X, and any ε > 0, the following holds. For any
f : Xm

→ �+ and all n > 2m,

1 + nd+1 > rk+(M f
n ) >

(
cε2n

m2(d log n + log(‖ f ‖∞/‖ f ‖1))
)d

, (7.1)

where d + 1 � degεJ ( f ; µm) and c > 0 is a universal constant.

Proof. The left-hand-side inequality of (7.1) follows from the fact that the cone of nonnegative
d-juntas is spanned by

∑d+1
i�0

�n
i

�
6 1 + nd+1 nonnegative d-juntas. We move on to right-hand

inequality.
We will use 〈·, ·〉 for the inner product on L2(Xn ; µn), i.e. 〈1 , h〉 � �µn [1h]. Consider a rank-r

nonnegative factorization

M f
n (S, x) �

r∑
i�1

λi(S)qi(x) . (7.2)

By rescaling, we may assume that �µn qi � 1 for each i ∈ [r]. Observe that, by taking expectation
on both sides with respect to µn , for any fixed S we have

r∑
i�1

λi(S) � �
x∼µn

M f
n (S, x) � �

µm
f � ‖ f ‖1 . (7.3)

Let Λτ � {i : ‖qi‖∞ 6 τ}. Note that for i < Λτ, we must have

λi(S) 6 ‖ f ‖∞
τ

∀|S| � m . (7.4)

Let D : Xm
→ � be a d-local pseudo-density witnessing degεJ ( f ; µm) > d. For S ⊆ [n] with

|S| � m, we define a function DS : Xn
→ � by DS(x) � D(xS). Note that each DS is clearly an

m-junta.
For some δ > 0 to be chosen later, for each qi with i ∈ Λτ, we apply Theorem 4.8 to obtain a

density q̃i that is a k′-junta for k′ � O(‖D‖2
∞

m
δ2 log τ), and such that for every S ⊆ [n]with |S| � m,

we have
〈DS , qi〉 > 〈DS , q̃i〉 − δ . (7.5)

Let Ji denote the set of coordinates on which qi depends, so that | Ji | 6 k′.
We now take the inner product of both sides of (7.2) with the function �|S|�m DS. On the

left-hand side, using our assumption on the pseudo-density D,

�
S
�

x∼µn
DS(x)M f

n (S, x) < −ε‖D‖∞‖ f ‖1 . (7.6)
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We break the right-hand side of (7.2) into two parts. First, using (7.4),∑
i<Λτ

�
S
�

x∼µn
DS(x)λi(S)qi(x) > − ‖ f ‖∞

τ
‖D‖∞r . (7.7)

For the second part, we use (7.5) so that for every i ∈ Λτ and |S| � m,

�
x∼µn

DS(x)qi(x) > −δ + �
x∼µn

DS(x)q̃i(x)
� −δ + �

y∈XS

y∼µm

DS(y) �
x∼µn

[q̃i(x) | xS � y]

> −δ − ‖D‖∞1{|S∩Ji |>d} ,

where in the final line we have used the facts that the function y 7→ �x∼µn [q̃i(x) | xS � y] is a
nonnegative (S ∩ Ji)-junta, and that DS : Xm

→ � is a d-local pseudo-density.
This implies that for i ∈ Λτ,

�
S
λi(S) �

x∼µn
DS(x)qi(x) > −δ�

S
λi(S) − ‖D‖∞‖λi‖∞ � (|S ∩ Ji | > d)

> −δ�
S
λi(S) − ‖D‖∞‖λi‖∞

�| Ji |
d

�� n
m−d/2

�
� n

m

�

> −δ�
S
λi(S) − ‖D‖∞‖λi‖∞ | Ji |d md

(n − m)d

> −δ�
S
λi(S) − ‖D‖∞‖ f ‖1

(k′)d(2m)d

nd
,

where in the final line we have used ‖λi‖∞ 6 ‖ f ‖1 from (7.3) and also | Ji | 6 k′ and n > 2m.
Combining this with (7.7) and (7.6), we conclude that

−ε‖D‖∞‖ f ‖1 >
r∑

i�1
�
S
λi(S) �

x∼µn
DS(x)qi(x)

> −
‖ f ‖∞
τ

‖D‖∞r − |Λτ | · ‖D‖∞‖ f ‖1
(k′)d(2m)d

nd
− δ

∑
i∈Λτ

�
S
λi(S)

> −r‖D‖∞
( ‖ f ‖∞

τ
+ ‖ f ‖1

(k′)d(2m)d

nd

)
− δ‖ f ‖1 .

Let us now set τ � 3r ‖ f ‖∞
‖ f ‖1

and δ � ε‖D‖∞/3, yielding

r >
1
3

( n
2k′m

)d
>

(
c

ε2n
m2 log τ

)d

(7.8)

for some universal constant c > 0.
Now, if r > nd , then we are done. Otherwise, (7.8) yields

r >
(

cε2n
m2(d log n + log(‖ f ‖∞/‖ f ‖1))

)d

,

completing the proof. �
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7.2 The correlation polytope and lopsided disjointness

We now illustrate a particularly simple application of our method to nonnegative rank.

Lemma7.3. There is a constant ε0 > 0 such that for all m > 3, the following holds. Define f : {0, 1}m
→ �+

by

f (x) � *
,
1 −

m∑
i�1

xi+
-

2

, (7.9)

and let µ be the measure on {0, 1} satisfying µ(0) � 1 − 2/m and µ(1) � 2/m. Then,

degε0
J ( f ; µm) > m

2
+ 1 .

Plugging this result into Theorem 7.2 yields the following.

Theorem 7.4. There is a constant c > 0 such that for every m > 3 and n > 2m, we have

rk+(M f
n ) >

(
cn

m3 log n

)m/2

.

In particular, by setting m � m(n) appropriately, Proposition 5.1 implies that rk+(corrn) >
2Ω(n1/3). One should note that this is somewhat weaker than the lower bound rk+(corrn) > 2Ω(n)
proved in [FMP+12].

Proof of Lemma 7.3. For x ∈ {0, 1}m , let |x | denote the hamming weight of x. Define the pseudo-
density D : {0, 1}m

→ �with respect to µm by

D(x) def
�




−
1

µm(0) |x | � 0
2

mµm(x) |x | � 1

0 |x | > 1

We now verify that D is a d-local pseudo-density (with respect to µm) for d �
m
2 + 1. Observe

first that
�

x∼µm
D(x) � −1 + m ·

2
m

� 1 .

Let β �
2
m

�
1 − 2

m

�m−1 denote µm(1, 0, . . . , 0). Consider a subset S ⊆ [m] and some fixed string
b ∈ {0, 1}S. Let 1b : {0, 1}m

→ {0, 1} denote the indicator of whether xS � b. If b � 0, then

�
x∼µm

D(x)1b(x) � β (m − |S|) −
(
1 − 2

m

)m
�

(
1 − 2

m

)m−1 (
1 − 2

|S| − 1
m

)
The latter quantity is nonnegative as long as |S| 6 m

2 + 1.
If |b | > 1, then �x∼µm D(x)1b(x) � 0, and if |b | � 1, then �x∼µm D(x)1b(x) > 0 since D(x) > 0 on

the support of 1b . But any nonnegative S-junta is a nonnegative combination of the functions 1b as
b ranges over {0, 1}S. We conclude that as long as d 6 m

2 + 1, D is a d-local pseudo-density.
Moreover we have

�
x∼µm

D(x) f (x) � �
x∼µm

D(x) *.
,
1 − 2

m∑
i�1

xi +

m∑
i�1

x2
i + 2

∑
i, j

xi x j
+/
-
� −1 .
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Also observe that since m > 3,

‖D‖∞ � |D(0)| �
(
1 − 2

m

)−m
6 27 .

Lastly, it is easy to see that �µm f > Ω(1). These facts together imply that for some universal
constant ε0 > 0, we have degε0

J ( f ; µm) > m/2 + 1, as desired. �

An interesting feature of the pseudodensity D is that it is supported only on x ∈ {0, 1}m with
|x | 6 1. Therefore, the lower bound on the approximate junta degree established in Lemma 7.3
applies to any function f : {0, 1}m

→ �+ that satisfies

f (x) �



1 for |x | � 0
0 for |x | � 1 .

Moreover, the lower bound on rk+(M f
n ) also applies in this general setting. To restate this

generalization of Theorem 7.4, let us interpret an element of {0, 1}n as a subset of {1, 2, . . . , n}.
Corollary 7.5 (Lopsided unique disjointness). There is a fixed constant c > 0 such that for every m > 3
and n > 2m, given a matrix M :

�[n]
m

�
× 2[n] → �+ satisfying

M(S, T) �



1 if |S ∩ T | � 1
0 if |S ∩ T | � 0 ,

we have rk+(M) >
(

cn
m3 log n

)m/2
.

In other words, the lower bound of Theorem 7.4 applies to all matrices that have a subset of
entries corresponding to the unique disjointness problem.

7.3 Unique games hardness for LPs

As an illustrative application of the relation between nonnegative rank and junta-degree (Theo-
rem 7.2), we present an LP hardness result for the Unique Games problem.11

Fix an integer q > 1. An instance = of unique games UGq consists of variables X1 , . . . ,Xn taking
values in [q] and a collection of predicates P1 , . . . , PM over these variables. Each constraint Pi is
over a pair of distinct variables {Xai ,Xbi } and is specified by a bĳection πi : [q]→ [q] as follows:

Pi(Xai ,Xbi ) def
� 1[πi(Xai ) � πi(Xbi )] .

The goal is to find an assignment that maximizes, over x ∈ [q]n , the number of satisfied constraints:

=(x) def
�

1
M

M∑
i�1

Pi(x)

Recall that opt(=) � maxx∈[q]n =(x). Let UGq
n denote the family of Unique Games instances on

n variables. The authors of [CMM09] exhibit a strong integrality gap for Sherali-Adams linear
programming relaxations of UGq

11We thank Ola Svensson for the suggestion to make this explicit.
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Theorem 7.6 ([CMM09]). Fix a number t > 1 and let q � 2t . Then for every δ > 0, there exist γ, ε > 0,
an m > 1, and an instance = ∈ UGq

m such that

opt(=) 6 1
q
+ δ ,

but degεJ (1 − δ − =) > mγ.

In fact, the authors of [CMM09] construct a lower bound for the d-round Sherali-Adams LP
relaxation (where d � mγ). But there is an equivalence between such lower bounds and the
existence of a d-local pseudo-density; we refer to [CLRS13] for a discussion. Applying Theorem 7.2
(with X � [q] and µ as the uniform measure on [q]), we obtain the following corollary.

Let Mn ,UGq

c ,s denote the matrix with entries

Mn ,UGq

c ,s (=, x) � c − =(x) ,
where = runs over all UGq

n instances with opt(=) 6 s, and all values x ∈ [q]n .

Corollary 7.7. For every t > 1, δ > 0, and d > 1, there exists a constant c > 0 such that for all n > 1,

rk+

(
Mn ,UGq

1−δ,1/q+δ

)
> cnd ,

where q � 2t .

In the language of [CLRS13] (see also Section 6 for related definitions in the SDP setting), this
shows that polynomial-size families of LP relaxations cannot achieve a (1 − δ, 1

q + δ)-approximation
for the Unique Games problem.
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