
Rounding Semidefinite Programming Hierarchies via
Global Correlation

Boaz Barak∗ Prasad Raghavendra† David Steurer‡

April 28, 2011

Abstract

We show a new way to round vector solutions of semidefinite programming (SDP)
hierarchies into integral solutions, based on a connection between these hierarchies
and the spectrum of the input graph. We demonstrate the utility of our method by
providing a new SDP-hierarchy based algorithm for constraint satisfaction problems
with 2-variable constraints (2-CSP’s).

More concretely, we show for every 2-CSP instance = a rounding algorithm for r
rounds of the Lasserre SDP hierarchy for = that obtains an integral solution that is at
most ε worse than the relaxation’s value (normalized to lie in [0, 1]), as long as

r > k · rank>θ(=)/ poly(ε) ,

where k is the alphabet size of =, θ = poly(ε/k), and rank>θ(=) denotes the number of
eigenvalues larger than θ in the normalized adjacency matrix of the constraint graph of
=.

In the case that = is a Unique Games instance, the threshold θ is only a polynomial
in ε, and is independent of the alphabet size. Also in this case, we can give a non-trivial
bound on the number of rounds for every instance. In particular our result yields an SDP-
hierarchy based algorithm that matches the performance of the recent subexponential
algorithm of Arora, Barak and Steurer (FOCS 2010) in the worst case, but runs faster on
a natural family of instances, thus further restricting the set of possible hard instances
for Khot’s Unique Games Conjecture.

Our algorithm actually requires less than the nO(r) constraints specified by the rth

level of the Lasserre hierarchy, and in some cases r rounds of our program can be
evaluated in time 2O(r) poly(n).
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1 Introduction

This paper is concerned with hierarchies of semi-definite programs (SDP’s). Semidefinite
programs are an extremely useful tool in algorithms and in particular approximation algo-
rithms (e.g., [GW95, KMS98]). SDP’s involve finding an integral (say 0/1) solution for some
optimization problem, by using convex programming to find a fractional/high-dimensional
solution and then rounding it into an integral solution. Sherali and Adams [SA90], Lovász
and Schrijver [LS91], and, later Lasserre [Las01], proposed systematic ways, known as
hierarchies, to make this convex relaxation tighter, thus ensuring that the fractional solution
is closer to an integral one. These hierarchies are parameterized by a number r, called the
level or number of rounds of the hierarchy. Given a program on n variables, optimizing
over the rth level of the hierarchy can be done in time nO(r). The gap between integral and
fractional solutions decreases with r, and reaches zero at the nth level, where the program is
guaranteed to find an optimal integral solution. The paper [Lau03] surveys and compares
the different hierarchies proposed in the literature, see also the recent survey [CT10].

These semidefinite programming hierarchies have been of some interest in recent years,
since they provide natural candidate algorithms for many computational problems. In partic-
ular, whenever the basic semidefinite or linear program provides a suboptimal approximation
factor, it makes sense to ask how many rounds of the hierarchy are required to significantly
improve upon this factor. Unfortunately, taking advantage of these hierarchies has often
been difficult, and while some algorithms (e.g., [ARV09]) can be encapsulated in, say, level
3 or 4 of some hierarchies, there have been relatively few results (e.g. [Chl07, BCC+10])
that use higher levels to obtain new algorithmic results. In fact, there has been more
success in showing that high levels of hierarchies do not help for many computational prob-
lems [ABLT06, STT07, GMPT07, RS09, KS09]. In particular for 3SAT and several other
NP-hard problems, it is known that it takes Ω(n) rounds of the strongest SDP hierarchy (i.e.,
Lasserre) to improve upon the approximation rate achieved by the basic SDP (or sometimes
even simpler algorithms) [Sch08, Tul09].

Semidefinite hierarchies are of particular interest in the case of problems related to Khot’s
Unique Games Conjecture (UGC) [Kho02]. Several works have shown that for a wide variety
of problems, the UGC implies that (unless P = NP) the basic semidefinite program cannot
be improved upon by any polynomial-time algorithm [KKMO04, MOO05, Rag08]. Thus in
particular the UGC predicts that for all these problems, it will take a super-constant (and in
fact polynomial, under widely believed assumptions) number of hierarchy rounds to improve
upon the basic SDP. Investigating this prediction, particularly for the Unique Games problem
itself and other related problems such as Max Cut, Sparsest Cut and Small-Set Expansion,
has been the focus of several works, and it is known that at least (log log n)Ω(1) rounds are
required for a non-trivial approximation [RS09, KS09] by a natural (though not strongest
possible) SDP hierarchy. However, no non-trivial upper bound was known prior to the
current work, and so it was conceivable that these lower bounds can be improved to Ω(n).

Recently, Arora, Barak and Steurer [ABS10] gave a 2npoly(ε)
-time algorithm for solving the

Unique Games and Small-Set Expansion problems (where ε is the completeness parameter,
see below). However, their algorithm did not use semidefinite programming hierarchies, and
so does not immediately imply an upper bound on the number of rounds needed.
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1.1 Our results

Our main contribution is a new method to analyze and round SDP hierarchies. We elaborate
more on our method in Section 2, but its high level description is that uses global correlations
inside the high-dimensional SDP solution, combined with the hierarchy constraints, to obtain
a better rounding of this solution into an integral one. We believe this method can be of
general utility, and in particular we use it here to give new algorithms for approximating
constraint satisfaction problem on two-variable constraints (2-CSP’s), that run faster than
the previously known algorithms for a natural family of instances. To state our results we
need the notion of a threshold rank.

Threshold rank of graphs and 2-CSPs. The τ-threshold rank of a regular graph G,
denoted rank>τ(G), is the number of eigenvalues of the normalized adjacency matrix of G
that are larger than τ.1 An instance = of a Max 2-Csp problem consists of a regular graph G=,
known as the constraint graph of = over a vertex set [n], where every edge (i, j) in the graph
is labeled with a relation Πi, j ⊆ [k] × [k] (k is known as the alphabet size of =). The value of
an assignment x ∈ [k]n to the variables of =, denoted val=(x), is equal to the probability that
(xi, x j) ∈ Πi, j where (i, j) is a random edge in G=. The objective value of = is the maximum
val=(x) over all assignments x. We say that = is c-satisfiable if =’s objective value is at least
c. We define rank>τ(=) = rank>τ(G=). Our main result is the following:

Theorem 1.1. There is a constant c such that for every ε > 0, and every Max 2-Csp instance
= with objective value v, alphabet size k the following holds: the objective value sdpopt(=)
of the r-round Lasserre hierarchy for r > k · rank>τ(=)/εc is within ε of the objective value v
of =, i.e., sdpopt(=) 6 v + ε. Moreover, there exists a polynomial time rounding scheme that
finds an assignment x satisfying val=(x) > v − ε given optimal SDP solution as input.

Results for Unique Games constraints. We say that a Max 2-Csp instance is a Unique
Games instance if all the relation Πi, j have the form that (a, b) ∈ Πi, j iff a = πi, j(b) where πi, j

is a permutation of [k]. As mentioned above, the performance of SDP hierarchy on Unique
Games instances and related problems is of particular interest. We obtain somewhat stronger
quantitative results for Unique Games instances. Also, as remarked below, our results are
“morally stronger” in this case, since it’s conceivable that the hardest instances for these types
of problems have small threshold rank. First, we show that for Unique Games instances the
threshold τ in Theorem 1.1 does not need to depend on the alphabet size. Namely, we prove

Theorem 1.2. There is an algorithm, based on rounding r rounds of the Lasserre hierarchy
and a constant c, such that for every ε > 0 and input Unique Games instance = with objective
value v, alphabet size k, satisfying rank>τ(=) 6 εcr/k, where τ = εc, the algorithm outputs
an assignment x satisfying val=(x) > v − ε.

The Unique Games Conjecture is about a specific approximation regime for Unique
Games. Given a Unique Games instance with optimal value 1 − ε, the goal is to find an
assignment with value at least 1/2.

1In this paper we only consider regular undirected graphs, although we allow non-negative weights and/or
parallel edges. Every such graph can be identified with its normalized adjacency matrix, whose (i, j)th entry
is proportional to the weight of the edge (i, j), with all row and column sums equalling one. Similarly, we
restrict our attentions to 2-CSP’s whose constraint graphs are regular. However, our definitions and results can
be appropriately generalized for non-regular graphs and 2-CSPs as well.
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We also show that in this case a sublinear (and in fact a small root) number of rounds
suffice to get such an approximation in the worst case, regardless of the instance’s threshold
rank. Moreover, we also show that such an approximation can be obtained in a number of
rounds that depends on the τ-threshold rank for τ that is close to 1 (as opposed to the small
value of τ needed for Theorems 1.1 and 1.2).

Theorem 1.3. There is an algorithm, based on rounding r rounds of the Lasserre hierarchy
and a constant c, such that for every ε > 0 and input Unique Games instance = with objective
value 1 − ε and alphabet size k, satisfying r > ck ·min{ncε1/3

, rank>1−cε(=)}, the algorithm
outputs an assignment x satisfying val=(x) > 1/2.

Examples of graphs with small threshold rank. Many interesting graph families have
small τ-threshold rank for some small constant τ. Random degree d graphs have τ-threshold
equal to 1 for any τ > c/

√
d. More generally, graphs where small subsets of vertices have

bounded edge-expansion, referred to as small-set expanders, also have small threshold
rank. For instance, if every set of size o(n) expands by at least poly(ε) in a graph G, then
rank1−ε(G) is at most npoly(ε) [ABS10]. Generalizing this result, [Ste10] showed that if in
a graph G every set of size o(n) vertices has near-perfect expansion, then it implies upper
bounds on rankτ(G) for τ close to 0.

Also, as noted in [ABS10], hypercontractive graphs (i.e., graphs whose 2 to 4 operator
norm is bounded) have at most polylogarithmic τ-threshold rank for every constant τ > 0.
For several 2-CSP’s such as Max Cut, Unique Games, Small-Set Expansion, Sparsest
Cut, the constraint graphs for the canonical “problematic instances” (i.e., integrality gap
examples [FS02, KV05, KS09, RS09]) are all hypercontractive, since they are based on
either the noisy Gaussian graph or noisy Boolean cube. In fact, it is conceivable that the
Small-Set Expansion problem is trivial on graphs with large threshold rank, in the sense that
we do not know of any example of an instance having, say, logω(1) n 0.99-threshold rank, and
objective value smaller than 1/2. (For the Unique Games and Max Cut problems it is trivial
to construct instances with large threshold rank by taking many disjoint copies of the same
instance, though it could still be the case that the hardest instances are the ones with small
threshold rank.) On the other hand, for other 2-CSPs such as Label Cover, some natural
hard instances have linear threshold-rank. For example this is the case if one considers the
natural “clause vs. variable” or “clause vs. clause” 2-CSP obtained from random instances
of 3SAT (which is not surprising given that a non-trivial approximation for random 3SAT
requires Ω(n) levels of the Lasserre hierarchy [Sch08]).

Algorithm efficiency. Our algorithm actually does not require the full power of the
Lasserre hierarchy. First, we can use the relaxed variant with approximate constraints
studied in [KS09, RS09, KPS10]. Second, in the proof of Theorem 1.3, we don’t need
to utilize the constraints on all

(
n
r

)
r-sized subsets of n variables, but rather sufficiently

many random sets suffice. As a result, we can implement our r-round algorithm in time
2O(r) poly(n).

1.2 Related works

Subspace enumeration algorithms. For Unique Games and related problems, previous
works [KT07, Kol10, ABS10] used subspace enumeration to give algorithms with similar
running time to Theorem 1.3 in the case that the threshold rank of the label extended graph
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of the instance is small. This is known to be a stronger condition on the instances than
bounding the threshold rank of the constraint graph. The only known bound on the 1 − ε
threshold rank of the label extended graph in terms of the 1 − ε threshold rank of the
constraint graph loses a factor of about nε [ABS10]. These subspace enumeration algorithms
also only applied to nearly satisfiable instances (whose objective value is close to 1), and
so did not give guarantees comparable to Theorems 1.1 and 1.2. As mentioned below in
Section 2, SDP-based algorithms have some robustness advantages over spectral techniques.
SDP hierarchies are also easily shown to yield polynomial-time approximation scheme for
2CSPs whose constraint graphs can have very high threshold rank such as bounded tree
width graphs and regular planar graphs (or more generally any hyperfinite family of graphs,
see e.g. [HKNO09] and the references therein).

Approximation schemes for (pseudo) dense CSP’s. For general 2CSP’s, several works
gave polynomial-time approximation schemes for dense and pseudo-dense instances [FK99,
ACOH+10, COCF10]. Our work generalizes these results, since pseudo-density is a stronger
condition than having a constraint graph of low threshold rank. Furthermore, for an ε-
approximation the degree of the instance needed by these works is exponential in 1

ε , while
the results of this work apply even on random graphs of degree poly(1/ε).

Analyzing SDP hierarchy. Using very different methods, Chlamtac [Chl07] and Bhaskara
et al [BCC+10] gave LP/SDP-hierarchy based algorithms for hypergraph coloring and the
densest subgraph problem respectively. As mentioned above, several works gave lower
bounds for LP/SDP hierarchies. In particular [RS09, KS09] showed that approximation such
as those achieved in Theorem 1.3 for Unique Games problem require log logΩ(1) n rounds of a
relaxed variant of the Lasserre hierarchy. This relaxed variant captures our hierarchy as well.
Schoenebeck [Sch08] proved that achieving a non-trivial approximation for 3SAT on random
instances requires Ω(n) rounds in the Lasserre hierarchy, while Tulsiani [Tul09] showed that
Lasserre lower bounds are preserved under common types of NP-hardness reductions.

In a concurrent and independent work, Guruswami and Sinop [GS11] gave results very
similar to ours. They also use the Lasserre hierarchy to get an approximation scheme with
similar performance to our Theorem 1.1 for 2-CSPs, and in fact even consider generalizations
involving additional (approximate) global linear constraints. They also get essentially the
same results for Unique Games as our Theorem 1.3. Furthermore, their rounding algorithm
is the same as ours. However, there are some differences both in results and the proof.
First, although [GS11] use a notion similar to our local-to-global correlation, they view
it differently, and interestingly relate it to the problem of column selection for low rank
approximations of matrices. Also, apart from the special case of unique constraints, they
work with the threshold rank of the label extended graph, as opposed to the constraint graph
as is the case here (however for binary alphabet these two graphs coincide). Their analysis
relies on the full power of the Lasserre hierarchy, whereas we show that a weaker hierarchy
is sufficient in the Unique Games case, and can even be done faster (i.e., exp(r) poly(n) vs
nO(r)).

2 Our techniques

We now describe, on a very high and imprecise level, the ideas behind our rounding algorithm
and its analysis. A semidefinite programming relaxation of an optimization problem yields
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a set of vectors v1, . . . , vn satisfying certain conditions and achieving some objective value
c. The goal of a rounding algorithm is to transform this set of vectors into, say, a +1/ − 1
solution, satisfying the same conditions and achieving value c′ that is close to c. At a very
high level, our main result is that if these vectors have some non-trivial global correlation,
then a good rounding can be achieved with a non-trivially small number of hierarchy rounds.
Our second observation is that in several cases, the vectors corresponding to a good SDP
solution can be shown to have significant mass inside some low-dimensional subspace, and
that implies a lower bound on their global correlation. Below we elaborate on what we mean,
using the Max Cut problem (which is a special case of Unique Games) as an illustrative
example. Our result for Max Cut is worked out in more detail in Section 4.

Rounding SDP’s using a small basis. The SDP solution for Max Cut problem consists
of a sequenceV = v1, . . . , vn of unit vectors, and the objective value is the expectation of
(1 − 〈vi, v j〉)/2 over all edges {i, j} in the input graph. Note that in the case that the vectors
v1, . . . , vn are one dimensional unit vectors (i.e., vi ∈ {±1}),V exactly corresponds to a cut in
the graph, and the objective value measures the fraction of edges cut. Now, suppose that you
could find r vectors vi1 , . . . , vir ∈ V, whom we’ll call the basis vectors, such that every other
v ∈ V has some significant projection ρ into the span of vi1 , . . . , vir . That is, if we let P be the
projection operator corresponding to this space, then for every v ∈ V , ‖Pv‖2 > ρ. It turns out
that in this case, if ρ is sufficiently close to 1 and the vector solutionV satisfied r + 2 rounds
of an appropriate SDP hierarchy, then we can round V to achieve a very good cut. The
intuition behind this is the following: the constraints of r + 2 hierarchy rounds allow us to
essentially assume without loss of generality that the vectors vi1 , . . . , vir are one-dimensional.
That is, after applying an appropriate rotation, we can think of each one of them as a vector
of the form (±1, 0, . . . , 0). Moreover, our assumption implies that every other vector in v has
a magnitude of at least ρ in its first coordinate. Now one can show that simply rounding
each vector to the sign of its first coordinate will result in a ±1 assignment to the vertices
corresponding to a good cut.

Local to global correlation. From the above discussion, our goal of rounding SDP hierar-
chies is reduced to finding a small number of basis vectors vi1 , . . . , vir such that every (or at
least most) other vector in the solutionV has very large projection into their span. But, why
should such vectors exist? We show that we can assume they exist if the original Max Cut in-
stance has small threshold rank. The latter is a condition that, as mentioned above, holds for
many natural families of instances, including the canonical “hard instances” that are known
to fool the GW algorithm— the noisy sphere and noisy Gaussian graphs [FS02, RS09].
The key concept behind our proof is the notion of local vs global correlations. It is a very
well known property of expander graphs that random edges behave similarly to pairs of
independently chosen vertices with respect to some tests. Specifically, if G is an n-vertex
expander in the sense that the normalized adjacency matrix AG’s second largest eigenvalue
is at most ε, and f is a bounded function mapping vertices to numbers, then we know that
�i, j[| f (i) − f ( j)|2] ∈ (1 ± O(ε))�i∼ j[| f (i) − f ( j)|2]), where the former expectation is over
pairs of vertices and the latter is over pairs connected by an edge. In other words, expander
graphs imply that if f is locally correlated over the edges of an expander graph, then it is
also globally correlated. In fact, this is easily shown to hold even if f maps vertices not into
numbers but into vectors— i.e., if v1, . . . , vn are unit vectors that are locally correlated over
the edges of G then they are also globally correlated. Indeed, this property of expanders has
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been used in the work of [AKK+08], who showed that the basic SDP program for Unique
Games can be successfully rounded if the input graph is an expander.

Our starting point is to observe that a somewhat similar, though much weaker condition
holds even when the graph has at most, say, r/100 eigenvalues larger than ε. In this case
it’s possible to show that,say, if (*) �i∼ j〈vi, v j〉

2 > 100
√

e, then (**) �i, j〈vi, v j〉
2 > 1/r

(see Section 6). If r is super-constant, the condition (**) does not seem a-priori useful for
obtaining a good integral solution. Indeed, the standard integrality gap example of Max
Cut is a graph with fairly small (polylogarithmic) number of large eigenvalues, but no good
integral solution. However, (**) does imply that we can find at least one vector vi1 such
that � j〈vi1 , v j〉

2 > 1/r. We can now replace each vector v ∈ V with its projection into the
orthogonal space to vi1 and continue until we either get stuck or find a basis vi1 , . . . , vir such
that (almost all) vectors v ∈ V have most of their mass in Span{vi1 , . . . , vir }, in which case
we can successfully round the solution. The only way we can get stuck is if at some point
we get that (*) is violated. Now, in the case of Max Cut, if (*) was violated initially, then
the value of the SDP would be about 1/2, which is trivial to round by just taking a random
cut. To show that we can easily round even when (*) is violated at some later point in the
process, it’s useful to switch to the distribution view of SDP hierarchies.

Distribution view of SDP’s. Another, often beneficial way to view SDP hierarchies is as
providing distribution on integral solutions (see Section 3.2). In this view, for every set
of r + 2 vertices i1, . . . , ir, ir+1, ir+2, the SDP hierarchy provides a distribution Xi1 , . . . , Xir
over ±1. Moreover, we require that distributions on overlapping sets will be consistent, and
that the for every two variables i, j the expectation E[XiX j] will equal the inner product
〈vi, v j〉 of the corresponding vectors. The challenge in rounding the SDP is that there is
not necessarily a way to sample simultaneously the random variables X1, . . . , Xn in some
consistent way. The projection of a vector v into the span of vi1 , . . . , vir turns out to capture
(an appropriate notion of) the mutual information between the variable Xi1 and the variables
Xi1 , . . . , Xir . Looked at from this viewpoint, our rounding algorithm involves choosing an
assignment from the distribution for the basis vertices, and conditioning on its value. As long
as (**) holds, we can find a random variable Xi such that conditioning on Xi will significantly
decrease the entropy of the remaining variables. When we get stuck and (*) is violated,
it means that for a typical edge i ∼ j, the random variables Xi and X j are close to being
statistically independent. This means that just sampling each Xi independently will give
approximately the same value on a typical constraint.

Threshold rank vs global correlation. Whenever the graph has small number of large
eigenvalues, the condition that local correlation implies global correlation holds. This
is useful to simulate eigenspace enumeration algorithms such as used by [KT07, Kol10,
ABS10, Ste10] since in the case of Unique Games (and other related problems), a good SDP
solution must be locally well correlated. But the notion of local to global correlation is
somewhat more general and robust than having small threshold rank. For example, adding
√

n isolated vertices to a graph will increase correspondingly the number of eigenvectors with
value 1, but will actually not change by much the local to global correlation. This captures
to a certain extent the fact that SDP-based solutions are more robust than the spectral based
algorithms. (A similar example of this phenomenon is that adding a tiny bipartite disjoint
graph to the input graph makes the smallest eigenvalue become −1, but does not change
by much the value of the Goemans-Williamson SDP.) We hope that this robustness of the
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SDP-based approach will enable further improvements in the future.

Remark 2.1. Theorem 1.3 considers a different parameter than Theorems 1.1 and 1.2. The
latter two results consider threshold ranks for a small (i.e., close to 0) threshold τ, and
achieve a very good approximation. In contrast, Theorem 1.1 considers threshold τ that is
close to 1, but only achieve a rough approximation (corresponding to the approximation
guarantee relevant to the unique games conjecture). This is also manifested in some technical
differences in the proofs.

Organization

We begin by fixing notation and a few formal definitions in the next section. For the purpose
of exposition, we first present an algorithm for Max Cut on low-rank graphs using the
Lasserre hierarchy in Section 4. Following this, the general algorithm for 2-CSPs on low-
rank graphs is presented in Section 5. The connection between local and global correlations
in low-rank graphs that is central to our algorithms, is outlined in Section 6. To implement
our general approach in a hierarchy weaker than Lasserre hierarchy, we outline an argument
to obtain low-rank approximation to any set of vectors in Section 7. The final section
(Section 8) of the paper is devoted to subexponential time algorithm for Unique Games.

3 Preliminaries

We will use capital letters X,Y to denote random variables, and lower-case letters to denote
assignments to these random variables.

For a real-valued random variable X, let Var[X] denote its variance. In this work, we
will use random variables taking values over a range [k] = {1 . . . k}. For a random variable
X over [k], and a ∈ [k], let Xa denote the indicator of the event that X = a. We define the
variance of X to be,

Var[X] def
=

∑
a∈[k]

Var[Xa] = 1 − CP(X) . (3.1)

The collision probability of X is defined as

CP(X) def
= �

XX′

{
X = X′

}
,

where X′ is an independent copy of X (so that the sequence X, X′ is i.i.d.). It is easy to see
that the variance and collision probability are related by,

CP(X) = 1 − Var[X] .

For two jointly-distributed random variables X,Y , let [X | Y = y] denote the random
variable X conditioned on the event that Y = y. If it is clear from the context, we write (X|y)
for (X|Y = y). We will denote by �{Y}Var[X|Y] the following quantity,

�
{Y}

Var[X|Y] = �
y

[
Var[(X|Y = y)]

]
.
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3.1 Unique Games

Definition 3.1. An instance of Unique Games consists of a graph G = (V, E), a label set
[k] = {1, . . . , k} and a bijection πi j : [k] → [k] for every edge (i, j) ∈ E. A labelling
` : V → [k] is said to satisfy an edge (i, j) if πi j(`(i)) = `( j). The goal is to find a labeling
` : V → [k] that satisfies the maximum number of edges namely,

maximize �
(i, j)∈E

{
πi j(`(i)) = `( j)

}
3.2 Local Distributions

Let V = [n] be a set of vertices and let [k] be a set of labels. An m-local distribution is
a distribution µT over the set of assignments [k]T of the vertices of some set T ⊆ V of
size at most m + 2. (The choice of m + 2 is immaterial but will be convenient later on.)
A collection of m-local distributions {µT }T⊆V, |T |6m+2 is consistent if for all T,T ′ ⊆ V with
|T |, |T ′| 6 m + 2, the distributions µT and µT ′ are consistent on their intersection T ∩ T ′.
We sometimes will view these distributions as random variables, hence writing X(T )

i for the
random variable over [k] that is distributed according to the label that µT∪{i} assigns to i,
and refer to a collection X1, . . . , Xn of m-local random variables. However, we stress that
these are not necessarily jointly distributed random variables, but rather for any subset of
at most m + 2 of them, one can find a sample space on which they are jointly distributed.
For succinctness, we omit the superscript for variables Xi

(S ) whenever it is clear from the
context. For example, we will use {Xi | XS } is short for the random variable obtained by
conditioning X(S∪{i})

i on the variables {X(S∪{i})
j } j∈S ;2 and use �

{
Xi = X j | XS

}
is short for the

[0, 1]-valued random variable �
{
X(S∪{i, j})

i = X(S∪{i, j})
j | X(S∪{i, j})

S

}
.

3.3 Lasserre Hierarchy

Let U be a Unique Games instance with constraint graph G = (V, E), label set [k] = {1, . . . , k},
and bisections {πi j}i j∈E . An m-round Lasserre solution consists of m-local random variables
X1, . . . , Xn and vectors vS ,α for all vertex sets S ⊆ V with |S | 6 m+2 and all local assignments
α ∈ [k]S . A Lasserre solution is feasible if the local random variables are consistent with the
vectors, in the sense that for all S ,T ⊆ V and α ∈ [k]S , β ∈ [k]T with |S ∪ T | 6 m + 2, we
have

〈vS ,α, vT,β〉 = � {XS = α, XT = β} .

The objective is to maximize the following expression

�
i j∈E
�

{
X j = πi j(Xi)

}
.

An important consequence of the existence of the vectors vS ,α is that for every set S ⊆ V
with |S | 6 m and local assignment xS ∈ [k]S , the matrix

{
Cov(Xia, X jb | XS = xS )

}
i, j∈V, a,b∈[k]

is positive semidefinite.

2Strictly speaking, the range of the random variable {Xi | XS } are random variables with range [k]. For every
possible value xS for XS , one obtains a [k]-valued random variable {Xi | XS = xS }.
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4 Warmup – MaxCut Example

For the sake of exposition, we first present an algorithm for the Max Cut problem on low-
rank graphs. In the Max Cut problem, the input consists of a graph G = (V, E) and the goal
is to find a cut S ∪ S̄ = V of the vertices that maximizes the number of edges crossing, i.e.,
maximizes |E(S , S̄ )|.

The Goemans-Williamson SDP relaxation for the problem assigns a unit vector vi for
every vertex i ∈ V , so as to maximize the average squared length Ei, j∈E‖vi − v j‖

2 of the edges.
Formally, the SDP relaxation is given by,

maximize �
i, j∈E
‖vi − v j‖

2 subject to ‖v‖2i = 1 ∀i ∈ V

Stronger SDP relaxations produced by hierarchies such as Sherali-Adams and Lasserre
hierarchy also yield probability distributions over local assignments.

More precisely, given a m-round Lasserre SDP solution, it can be associated with a
set of m-local random variables X1, . . . , Xn taking values in {−1, 1}. For an edge (i, j), its
contribution to the SDP objective value (‖vi − v j‖

2) is equal to the probability that the edge
(i, j) is cut under the distribution of local assignments µi j, namely,

�
µi j

[Xi , X j] = ‖vi − v j‖
2 .

Consequently, in order to obtain a cut with value close to the SDP objective, it is sufficient
to jointly sample X1, . . . , Xn, such that on every edge (i, j) the distribution of Xi and X j is
close to the corresponding local distribution µi j. However, the variables X1, . . . , Xn are not
jointly distributed, and hence cannot all be sampled together.

As a first attempt, let us suppose we sample each Xi independently from its associated
marginal µi. If on most edges (i, j), the distribution of the resulting samples Xi, X j is
close to µi j, then we are done. On an edge (i, j), the local distribution µi j is far from the
independent sampling distribution µi × µ j only if the random variables Xi, X j are correlated.
Henceforth, these correlations across the edges would be refered to as “local correlations".
A natural measure for correlations that we will utilize here is defined as Cov(Xi, X j) =

�[XiX j] − �[Xi]�[X j]. Using this measure, the statistical distance between independent
sampling (µi × µ j) and correlated sampling (µi j) is given by

‖µi j − µi × µ j‖1 6 |Cov(Xi, X j)| .

(See Lemma 5.1 for a more general version of the above bound).
On the flip side, the existence of correlations makes the problem of sampling X1, . . . , Xn

easier! If two variables Xi, X j are correlated, then sampling/fixing the value of Xi reduces
the uncertainty in the value of X j. More precisely, conditioning on the value of Xi reduces
the variance of X j as shown below:

�
{Xi}

Var[X j|Xi] = Var[X j] −
1

Var[Xi]

[
Cov(Xi, X j)

]2
.

Therefore, if we pick an i ∈ V at random and fix its value then the expected decrease in the
variance of all the other variables is given by,

�
i∈V,{Xi}

[
�
j∈V

Var[X j|Xi]
]
− �

j∈V
Var[X j] = �

i, j∈V
Cov(Xi, X j)2 ·

1
2

(
1

Var[Xi]
+

1
Var[X j]

)
.
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The above bound is proven in a more general setting in Lemma 5.2. As all random variables
involved have variance at most 1, we can rewrite the above expression as,

�
i∈V,{Xi}

[
�
j∈V

Var[X j|Xi]
]
− �

j∈V
Var[X j] > �

i, j∈V
|Cov(Xi, X j)|2 .

The decrease in the variance is directly related to the global correlations between random
pairs of vertices i, j ∈ V .

Recall that, the failure of independent sampling yields a lower bound on the average
local correlations on the edges namely, Ei, j∈E |Cov(Xi, X j)|. The crucial observation is that if
the graph G is a good expander in a suitable sense, then these local correlations translate in
to non-negligible global correlations. Formally, we show the following (in Section 6):

Lemma 4.1. Let v1, . . . ,vn be vectors in the unit ball. Suppose that the vectors are corre-
lated across the edges of a regular n-vertex graph G,

�
i j∼G
〈vi,v j〉 > ρ .

Then, the global correlation of the vectors is lower bounded by

�
i, j∈V
|〈vi,v j〉| > Ω(ρ)/rank>Ω(ρ)(G) .

where rank>ρ(G) is the number of eigenvalues of adjacency matrix of G that are larger than
ρ.

As random variables Xi arise from the solution to a SDP, the matrix
(
Cov(Xi, X j)

)
i, j∈V

is
positive semidefinite, i.e., there exists vectors ui such that 〈ui, u j〉 = Cov(Xi, X j) ∀i, j ∈ V .
Let us consider the vectors vi = u⊗2

i . Suppose the local correlation �i, j∈E |Cov(Xi, X j)| is at
least ε then we have,

�
i, j∈E
〈vi, v j〉 = �

i, j∈E
|Cov(Xi, X j)|2 > ε2 ,

and �i[‖vi‖
2] 6 1. If the graph G is low-rank, then by Lemma 4.1 we get a lower bound on

the global correlation of the vectors vi, namely

�
i, j∈V
|Cov(Xi, X j)|2 = �

i, j∈V
〈vi, v j〉 > Ω(ε2)/rank>ε2(G) .

Summarizing, if the independent sampling is on average ε-far from correlated sampling
over the edges, then conditioning on the value of a random vertex i ∈ V reduces the average
variance by ε2/rank>ε2(G) in expectation. The same argument can now be applied on the
variables obtained after conditioning on i. In fact, starting with an SDP solution to m-round
Lasserre hierarchy, the local distributions remain consistent and their covariance matrices
remain semidefinite as long as we condition on at most m − 2 vertices. Observe that average
variance is at most 1. Hence, after at most rank>ε2(G)/ε2 steps, the independent sampling
distribution will be within average distance ε from the correlated sampling on the edges. The
details of this argument are presented in Theorem 5.6.
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5 General 2-CSP on Low Rank Graphs

Let = be a (general) Max 2-Csp instance with variable set V = [n] and label set [k]. (We
represent = as a distribution over triples (i, j,Π), where i, j ∈ V and Π ⊆ [k] × [k] is an
arbitrary binary predicate. The goal is to find an assignment x ∈ [k]V that maximizes the
probability �(i, j,Π)∼=

{
(xi, x j) ∈ Π

}
.)

For simplicity,3 we will assume that the constraint graph of = is regular, i.e., every
variable i ∈ V appears in the same number of constraints. (Since we allow the constraints
to be weighted, the precise condition is that the total weight of the constraints incident to a
vertex is the same for every vertex.)

Let X1, . . . , Xn be r-local random variables with range [k]. We write Xia to denote
the {0, 1}-indicator of the event Xi = a. Notice that {Xia}i∈V, a∈[k] are also m-local random
variables.

For two random variables X and X′ with the same range, we denote their statistical
distance,

‖ {X} − {X′} ‖1
def
=

∑
x

∣∣∣� {X = x} − �
{
X′ = x

} ∣∣∣ .
Independent Sampling and Pairwise Correlation. The following lemma shows that the
statistical difference between independent sampling and correlated sampling is explained by
local correlation.

Lemma 5.1. For any two vertices i, j ∈ V,∥∥∥{XiX j} − {Xi}{X j}
∥∥∥

1 =
∑

(a,b)∈[k]2

∣∣∣ Cov(Xia, X jb)
∣∣∣ .

Proof. Under the distribution {XiX j}, the event {Xi = a, X j = b} has probability � XiaX jb. On
the other hand, under the product distribution {Xi}{X j}, this event has probability � Xia� X jb.
Hence, the difference of these probabilities is equal to� XiaX jb−� Xia� X jb = Cov(Xia, X jb).

�

Conditional Variance and Pairwise Correlation. The following lemma shows that con-
ditioning on a variable X j decreases the variance of a variable Xi by the correlation of the
variables Xia and X jb.

Lemma 5.2. For any two vertices i, j ∈ V,

Var Xi − �
{X j}

Var
[
Xi

∣∣∣ X j
]
> 1

k

∑
a,b∈[k]

�
{XiaX jb}

Cov(Xia, X jb)2/Var X jb

Proof. If we condition on X jb, the variance of Xia decreases by Cov(Xia, X jb)2/Var X jb

(Lemma C.2). Thus, the variance of Xi deceases by
∑

a Cov(Xia, X jb)2/Var X jb. Hence,
there exists b0 such that conditioning on X jb0 causes a variance decrement of at least
1
k
∑

a,b Cov(Xia, X jb)2/Var X jb. Since the variance is non-increasing under conditioning, the
variance of Xi decreases by at least this amount when we condition on X j. �

3If the constraint graph is not regular, all of our results still hold for an appropriate definition of threshold
rank.
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Pairwise Correlations and Inner Products. The previous paragraphs were about two
different notions of pairwise correlation. On the one hand, ‖ {XiX j} − {Xi}{X j} ‖1 and on the
other hand, Var Xi − �{X j}Var[Xi | X j]. The following lemma relates these two notions of
pairwise correlations and shows they can be approximated by inner products of vectors.

Lemma 5.3. Suppose that the matrix
(
Cov(Xia, X jb)

)
i∈V, a∈[k]

is positive semidefinite. Then,
there exists vectors v1, . . . ,vn in the unit ball such that for all vertices i, j ∈ V,

1
k2

( ∑
(a,b)∈[k]2

∣∣∣ Cov(Xia, X jb)
∣∣∣)2
6 〈vi,v j〉 6

1
k

∑
(a,b)∈[k]2

1
2 ( 1

Var Xia
+ 1

Var X jb
) Cov(Xia, X jb)2 .

Proof. Let {uia} be the collection of vectors such that 〈uia, u jb〉 = Cov(Xia, X jb). Note
that ‖uia‖

2 = Var Xia. Define vi := k−1/2 ∑
a u⊗2

ia /‖uia‖. (Here, x̄ denote the unit vector in
direction x.) The inner product of vi and v j is equal to

〈vi,v j〉 = 1
k

∑
a,b

1√
Var Xia Var X jb

Cov(Xia, X jb)2 .

Using the inequality between arithmetic mean and geometric mean, we have
(Var Xia Var X jb)−1/2 6 (1/Var Xia + 1/Var X jb)/2, which implies the desired upper bound
on the inner product 〈vi,v j〉.

On the other hand, by Cauchy–Schwartz,(∑
a,b

∣∣∣ Cov(Xia, X jb)
∣∣∣)2
6

∑
a,b

√
Var Xia Var X jb ·

∑
a,b

1√
Var Xia Var X jb

Cov(Xia, X jb) .

Since
∑

a Var Xia 6
∑

a� X2
ia = 1 , we have

∑
a
√

Var Xia 6
√

k for all vertices i ∈ V (by
Cauchy–Schwartz). Therefore,(∑

a,b

∣∣∣ Cov(Xia, X jb)
∣∣∣)2
6 k

∑
a,b

1√
Var Xia Var X jb

Cov(Xia, X jb) ,

which gives the desired lower bound on the inner product 〈vi,v j〉. It remains to argue that
the vectors v1, . . . ,vn are contained in the unit ball. Since Cov(Xia, Xib)2 6 Var Xia Var Xib,
we can upper bound ‖vi‖

2 6 k−1 ∑
a,b
√

Var Xia Var Xib 6 1 (using
∑

a
√

Var Xia 6
√

k). �

Local Correlation vs Global Correlation on Low-Rank Graphs. The following lemma
shows that local correlation (correlation across edges of a graph) implies global correla-
tion (correlation between random vertices) if the graph has low threshold rank. (Proof in
Section 6.)

Lemma (Restatement of Lemma 4.1). Let v1, . . . ,vn be vectors in the unit ball. Suppose
that the vectors are correlated across the edges of a regular n-vertex graph G,

�
i j∼G
〈vi,v j〉 > ρ .

Then, the global correlation of the vectors is lower bounded by

�
i, j∈V
|〈vi,v j〉| > Ω(ρ)/rank>Ω(ρ)(G) .

where rank>ρ(G) is the number of eigenvalues of adjacency matrix of G that are larger than
ρ.

12



Putting Things Together. The following lemma shows that either independent sampling
is statistically close to correlated sampling across edges of a graph or the typical variance of
a vertex decreases non-trivially by conditioning on a random vertex.

Lemma 5.4. Let G be a regular n-vertex graph and ε be the expected statistical distance
between independent and correlated sampling across the edges of G,

ε = �
i j∼G

∥∥∥{XiX j} − {Xi}{X j}
∥∥∥

1

Further, suppose that the matrix
(
Cov(Xia, X jb)

)
i∈V, a∈[k]

is positive semidefinite. Then, condi-
tioning on a random vertex decreases the variances by

�
i, j∈V

�
{X j}

Var
[
Xi

∣∣∣ X j
]
6 �

i∈V
Var Xi −Ω(ε2/k)/rank>Ω(ε/k)2(G) .

Proof. Let v1, . . . ,vn be the vectors constructed in Lemma 5.3. By Lemma 5.3 and
Lemma 5.1, the local correlation of these vectors is at least

�
i j∼G
〈vi,v j〉 >

1
k2 �

i j∼G

∥∥∥{XiX j} − {Xi}{X j}
∥∥∥2

1 > ε
2/k2 .

(The last step also uses Cauchy–Schwartz.) Hence, Lemma 4.1 implies the following lower
bound on the global correlation of these vectors,

�
i, j∈V
|〈vi,v j〉| > Ω(ε/k)2/rank>Ω(ε/k)2(G) .

Lemma 5.3 and Lemma 5.2 allows us to relate the expected decrement of the variances to
the global correlation of the vectors v1, . . . ,vn,

�
i, j∈V

[
Var Xi − �

{X j}
Var[Xi | X j]

]
> k · �

i, j∈V
|〈vi,v j〉| ,

which gives the desired upper bound on �i, j∈V �{X j}Var[Xi | X j]. �

The following lemma asserts that if the constraint graph has low threshold rank then there
exists a partial assignment xS to a small set S of vertices such that independent sampling
conditioned on this assignment xS gives almost the same value as correlated sampling
(without conditioning on the assignment xS ).

Algorithm 5.5 (Propagation Sampling).

Input: r-local random variables X1, . . . , Xn over [k]

Output: (global) distribution over assignments x ∈ [k]V .

1. Choose m ∈ {1, . . . , r} at random.

2. Sample a random set of “seed vertices” S ∈ Vm. (Repeated vertices are allowed.)

3. Sample a assignment xS ∈ [k]S for S according to its local distribution {XS }.

4. For every other vertex i ∈ V \ S , sample a label xi ∈ [k] according to the local
distribution for S ∪ {i} conditioned on the assignment xS for S .
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Theorem 5.6. Let X1, . . . , Xn be r-local random variables and let X′1, . . . , X
′
n be the ran-

dom variables produced by Algorithm 5.5 on input X1, . . . , Xn. Suppose that the matrices
(Cov(Xia, X jb | XS = xS ))i∈V, a∈[k] are positive semidefinite for every set S ⊆ V with |S | 6 r
and local assignment xS ∈ [k]S . Then, if r � O(k/ε4) · rankΩ(ε/k)2(G),

�
i j∼G

∥∥∥{XiX j} − {X′i X′j}
∥∥∥

1
6 ε .

Proof. Let us define εm,

εm = �
S∈Vm

�
{XS }
�

i j∼G

∥∥∥ {XiX j | XS } − {Xi | XS }{X j | XS }
∥∥∥

1 .

To prove the current theorem it is enough to show that �m∈[r] εm 6 ε. For m 6 r, define a
non-negative potential Φm as follows

Φm := �
S∈Vm

�
{XS }
�

i∈V
Var(Xi | XS ) .

Let m ∈ [r]. Suppose εm > ε/2. Then,

�
S∈Vm,{XS }

{
�

i j∼G

∥∥∥ {XiX j | XS } − {Xi | XS }{X j | XS }
∥∥∥

1 > ε/2
}
> ε/2 .

Therefore, by Lemma 5.4,

�
S∈Vm,{XS }

[
�

i∈V
Var[Xi | XS ] − �

i, j∈V
Var[Xi | XS , X j]

]
> ε/2 ·Ω(ε2/k)/rank>Ω(ε/k)2(G) .

In other words, Φm+1 6 Φm − Ω(ε3/k)/rank>Ω(ε/k)2(G). Since 1 > Φ1 > . . . > Φr > 0, it
follows that there are at most O(k/ε3) · rank>Ω(ε/k)2(G) indices m ∈ [r] such that εm > ε/2.
Therefore, if r � O(k/ε4) · rank>Ω(ε/k)2(G), we have

�
m∈[r]

εm 6 ε/2 + 1
r · O(k/ε3) · rank>Ω(ε/k)2(G) 6 ε .

Finally, by the triangle inequality,

�
i j∼G

∥∥∥{XiX j} − {X′i X′j}
∥∥∥

1

= �
i j∼G

∥∥∥∥ (
�

m∈[r]
�

S∈Vm
�
{XS }
{XiX j | XS }

)
−

(
�

m∈[r]
�

S∈Vm
�
{XS }
{Xi | XS }{X j | XS }

) ∥∥∥∥
1

6 �
i j∼G

�
m∈[r]

�
S∈Vm

�
{XS }

∥∥∥{XiX j | XS } − {Xi | XS }{X j | XS }
∥∥∥

1 = �
m∈[r]

εm 6 ε . �

The following theorem directly implies Theorem 1.1.

Theorem 5.7. Let ε > 0 and r = O(k) · rank>Ω(ε/k)2(G)/ε4. Suppose that the r-round
Lasserre value of the Max 2-Csp instance = is σ. Then, given an optimal r-round Lasserre
solution, Algorithm 5.5 (Propagation Sampling) outputs an assignment with expected value
at least σ − ε for = .

Proof. An optimal r-round Lasserre solution gives rise to r-local random variables
X1, . . . , Xn over [k]. Let Xia be the indicator variable of the event Xi = a. The matri-
ces {Cov(Xia, X jb | XS = xS )}i, j∈V, a,b∈[k] are positive semidefinite for all sets S ⊆ V with
|S | 6 r and local assignments xS ∈ [k]S . Furthermore, the Lasserre solution satisfies

�
(i, j,Π)∼=)

�
{XiX j}

{
(Xi, X j) ∈ Π

}
= σ .
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Let X′1, . . . , X
′
n be the jointly-distributed (global) random variables in Theorem 5.6. By

Theorem 5.6, we can estimate the expected value of the assignment X′1, . . . , X
′
n as

�
X′1,...,X

′
n

�
(i, j,Π)∼=

{
(X′i , X

′
j) ∈ Π

}
= �

(i, j,Π)∼=
�
{X′i X′j}

{
(X′i , X

′
j) ∈ Π

}
> �

(i, j,Π)∼=
�
{XiX j}

{
(Xi, X j) ∈ Π

}
− 1

2 �i j∼G

∥∥∥ {XiX j} − {X′i X′j}
∥∥∥

1

> σ − ε . �

5.1 Special case of Unique Games

The following lemma is a version of Lemma 5.3 tailored towards Unique Games. The
advantage of this version of the lemma is that the bounds are independent of the alphabet
size k.

Lemma 5.8. Let X1, . . . , Xn be r-local random variables over [k] and let Xia be the indicator
of the event Xi = a. Suppose that the matrix

(
Cov(Xia, X jb)

)
i∈V, a∈[k]

is positive semidefinite.
Then, there exists vectors v1, . . . ,vn in the unit ball such that for all vertices i, j ∈ V and
permutations π of [k],( ∑

a∈[k]

∣∣∣ Cov(Xia, X j π(a))
∣∣∣)4
6 〈vi,v j〉 6

∑
(a,b)∈[k]2

1
2 ( 1

Var Xia
+ 1

Var X jb
) Cov(Xia, X jb)2 .

The following theorem immediately implies Theorem 1.2. Let = be a Unique Games
instance with alphabet size k and constraint graph G.

Theorem 5.9. Let ε > 0 and r = k · rank>Ω(ε4)(G)/εO(1). Suppose that the r-round Lasserre
value of the Unique Games instance = is σ. Then, given an optimal r-round Lasserre solution,
Algorithm 5.5 (Propagation Sampling) outputs an assignment with expected value at least
σ − ε for = .

Proof Sketch. Let X1, . . . , Xn be r-local random variables over [k] from an optimal r-round
Lasserre solution for =. The local variables satisfy

�
(i, j,π)∼=)

�
{XiX j}

{
X j = π(Xi)

}
= σ .

For a permutation π of [k], we define a modified version of statistical distance,

‖ {XiX j} − {Xi}{X j} ‖π
def
=

∑
a

| �
{XiX j}

{
X j = π(Xi)

}
− �
{Xi}{X j}

{
X j = π(Xi)

}
| .

The following analog of Lemma 5.1 holds,

‖ {XiX j} − {Xi}{X j} ‖π =
∑

a

|Cov(Xia, X jπ(a))| .

Using Lemma 5.8, it is straight-forward to prove a better versions of Lemma 5.4 and
Theorem 5.6 for our modified notion of statistical distance. The conclusion is that for
r > k · rank>Ω(ε4)(G)/ε4, Algorithm 5.5 (Propagation Sampling) produces (global) random
variables X′1, . . . , X

′
n such that

�
(i, j,π∼=)

‖{XiX j} − {X′i − X′j}‖π 6 ε .
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Therefore, we can estimate the expected fraction of satisfied constraints as

�
X′1,...,X

′
n

�
(i, j,π)∼=

{
X′j = π(X′i )

}
> �

X′1,...,X
′
n

�
(i, j,π)∼=

{
X j = π(Xi)

}
− �

(i, j,π∼=)
‖{XiX j} − {X′i − X′j}‖π

> σ − ε . �

6 Local Correlation implies Global Correlation in Low-Rank
Graphs

Let G be a regular graph with vertex set V = {1, . . . , n}. We identify G with its normalized
adjacency matrix, a symmetric stochastic matrix. Let λ1 > . . . > λn ∈ [−1, 1] be the
eigenvalues of G in non-increasing order.

The following lemma shows that a violation of the local vs global correlation condition
implies that the graph has high threshold rank.

Lemma 6.1. Suppose there exist vectors v1, . . . , vn ∈ �
n such that

�
i j∼G
〈vi, v j〉 > 1 − ε , �

i, j∈V
〈vi, v j〉

2 6 1
m , �

i∈V
‖vi‖

2 = 1 .

Then for all C > 1, λ(1−1/C)m > 1 −C · ε. In particular, λm/2 > 1 − 2ε.

Proof. Let X = (xr,s)r,s∈[n] be the Gram matrix (〈vi,v j〉)i, j∈V represented in the eigenbasis
of G, so that

�
i j∼G
〈vi, v j〉 =

∑
r∈[n]

λr xr,r , �
i, j∈V
〈vi, v j〉

2 =
∑

r,s∈[n]

x2
r,s , �

i∈V
‖vi‖

2 =
∑
r∈[n]

xr,r .

Let m′ be the largest index such that λm′ > 1 − C · ε. Notice that the numbers p1 =

x1,1, . . . , pn = xn,n form a probability distribution over r ∈ [n]. Let q =
∑m′

i=1 pi be the
probability of the event r 6 m′. Using Cauchy–Schwarz, we can bound this probability in
terms of m,

q =

m′∑
r=1

pr 6 m′
n∑

r=1

p2
r 6

m′
m .

On the other hand, we can bound the expectation of λr with respect to the probability
distribution (p1, . . . ,n ) in terms of this probability q,

1 − ε 6
n∑

r=1

λr pr 6
m′∑

r=1

pr + (1 −C · ε)
m∑

r=m′+1

pr = 1 − (1 − q)C · ε 6 1 −
(
1 − m′

m

)
C · ε .

It follows that m′ > (1 − 1/C) · m, which gives the desired conclusion that G has at least
(1 − 1/C) · m eigenvalues λr > −C · ε. �

Note that Lemma 4.1 follows directly from the previous lemma by picking C =
(1−ρ/100)

(1−ρ)
and observing that �i, j∈V |〈vi,v j〉| > �i, j∈V |〈vi,v j〉|

2 since |〈vi,v j〉| 6 1 for all i, j ∈ V
As a converse to Lemma 6.1, the following lemma shows that if a graph has many

eigenvalues close to 1, then there exist vectors for the vertices of the graph with high local
correlation and low global correlation.
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Lemma 6.2. If λm > 1 − ε, then there exist vectors v1, . . . , vn ∈ �
m such that

�
i j∼G
〈vi, v j〉 > 1 − ε ,

�
i, j∈V
〈vi, v j〉

2 = 1
m ,

�
i∈V
‖vi‖

2 = 1 .

Proof. Let f (1), . . . , f (m) : V → � be orthonormal eigenfunctions of G with eigenvalue larger
than 1 − ε. Consider vectors v1, . . . , vn ∈ �

m satisfying 〈vi, v j〉 = �r∈[m] f (r)
i f (r)

j . Since the
functions f (r) have norm 1, the typical squared norm of the vectors vi satisfies

�
i∈V
‖vi‖

2 = �
r∈[m]
‖ f (r)‖2 = 1 .

Since the eigenvalues of the eigenfunctions f (r) are larger than 1 − ε, we can lower bound
the local correlation of the vectors vi,

�
i j∼G
〈vi, v j〉 = �

r∈[m]
〈 f (r),G f (r)〉 > 1 − ε .

Finally, since the function f (m) are orthonormal, the global correlation of the vectors vi is

�
i, j∈V
〈vi, v j〉

2 = �
i, j∈V

�
r,s∈[m]

f (r)
i f (r)

j f (s)
i f (s)

j = �
r,s∈[m]

〈 f (r), f (s)〉2 = 1
m . �

Remark 6.3. The condition that there exist vectors v1, . . . , vn ∈ �
n with

�
i j∼G
〈vi, v j〉 > 1 − ε ,

�
i, j∈V
〈vi, v j〉

2 6 1
m ,

�
i∈V
‖vi‖

2 = 1 .

is equivalent to the condition that there exists a symmetric positive semidefinite matrix
X ∈ �V×V such that

Tr GX > 1 − ε ,

Tr X2 6 1/m ,

Tr X = 1 .

7 On Low Rank Approximations to Sets of Vectors

Theorem 7.1. Let v1, . . . , vn ∈ �
n be vectors in the unit ball. Then for every ε > 0, there

exists a subset U ⊆ {v1, . . . , vn} with |U | 6 1/ε such that�i, j∈[n]‖wi‖ ‖w j‖ 〈w̄i, w̄ j〉
2 6 ε, where

wi is the projection of vi to the orthogonal complement of the span of U.

The proof of Theorem 7.1 is by an iterative construction. In each iteration, we will use
the following lemma.

Lemma 7.2. Let v1, . . . , vn ∈ �
n be vectors. Then, there exists a unit vector u ∈ {v̄1, . . . , v̄n}

such that the vectors v′1, . . . , v
′
n with v′i = vi − 〈vi, u〉u satisfy the following condition,

�
i∈[n]
‖v′i‖

2 6 �
i∈[n]
‖vi‖

2 − �
i, j∈[n]

‖vi‖ ‖v j‖ 〈v̄i, v̄ j〉
2 .
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Proof. Suppose we pick a random index j ∈ [n] and choose u = v̄ j. In this case, the squared
norm of the vectors v′i = vi − 〈vi, u〉u equals

‖v′i‖
2 = ‖vi‖

2 − 〈vi, u〉2 = (1 − 〈v̄i, v̄ j〉
2)‖vi‖

2 .

Hence, we can estimate the expected decrease of the typical squared norms for a random
vector u ∈ {v̄1, . . . , v̄n}.

�
i∈[n]
‖vi‖

2 − �
u
�

i∈[n]
‖v′i‖

2 = �
i, j∈[n]

(
1
2‖vi‖

2 + 1
2‖v j‖

2
)
〈v̄i, v̄ j〉

2

> �
i, j∈[n]

‖vi‖ ‖v j‖ 〈v̄i, v̄ j〉
2

It follows that there exists a unit vector u ∈ {v̄1, . . . , v̄n} such that the vectors v′i = vi − 〈vi, u〉u
have the desired property

�
i∈[n]
‖v′i‖

2 6 �
i∈[n]
‖vi‖

2 − �
i, j∈[n]

‖vi‖ ‖v j‖ 〈v̄i, v̄ j〉
2 . �

Proof of Theorem 7.1. We can construct the set U in a greedy fashion so as to minimize
the total squared norm of the vectors w1, . . . , wn (the projections of the vectors vi to the
orthogonal complement of the span of U). (In fact, we could choose set U randomly.) To
make the analysis more convenient, we use the following, slightly different construction.

1. Let v(1)
i = vi for all i ∈ [n].

2. For t from 1 to 1/ε, construct vectors u(t) ∈ �n and v(t+1)
1 , . . . , v(t+1)

n ∈ �n as follows:

(a) Using Lemma 7.2, pick a unit vector u(t) ∈ {v̄(t)
1 , . . . , v̄

(t)
n } such that the vectors

v(t+1)
i = v(t)

i − 〈v
(t)
i , u

(t)〉u(t) satisfy the condition

�
i∈[n]
‖v(t+1)

i ‖2 6 �
i∈[n]
‖v(t)

i ‖
2 − �

i, j∈[n]
‖v(t)

i ‖ ‖v
(t)
j ‖ 〈v

(t)
i , v

(t)
j 〉

2 .

Notice that the vectors v(t)
1 , . . . , v

(t)
n are the projections of the vector v1, . . . , vn into the orthog-

onal complement of the span of the vectors u(1), . . . , u(t−1). Let U be the set of all indices j
such that u(t) = v̄(t)

j for some t ∈ {1, . . . , 1/ε}. We can verify that the vectors u(1), . . . , u(1/ε)

are an orthonormal basis of the span of U. Let w1, . . . , wn be the projections of the vectors
v1, . . . , vn into the orthogonal complement of the span of U (so that wi = v(1/ε)

i ). Since the
vectors w1, . . . , wn are projections of the vectors v(t)

1 , . . . , v
(t)
n for all t ∈ 1, . . . , 1/ε, it follows

that
�

i, j∈[n]
‖wi‖ ‖w j‖ 〈w̄i, w̄ j〉

2 6 �
i, j∈[n]

‖v(t)
i ‖ ‖v

(t)
j ‖ 〈v

(t)
i , v

(t)
j 〉

2 .

Hence, we can bound the typical squared norm of the vectors wi,

�
i∈[n]
‖wi‖

2 6 �
i∈[n]
‖vi‖

2 − 1
ε �i, j∈[n]

‖wi‖ ‖w j‖ 〈w̄i, w̄ j〉
2 .

Since the left-hand side is nonnegative and �i∈[n]‖vi‖
2 6 1, it follows that

�i, j∈[n]‖wi‖ ‖w j‖ 〈w̄i, w̄ j〉
2 6 ε , as desired. �

For our applications it will sometimes be convenient to associate different subspace
with subsets U of vectors (in Theorem 7.1, we associate the span of vectors in U with the
subset U).
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Theorem 7.3. Let v1, . . . , vn ∈ �
n be vectors in the unit ball. For every subset U ⊆

V, let QU be the projector on some subspace orthogonal to the span of U. (Note that
QU is not necessarily the projector on the orthogonal complement of the span of U.)
Then for every ε > 0, there exists a subset U ⊆ {v1, . . . , vn} with |U | 6 1/ε such that
�i, j∈[n]‖wi‖ ‖w j‖ 〈w̄i, w̄ j〉

2 6 ε, where wi = QUvi.

Proof. We use the same construction as in the proof of Theorem 7.1. The only difference is
that we define v(t+1)

i = PU(t)vi (instead of v(t+1)
i = v(t)

i − 〈v
(t)
i , u

(t)〉u(t)). Here, U(t) is the set of
all indices j such that u(t′) = v̄(t′)

j for some t′ 6 t. The proof is still applies to this modifies

construction because ‖v(t+1)
i ‖ 6 ‖v(t)

i − 〈v
(t)
i , u

(t)〉u(t)‖ (which is the only fact used about these
vectors). �

8 Rounding SDP Solutions to Unique Games

In this section, we will present a subexponential time algorithm for Unique Games based on
a SDP hierarchy, namely the simple SDP augmented with Sherali-Adams hierarchy. This
hierarchy of relaxations weaker than the Lasserre hierarchy was studied in some earlier works
[RS09, KS09]. Roughly speaking, the mth round relaxation in this hierarchy corresponds
to the basic semidefinite program, along with all valid constraints on at most m vectors.
Formally, the variables in the mth round relaxation for Unique Games consists of

– A collection of “local distributions” {µT }T⊆V, |T |6m. Each distribution µT is over local
assignments xT ∈ [k]T .

– A set of vectors V = {via}i ∈ V, a ∈ [k] with k orthogonal vectors for every vertex
i ∈ V .

The constraint of the SDP relaxation ensure that the inner products of the vectors are
consistent with the corresponding local distributions, i.e., for all S ⊆ V , |S | 6 m i, j ∈ S and
a, b ∈ [k],

�
µS

[
Xi = a ∧ X j = b

]
= 〈via, v jb〉 .

The objective value of the SDP corresponds to minimizing the number of violated constraints,

Minimize Ei, j∈E

∑
a∈[k]

‖via − v jπi j(a)‖
2

 .
8.1 Propagation Rounding

Let {µT }T⊆V, |T |6m be a set of consistent local distributions over assignments. For a subset of
vertices S , the distribution µ|S over global assignments is sampled as follows:

1. Sample a assignment xS ∈ [k]S for S according to its local distribution µS .

2. For every other vertex i ∈ V \ S , sample a label xi ∈ [k] according to the local
distribution for S ∪ {i} conditioned on the assignment xS for S .
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The above procedure will be referred to as propagation rounding and the set S of vertices
will be called the seed vertices.

The following lemma implies that if the seed vertices S nearly determine the values of a
set of vertices T , then the assignment output by the propagation rounding has a distribution
similar to the local distribution µT that is part of the LP/SDP solution (hence gets close to
the SDP value).

Lemma 8.1. For a set S ⊆ V |S | = m − t, let µ|S denote the distribution over global
assignments x ∈ [k]V output by propagation rounding with S as the seed vertex set. Then,
for every subset T with |T | 6 t we have∥∥∥∥ µT − µ

|S
T

∥∥∥∥ 6∑
t∈T

Var[Xt|XS ] .

Proof. Consider the following experiment,

1. Sample a assignment xS ∈ [k]S for S according to its local distribution µS ,

xS ∼ µS .

2. Sample an assignment yT ∈ [k]T according to the local distribution for S ∪ T condi-
tioned on the assignment xS for S ,

yT ∼ µS∪T | xS .

3. For every vertex t ∈ T , sample a label xt ∈ [k] according to the local distribution for
S ∪ {t} conditioned on the assignment xS for S ,

xt ∼ µS ,t | xS .

Clearly the distribution of yT is µT , while the distribution of xT is µ|ST . For any t ∈ T , the
coordinates xt and yt are independent samples from µS ,t | xS . Therefore we have,

�[xt , yt|xS ] = 1 − CP({xt|xS }) = Var [(Xt|xS )] .

By a union bound we get,

�[xT , yT |xS ] =
∑
t∈T

Var [(Xt|xS )] .

Averaging over the different choices of xS ,

�[xT , yT ] = �
xS

∑
t∈T

Var [(Xt|xS )]

 =
∑
t∈T

Var [Xt|XS ] .

Therefore, the statistical distance between the distributions µT and µ|ST associated with yT

and xT is atmost
∑

t∈T Var [Xt|XS ]. �
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8.2 Unique Games on Low Rank Graphs

Let G be an instance of unique games whose constraint graph G has low threshold rank. Let
V = {via}i∈V,a6[k] be an SDP solution for G, and let {µS }S⊆V,|S |6m denote the associated set
of locla distributions. Let X1, . . . , Xn denote the associated m-local random variables. The
main result of this section shows that there exists a small set of seed vertices fixing whose
value determines the value of almost every other vertex. Formally, we show the following

Lemma 8.2. For every integer m, there exists a subset of vertices S ⊆ V of size |S | = k2m
such that

�
i

[Var[Xi|XS ]] 6 O
(
η

λm

)
To this end, we will relate conditioning a random variable Xi on a set XS , to projecting

the SDP vectors corresponding to the variable Xi in to the span of the vectors corresponding
to XS . This analogy is formalized in the following lemma.

Lemma 8.3. Let X1, X2, . . . , Xr be random variables with range [k] with a joint distribution
µ associated with them. For each i ∈ [r], a ∈ [k], let Xia be the indicator of the event that
Xi = a. Let us suppose there exists vectors {via}i∈[r],a∈[k] such that

〈via, v jb〉 = �
XiX j

{
Xi = a, X j = b

}
= �[XiaX jb] .

Then, for every subset S ⊆ [r] we have (1) Var [Xia|XS ] 6 ‖PS via‖
2 . and (2) Var [Xi|XS ] 6∑

a∈[k]‖PS via‖
2 . where PS is the projector of �n in to the space orthogonal to the span of

{v jb} j∈S ,b∈[k].

Proof. Let us suppose via =
∑

j∈S ,b∈[k] c jbv jb + PS via. Define a random variable CS as
follows,

CS
def
=

∑
j∈S ,b∈[k]

c jbX jb.

Note that on fixing the values {X j} j∈S , the random variable CS is fixed.
By the definition of variance of a real random variable we have the following inequality.

Var [(Xia|xS )] = min
C
�[(Xia −C)2|xS ] 6 �

Xia |xS
[(Xia −CS )2|xS ] .

Averaging the above inequality over the settings of xS , we get

Var[Xia|XS ] = �
xS

Var({Xia|xS }) 6 �
xS
�

Xia |xS
[(Xia −CS )2|xS ] = �

µ

(Xia −
∑

j∈S ,b∈[k]

c jbX jb)2

 .
(8.1)

Note that the second moments of the random variables {Xia}i∈[r],a∈[k] match with the corre-
sponding inner products of vectors {via}i∈[r],a∈[k]. Hence,

�
µ

(Xia −
∑

j∈S ,b∈[k]

c jbX jb)2

 = ‖via −
∑

j∈S ,b∈[k]

c jbv jb‖
2 = ‖PS via‖

2 . (8.2)

The claim (1) follows from (8.1) and (8.2).
The claim (2) follows from (1) and the definition of variance of a random variable taking

values over [k]. �
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Proof of Lemma 8.2. For a subset T ⊆ V = {via}i∈V,a∈[k], let S T be the set of vertices
associated with it namely,

S T = {i ∈ V | ∃b ∈ [k], vib ∈ T } ,

Let QT denote the projector on to the subspace orthogonal to span of {via|i ∈ S T , a ∈ [k]}. In
particular, QT is a projector on to a subspace orthogonal to T for all T ⊆ V.

Apply Theorem 7.3 on the set of vectorsV = {via}i∈V,a∈[k] with the projectors QT for a
subset T ⊆ V. Theorem 7.3 implies that there exists a choice of T ⊆ V of size |T | = k2m
such that if uia = QT via then,

�
i, j,a,b
‖uia‖ ‖u jb‖ 〈ūia, ū jb〉

2 6
1

k2m
(8.3)

Let S T ⊆ V be the vertex set associated with the set of vectors T . We will drop the subscript
and refer to this set as S . Let PS denote the projector in to the space orthogonal to the span
of vectors {via}i∈S ,a∈[k].

Let us fix some notation: uia
def
= PS via , ũia

def
= ‖uia‖ū⊗2

ia ⊗ v̄ia. As for each i ∈ V , the
vectors {via}a∈[k] are orthogonal to each other, the set of vectors {ũia}a∈[k] are orthogonal to

each other too. For each vertex i ∈ V , we can associate a vector Ui defined as Ui
def
=

∑
a∈[k] ũia.

From (8.3), we get the following bound on the average correlation of vectors {ũia}i∈V,a∈[k],

�
i, j,a,b
〈ũia, ũ jb〉 6 �

i, j,a,b
‖uia‖ ‖u jb‖ 〈ūia, ū jb〉

2 6
1

k2m
(8.4)

Using the low global correlation between vectors {ũia}i∈V,a∈[k] ((8.3)), we bound the global
correlation between the vectors {Ui}i∈V as shown below,

�
i, j∈V

[
〈Ui,U j〉

]
= �

i, j∈V

∑
a,b∈[k]

〈ũia, ũ jb〉 = k2
�

i, j∈V,a,b∈[k]
〈ũia, ũ jb〉 6

1
m
.

From Lemma 8.5, the low global correlation of vectors {Ui}i∈V implies that their squared
length is small, i.e.,

�
i∈V

[
‖Ui‖

2
]
6 O

(
η

λm

)
.

Notice that
‖Ui‖

2 =
∑
a∈[k]

‖ũia‖
2 =

∑
a∈[k]

‖Psvia‖
2 .

By Lemma 8.3, this implies that

�
i∈V

Var[Xi|XS ] 6 O
(
η

λm

)
.

�

Lemma 8.4 (High Local Correlation). IfV is an SDP solution to unique games with value
1 − η, i.e.,

�
(i, j)∈E

∑
a∈[k]

‖via − v jπi j(a)‖
2 6 η ,

then
�

(i, j)∈E
‖Ui − U j‖

2 6 3η .
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We defer the proof to Appendix B.

Lemma 8.5 (Local Correlation −→ Global Correlation). If the vectors {Ui}i∈V satisfy,

�
i

[
‖Ui‖

2
]
>

4η
λm

,

then the average correlation among the vectors {Ui}i∈V is at least 1/m, i.e.,

�
i, j∈V
〈Ui,U j〉 >

1
m
.

Proof. By Lemma 8.4, the vectors {Ui} satisfy

�
(i, j)∈E

‖Ui − U j‖
2 6 3η .

This implies that,

�
(i, j)∈E

〈Ui,U j〉 > �
i
‖Ui‖

2 −
3
2
η .

Let �i‖Ui‖
2 = C > 4η/λm. Normalize the vectors Ui so as to make their average squared

length equal to 1. The resulting vectors have correlation at least (1 − η/C) > 1 − λm/2. By
Lemma 6.1, this implies that �i, j∈V〈Ui,U j〉

2 > 1
m . Since ‖Ui‖ 6 1 for all i ∈ V , we get

�
i, j∈V
〈Ui,U j〉 > �

i, j∈V
〈Ui,U j〉 >

1
m
.

�

8.3 Wrapping Up

Our main result about Unique Games (Theorem 1.3) is a direct consequence of Theorem 8.6
and Theorem 8.7 presented here.

Theorem 8.6. For every positive integer m, there exists an algorithm running in time nO(mk2)

that given a unique games instance Γ over alphabet [k] with value 1 − η, finds a labelling
satisfying 1 − O( η

λm
) fraction of the edges. Here λm is the mth smallest eigen value of the

Laplacian of the constraint graph Γ.

Proof. The algorithm proceeds by solving the k2m + 2-round Lasserre SDP for the given
instance. Starting with the SDP solution, the algorithm runs the propagation rounding
algorithm starting from every possible seed set S of size |S | = k2m.

By Lemma 8.2, there exists one such set S for which we have,

�
i

[Var[Xi|XS ]] 6 O
(
η

λm

)
. (8.5)

Let µ|S denote the distribution over global assignments output by the propagation round-
ing scheme. For an edge (i, j), let µi j denote the local distribution over [k]2 suggested by the
SDP solution. From Lemma 8.1, the statistical distance between µi j and µ|Si j is at most

‖µ|Si j − µi j‖1 6 Var[Xi|XS ] + Var[X j|XS ] .
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Hence for every edge (i, j),

�
µ|Si j

[xi = πi j(x j)] > �
µi j

[xi = πi j(x j)] − Var[Xi|XS ] − Var[X j|XS ] .

Averaging over all the edges we see that,

�
i, j∈E
�
µ|Si j

[xi = πi j(x j)] > �
i, j∈E

[
�
µi j

[xi = πi j(x j)]
]
− �

i, j∈E
Var[Xi|XS ] − �

i, j∈E
Var[X j|XS ]

> �
i, j∈E

[
�
µi j

[xi = πi j(x j)]
]
− 2 �

i∈V
Var[Xi|XS ]

> Val(V) − 2 �
i∈V

Var[Xi|XS ]

where Val(V) is the SDP objective value of the solutionV. Along with (8.5), this implies
that the algorithm on the choice of the appropriate seed set S would find a solution with
value at least 1 − η − O( η

λm
). �

Theorem 8.7. There exists an algorithm that given a Unique Games instance Γ with vertex
set [n], label set [k], and optimal value 1 − ε, finds an assignment with value at least 1/2 by
rounding an k2 · nO(ε1/3)-round Lasserre solution.

Proof sketch. The proof follows by combining our propagation rounding and the decom-
position theorem of [ABS10]. The latter result allows us to partition the input graph into
disjoint components each with 1 − cε rank at most nO(ε1/3) by removing at most 0.01 fraction
of the edges in our input graph. An SDP solution for the input graph induces a solution for
each of the components, and hence we can round the solution for each component separately
using propagation rounding. �

Conclusions

We have shown that nO(ε1/3) rounds of an SDP hierarchy suffice for solving the Unique Games
problem on (1 − ε)-satisfiable instances. The best lower bound known for the hierarchy we
used is log logΩ(1) n [RS09, KS09], and so a natural question, with obvious relevance to the
unique games conjecture, is which bound is closer to the truth. The fact that our algorithm’s
running time for r rounds is only 2O(r) (as opposed to nO(r)), challenges the interpretation of
lower bounds in the range [ω(1), (log n)] as corresponding to super-polynomial running time,
and so provides further motivation to the question of whether the current hierarchy lower
bounds can be improved further.

With the exception of the Small-Set Expansion problem, we do not know how to translate
algorithms for Unique Games into other computational problems. We hope that our ideas will
help in combining the [ABS10] subexponential algorithm for Unique Games with SDP-based
method to make progress on other Unique Games-hard computational problems. Indeed,
Arora and Ge (personal communication) recently used the ideas of this work to obtain
improved algorithms for 3-coloring on some interesting families of instances. A concrete
open question along similar lines is whether one can get an algorithm for the Max Cut
problem with approximation factor ε better than the factor of the Goemans-Williamson
algorithm that runs in time exp(npoly(ε)).

For general 2-CSPs, we know that some instances will require a large number of hierarchy
rounds, but it’s interesting to see whether there is any clean characterization of the instances
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on which SDP hierarchies do well, encompassing, say, both low threshold rank graphs and
planar graphs. Another interesting question is to find the right generalization of the low
threshold rank condition to k-CSPs for k > 2.
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A Faster Algorithms for SDP hierarchies

In this section, we argue that our rounding algorithm also works with weaker SDP hierarchies.
We will show that for these weaker hierarchies, a near-optimal m-round solution can be
computed in time 2O(r) poly(n). Due to the equivalence of optimization and separation, it is
enough to describe a separation oracle with running time 2O(r) poly(n). Given a collection of
vectors {via}, the separation oracle either has to output a good assignment or it has to output
a valid linear constraint violated by the inner products of the input vectors.

We argue that such a separation oracle can easily be extracted from our rounding
algorithm. Our rounding algorithm for Unique Games first selects a set S of roughly m
vertices, then samples an assignment xS for these vertices, and finally samples labels xi for
the remaining vertices from the local distributions conditioned on the event xS . The selection
of the set S depends only on the SDP vectors {via} but not on the local distributions (which
are not known to the separation oracle).

Hence, given vectors {via}, our separation oracle can simply work as follows:

1. Select a vertex subset using Theorem 7.1 based on the given vectors {via}.

2. Using linear programming, find local distributions that are as consistent as possible
with the inner products of the vectors {via}. If these local distributions match the inner
products sufficiently closely, then our propagation rounding algorithm will succeed.
On the other hand, if the local distributions do not match the inner products closely
enough, then we can find a valid linear constraints that is violated by the inner product
of the given vectors. (This separating linear constraint can be obtained from the dual
solution of the linear program that was used to find the best local distributions.)
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B Omitted proofs from Section 5 and Section 8

This appendix contains the proofs for some omitted proofs.

Lemma B.1 (High Local Correlation). (Lemma 8.4 restated) If V is an SDP solution to
unique games with value 1 − η, i.e.,

�
(i, j)∈E

∑
a∈[k]

‖via − v jπi j(a)‖
2 6 η ,

then
�

(i, j)∈E
‖Ui − U j‖

2 6 3η , (B.1)

Proof. Observe that the vectors uia are projections of via and projections shrinks distances,
which implies that the {uia} vectors are correlated across constraints of the Unique Games
instance,

�
(i, j)∈E

∑
a∈[k]

‖uia − u jπi j(a)‖
2 6 �

(i, j)∈E

∑
a∈[k]

‖via − v jπi j(a)‖
2 6 η . (B.2)

Let ũia = ‖uia‖ū⊗2
ia ⊗ v̄ia. Notice that 〈ũia, ũib〉 = 0 for distinct labels a, b ∈ [k]. We claim that

the ũia vectors are also correlated across constraints of the Unique Games instance,

Claim B.2.
�

(i, j)∈E

∑
a∈[k]

‖ũia − ũ jπi j(a)‖
2 6 3η (B.3)

Proof. The following identity relates the distance of vectors to differences in their norms
and the distance of the corresponding unit vectors, ‖x− y‖2 = (‖x‖ − ‖y‖)2 + ‖x‖ ‖y‖ ‖x̄− ȳ‖2 .
Since ‖ũia‖ = ‖uia‖, we get

‖ũia − ũ jπi j(a)‖
2 =

(
‖uia‖ − ‖u jπi j(a)‖

)2
+ ‖uia‖ ‖u jπi j(a)‖

∥∥∥∥ū⊗2
ia ⊗ v̄ia − ū⊗2

jπi j(a) ⊗ v̄ jπi j(a)

∥∥∥∥2

Since ‖x̄1 ⊗ x̄2 − ȳ1 ⊗ ȳ2‖
2 6 ‖x̄1 − ȳ1‖

2 + ‖x̄2 − ȳ2‖
2, we can further upper bound

‖ũia − ũ jπi j(a)‖
2 6

(
‖uia‖ − ‖u jπi j(a)‖

)2
+ ‖uia‖ ‖u jπi j(a)‖

(
2
∥∥∥ūia − ū jπi j(a)

∥∥∥2
+

∥∥∥v̄ia − v̄ jπi j(a)
∥∥∥2

)
6 2‖uia − u jπi j(a)‖

2 + ‖via − v jπi j(a)‖
2 .

(In the last step, we again used the identity ‖x − y‖2 = (‖x‖ − ‖y‖)2 + ‖x‖ ‖y‖ ‖x̄ − ȳ‖2 . and
the fact that ‖uia‖ ‖u jπi j(a)‖ 6 ‖via‖ ‖v jπi j(a)‖.) By averaging over the label set and the edges of
the graph, it follows as claimed that

�
i j∈E

∑
a∈[k]

‖ũia − ũ jπi j(a)‖
2 6 3η . �

To finish the proof of the lemma, we relate the distances ‖Ui − U j‖
2 across an edge

i j ∈ E to distances of the vectors {ũia} across the constraint πi j,

〈Ui,U j〉 =
∑
a,b

〈ũia, ũ jb〉

>
∑

a

〈ũia, ũ jπi j(a)〉 (using non-negativity of involved inner products)
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=
∑

a

1
2

(
‖ũia‖

2 + ‖ũ jπi j(a)‖
2 − ‖ũia − ũ jπi j(a)‖

2
)

= 1
2‖Ui‖

2 + 1
2‖U j‖

2 −
∑

a

1
2‖ũia − ũ jπi j(a)‖

2 .

Rearranging gives ‖Ui − U j‖
2 6

∑
a‖ũia − ũ jπi j(a)‖

2. Hence, using Claim B.2,

�
i j∈E
‖Ui − U j‖

2 6 �
i j∈E

∑
a

‖ũia − ũ jπi j(a)‖
2 6 3η.

�

Lemma (Restatement of Lemma 5.8). Let X1, . . . , Xn be r-local random variables over
[k] and let Xia be the indicator of the event Xi = a. Suppose that the matrix(
Cov(Xia, X jb)

)
i∈V, a∈[k]

is positive semidefinite. Then, there exists vectors v1, . . . ,vn in the
unit ball such that for all vertices i, j ∈ V and permutations π of [k],( ∑

a∈[k]

∣∣∣ Cov(Xia, X j π(a))
∣∣∣)4
6 〈vi,v j〉 6

∑
(a,b)∈[k]2

1
2 ( 1

Var Xia
+ 1

Var X jb
) Cov(Xia, X jb)2 .

Proof. Let {uia} be the collection of vectors such that 〈uia, u jb〉 = Cov(Xia, X jb). Note that
‖uia‖

2 = Var Xia. Let via = uia + � Xia v∅, where v∅ is a unit vector orthogonal to all vectors
uia. Define vi =

∑
a‖uia‖ū⊗2

ia ⊗ v̄
⊗2
ia . (Here, x̄ denotes the unit vector in direction x.) Let us

first lower bound the inner product of vi and v j,( ∑
a∈[k]

∣∣∣ Cov(Xia, X j π(a))
∣∣∣)4

=
(∑

a

‖uia‖‖u j π(a)‖|〈ūia, ū j π(a)〉|
)4

=

∑
a

‖uia‖ ‖u j π(a)‖ · |〈ūia, ū j π(a)〉|

√
‖uia‖ ‖u j π(a)‖

‖via‖ ‖v j π(a)‖
·

√
‖via‖ ‖v j π(a)‖

‖uia‖ ‖u j π(a)‖

4

6

∑
a

‖uia‖ ‖u j π(a)‖ · 〈ūia, ū j π(a)〉
2 ‖uia‖ ‖u j π(a)‖

‖via‖ ‖v j π(a)‖

2

·

∑
a

‖uia‖ ‖u j π(a)‖ ·
‖via‖ ‖v j π(a)‖

‖uia‖ ‖u j π(a)‖

2

(using Cauchy–Schwarz)

6

∑
a

‖uia‖ ‖u j π(a)‖ · |〈ūia, ū j π(a)〉〈v̄ia, v̄ j π(a)〉|

2

(using 〈via, v j π(a)〉 > 〈uia, u j π(a)〉 and
∑

a‖via‖ ‖v j π(a)‖ 6 1)

6
∑

a

‖uia‖ ‖u j π(a)‖ · 〈ūia, ū j π(a)〉
2〈v̄ia, v̄ j π(a)〉

2

(using Cauchy–Schwarz and
∑

a

‖uia‖ ‖u j π(a)‖ 6 1)

6 〈vi,v j〉 .

On the other hand, we can upper bound the inner product of vi and v j,

〈vi,v j〉 =
∑
a,b

‖uia‖ ‖u jb‖ · 〈ūia, ū jb〉
2〈v̄ia, v̄ jb〉

2
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6
∑
a,b

1
2 (‖uia‖

2 + ‖u jb‖
2) · 〈ūia, ū jb〉

2

=
∑
a,b

1
2 ( 1

Var Xia
+ 1

Var X jb
) Cov(Xia, X jb) .

Finally, the vectors v1 . . . ,vn are in the unit ball,

‖vi‖
2 =

∑
a,b

‖uia‖ ‖uib‖ · 〈ūia, ūib〉
2〈v̄ia, v̄ib〉

2 =
∑

a

‖uia‖
2 6 1 .

Here, we are using the fact that 〈via, vib〉 = 0 for all distinct a, b ∈ [k]. �

C Facts about Variance

Lemma C.1. Let X and Y be jointly-distributed random variables. Assume that Y has finite
range.Let Z be the orthogonal projection of the random variable X onto the subspace of
functions of the random variable Y. Then,

�
{Y}

Var [X | Y] = � X2 − �Z2 .

Proof. By construction Z is a function f (Y) of the random variable Y and X−Z is orthogonal
to all functions of the variable Y . Hence, �[X | Y = y] = f (y). Therefore, the expected
variance of [X | Y] is

�
{Y}

Var [X | Y] = � X2 − �
{Y}

(
�[X | Y]

)2

= � X2 − �
{Y}

f (Y)

which gives the desired identity using Z = f (Y). �

Lemma C.2. Let X and Y be as in the previous lemma. Suppose the range of Y has
cardinality 2. Then,

�
{Y}

Var[X | Y] = Var X − Cov(X,Y)2/Var(Y) .

Proof. Without loss of generality, we may assume that � X = �Y = 0 and �Y2 = 1. Then,
the set of random variables {1,Y} is an orthonormal basis for the subspace of functions of Y .
Let ρ = � XY . Then, ρY is the orthogonal projection of X to the subspace of function of Y .
(Here, we use the assumption � X = 0.) Hence, using the previous lemma,

�
{Y}

Var[X | Y] = � X2 − �(ρY)2 = � X2 − ρ2 ,

which is the desired identity because � X2 = Var X and ρ2 = Cov(X,Y)2/Var Y . �
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