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Abstract

We study planted problems—finding hidden structures in randomnoisy inputs—through the

lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful

semidefinite programs has recently yielded many new algorithms for planted problems, often

achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions

and robustness to noise. One theme in recent work is the design of spectral algorithms which

match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are

often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral

structure of matrices whose entries are low-degree polynomials of the input variables.

We prove that for a wide class of planted problems, including refuting random constraint

satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in

stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials

are as powerful as SoS semidefinite programs of size roughly nd
. For such problems it is

therefore always possible to match the guarantees of SoS without solving a large semidefinite

program.

Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired

by recent work on SoS and the planted clique problem [BHK
+
16]), we prove new nearly-tight

SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower

bounds are the first to suggest that improving upon the signal-to-noise ratios handled by existing

polynomial-time algorithms for these problems may require subexponential time.
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1 Introduction

Recent years have seen a surge of progress in algorithm design via the sum-of-squares (SoS)

semidefinite programming hierarchy. Initiated by the work of [BBH
+
12], who showed that

polynomial time algorithms in the hierarchy solve all known integrality gap instances for Unique

Games and related problems, a steady stream of works have developed efficient algorithms for

both worst-case [BKS14, BKS15, BKS17, BGG
+
16] and average-case problems [HSS15, GM15, BM16,

RRS16, BGL16, MSS16a, PS17]. The insights from these works extend beyond individual algorithms

to characterizations of broad classes of algorithmic techniques. In addition, for a large class of

problems (including constraint satisfaction), the family of SoS semidefinite programs is now known

to be as powerful as any semidefinite program (SDP) [LRS15].

In this paperwe focus on recent progress inusingSumof Squares algorithms to solve average-case,

and especially planted problems—problems that ask for the recovery of a planted signal perturbed
by random noise. Key examples are finding solutions of random constraint satisfaction problems

(CSPs) with planted assignments [RRS16] and finding planted optima of random polynomials over

the n-dimensional unit sphere [RRS16, BGL16]. The latter formulation captures a wide range of

unsupervised learning problems, and has led to many unsupervised learning algorithms with the

best-known polynomial time guarantees [BKS15, BKS14, MSS16b, HSS15, PS17, BGG
+
16].

In many cases, classical algorithms for such planted problems are spectral algorithms—i.e., using

the top eigenvector of a natural matrix associated with the problem input to recover a planted

solution. The canonical algorithms for the planted clique [AKS98], principal components analysis (PCA)

[Pea01], and tensor decomposition (which is intimately connected to optimizaton of polynomials on

the unit sphere) [Har70] are all based on this general scheme. In all of these cases, the algorithm

employs the top eigenvector of a matrix which is either given as input (the adjacency matrix, for

planted clique), or is a simple function of the input (the empirical covariance, for PCA).

Recent works have shown that one can often improve upon these basic spectral methods

using SoS, yielding better accuracy and robustness guarantees against noise in recovering planted

solutions. Furthermore, for worst case problems—as opposed to the average-case planted problems

we consider here—semidefinite programs are strictly more powerful than spectral algorithms.1 A
priori one might therefore expect that these new SoS guarantees for planted problems would not

be achievable via spectral algorithms. But curiously enough, in numerous cases these stronger

guarantees for planted problems can be achieved by spectral methods! The twist is that the entries of

these matrices are low-degree polynomials in the input to the algorithm . The result is a new family

of low-degree spectral algorithms with guarantees matching SoS but requriring only eigenvector

computations instead of general semidefinite programming [HSSS16, RRS16, AOW15a].

This leads to the following question which is the main focus of this work.

Are SoS algorithms equivalent to low-degree spectral methods for planted problems?
We answer this question affirmatively for a wide class of distinguishing problems which

includes refuting random CSPs, tensor and sparse PCA, densest-k-subgraph, community detection

in stochastic block models, planted clique, and more. Our positive answer to this question implies

that a light-weight algorithm—computing the top eigenvalue of a single matrix whose entries are

1For example, consider the contrast between the SDP algorithm for Max-Cut of Goemans and Williamson, [GW94],

and the spectral algorithm of Trevisan [Tre09]; or the SDP-based algorithms for coloring worst-case 3-colorable graphs

[KT17] relative to the best spectral methods [AK97] which only work for random inputs.
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low-degree polynomials in the input—can recover the performance guarantees of an often bulky

semidefinite programming relaxation.

To complement this picture, we prove two new SoS lower bounds for particular planted

problems, both variants of component analysis: sparse principal component analysis and tensor

principal component analysis (henceforth sparse PCA and tensor PCA, respectively) [ZHT06, RM14].

For both problems there are nontrivial low-degree spectral algorithms, which have better noise

tolerance than naive spectral methods [HSSS16, DM14b, RRS16, BGL16]. Sparse PCA, which is

used in machine learning and statistics to find important coordinates in high-dimensional data

sets, has attracted much attention in recent years for being apparently computationally intractable

to solve with a number of samples which is more than sufficient for brute-force algorithms

[KNV
+
15, BR13b, MW15a]. Tensor PCA appears to exhibit similar behavior [HSS15]. That is, both

problems exhibit information-computation gaps.
Our SoS lower bounds for both problems are the strongest yet formal evidence for information-

computation gaps for these problems. We rule out the possibility of subexponential-time SoS

algorithms which improve by polynomial factors on the signal-to-noise ratios tolerated by the

known low degree spectral methods. In particular, in the case of sparse PCA, it appeared possible

prior to this work that it might be possible in quasipolynomial time to recover a k-sparse unit vector
v in p dimensions from O(k log p) samples from the distributionN(0, Id+vv>). Our lower bounds

suggest that this is extremely unlikely; in fact this task probably requires polynomial SoS degree

and hence exp(nΩ(1)) time for SoS algorithms. This demonstrates that (at least with regard to SoS

algorithms) both problems are much harder than the planted clique problem, previously used as a

basis for reductions in the setting of sparse PCA [BR13b].

Our lower bounds for sparse and tensor PCA are closely connected to the failure of low-degree

spectral methods in high noise regimes of both problems. We prove them both by showing that

with noise beyond what known low-degree spectral algorithms can tolerate, even low-degree scalar
algorithms (the result of restricting low-degree spectral algorithms to 1 × 1 matrices) would require

subexponential time to detect and recover planted signals. We then show that in the restricted

settings of tensor and sparse PCA, ruling out these weakened low-degree spectral algorithms is

enough to imply a strong SoS lower bound.

1.1 SoS and spectral algorithms for robust inference

We turn to our characterization of SoS algorithms for planted problems in terms of low-degree

spectral algorithms. First, a word on planted problems. Many planted problems have several

formulations: search, in which the goal is to recover a planted solution, refutation, in which the goal

is to certify that no planted solution is present, and distinguishing, where the goal is to determine

with good probability whether an instance contains a planted solution or not. Often an algorithm

for one version can be parlayed into algorithms for the others, but distinguishing problems are

often the easiest, and we focus on them here.

A distinguishing problem is specified by two distributions on instances: a planted distribution
supported on instances with a hidden structure, and a uniform distribution, where samples w.h.p.

contain no hidden structure. Given an instance drawn with equal probability from the planted or

the uniform distribution, the goal is to determine with probability greater than
1

2
whether or not

the instance comes from the planted distribution. For example:
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Planted clique Uniform distribution: G(n , 1

2
), the Erdős-Renyi distribution, which w.h.p.

contains no clique of size ω(log n). Planted distribution: The uniform distribution on graphs

containing a nε-size clique, for some ε > 0. (The problem gets harder as ε gets smaller, since the

distance between the distributions shrinks.)

Planted 3xor Uniform distribution: a 3xor instance on n variables and m > n equations

xi x j xk � ai jk , where all the triples (i , j, k) and the signs ai jk ∈ {±1} are sampled uniformly and

independently. No assignment to x will satisfy more than a 0.51-fraction of the equations, w.h.p.

Planted distribution: The same, except the signs ai jk are sampled to correlate with bi b j bk for a

randomly chosen bi ∈ {±1}, so that the assignment x � b satisfies a 0.9-fraction of the equations.

(The problem gets easier as m/n gets larger, and the contradictions in the uniform case become

more locally apparent.)

We now formally define a family of distinguishing problems, in order to give our main theorem.

Let I be a set of instances corresponding to a product space (for concreteness one may think of

I to be the set of graphs on n vertices, indexed by {0, 1}(n2), although the theorem applies more

broadly). Let ν, our uniform distrbution, be a product distribution on I.

With some decision problem P in mind (e.g. does G contain a clique of size > nε?), let X be a

set of solutions to P; again for concreteness one may think of X as being associated with cliques in

a graph, so that X ⊂ {0, 1}n is the set of all indicator vectors on at least nε vertices.
For each solution x ∈ X, let µ |x be the uniform distribution over instances I ∈ I that contain

x. For example, in the context of planted clique, if x is a clique on vertices 1, . . . , nε, then µ |x
would be the uniform distribution on graphs containing the clique 1, . . . , nε. We define the planted

distribution µ to be the uniform mixture over µx , µ � Ux∼Xµ |x .

The following is our main theorem on the equivalence of sum of squares algorithms for

distinguishing problems and spectral algorithms employing low-degree matrix polynomials.

Theorem 1.1 (Informal). Let N, n ∈ N , and letA ,B be sets of real numbers. Let I be a family of instances
overAN , and let P be a decision problem over I with X � Bn the set of possible solutions to P over I. Let
{1 j(x , I)} be a system of nO(d) polynomials of degree at most d in the variables x and constant degree in the
variables I that encodes P, so that

• for I ∼ν I, with high probability the system is unsatisfiable and admits a degree-d SoS refutation, and

• for I ∼µ I, with high probability the system is satisfiable by some solution x ∈ X, and x remains
feasible even if all but an n−0.01-fraction of the coordinates of I are re-randomized according to ν.

Then there exists a matrix whose entries are degree-O(d) polynomials Q : I→ �( n
6d)×( n

6d) such that
�

I∼ν
[λ+

max(Q(I))] 6 1, while �
I∼µ
[λ+

max(Q(I))] > n10d ,

where λ+
max

denotes the maximum non-negative eigenvalue.

The condition that a solution x remain feasible if all but a fraction of the coordinates of I ∼ µ |x
are re-randomized should be interpreted as a noise-robustness condition. To see an example, in the

context of planted clique, suppose we start with a planted distribution over graphs with a clique x
of size nε+0.01

. If a random subset of n0.99
vertices are chosen, and all edges not entirely contained

in that subset are re-randomized according to the G(n , 1/2) distribution, then with high probability

at least nε of the vertices in x remain in a clique, and so x remains feasible for the problem P: G has

a clique of size > nε?
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1.2 SoS and information-computation gaps

Computational complexity of planted problems has become a rich area of study. The goal is to

understand which planted problems admit efficient (polynomial time) algorithms, and to study the

information-computation gap phenomenon: many problems have noisy regimes in which planted

structures can be found by inefficient algorithms, but (conjecturally) not by polynomial time

algorithms. One example is the planted clique problem, where the goal find a large clique in a

sample from the uniform distribution over graphs containing a clique of size nε for a small constant

ε > 0. While the problem is solvable for any ε > 0 by a brute-force algorithm requiring nΩ(log n)

time, polynomial time algorithms are conjectured to require ε > 1

2
.

A common strategy to provide evidence for such a gap is to prove that powerful classes of

efficient algorithms are unable to solve the planted problem in the (conjecturally) hard regime.

SoS algorithms are particularly attractive targets for such lower bounds because of their broad

applicability and strong guarantees.

In a recent work, Barak et al. [BHK
+
16] show an SoS lower bound for the planted clique

problem, demonstrating that when ε < 1

2
, SoS algorithms require nΩ(log n)

time to solve planted

clique. Intriguingly, they show that in the case of planted clique that SoS algorithms requiring

≈ nd
time can distinguish planted from random graphs only when there is a scalar-valued degree

≈ d · log n polynomial p(A) : �n×n → � (here A is the adjacency matrix of a graph) with

�
G(n ,1/2)

p(A) � 0, �
planted

p(A) > nΩ(1) ·
(
�

G(n ,1/2)
p(A)

)
1/2

.

That is, such a polynomial p has much larger expectation in under the planted distribution than its

standard deviation in uniform distribution. (The choice of nΩ(1) is somewhat arbitrary, and could be

replaced withΩ(1) or nΩ(d) with small changes in the parameters.) By showing that as long as ε < 1

2

any such polynomial p must have degree Ω(log n)2, they rule out efficient SoS algorithms when

ε < 1

2
. Interestingly, this matches the spectral distinguishing threshold—the spectral algorithm of

[AKS98] is known to work when ε > 1

2
.

This stronger characterization of SoS for the planted clique problem, in terms of scalar distin-
guishing algorithms rather than spectral distinguishing algorihtms, may at first seem insignificant.

To see why the scalar characterization is more powerful, we point out that if the degree-d moments

of the planted and uniform distributions are known, determining the optimal scalar distinguishing

polynomial is easy: given a planted distribution µ and a random distribution ν over instances I,
one just solves a linear algebra problem in the nd log n

coefficients of p to maximize the expectation

over µ relative to ν:

max

p
�
I∼µ
[p2(I)] s .t . �

I∼ν
[p2(I)] � 1 .

It is not difficult to show that the optimal solution to the above program has a simple form: it is the

projection of the relative density of ν with respect to µ projected to the degree-d log n polynomials.

So given a pair of distributions µ, ν, in nO(d log n)
time, it is possible to determine whether there

exists a degree-d log n scalar distinguishing polynomial. Answering the same question about the

existence of a spectral distinguisher is more complex, and to the best of our knowledge cannot be

done efficiently.
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Given this powerful theorem for the case of the planted clique problem, one may be tempted

to conjecture that this stronger, scalar distinguisher characterization of the SoS algorithm applies

more broadly than just to the planted clique problem, and perhaps as broadly as Theorem 1.1. If

this conjecture is true, given a pair of distributions ν and µ with known moments, it would be

possible in many cases to efficiently and mechanically determine whether polynomial-time SoS

distinguishing algorithms exist!

Conjecture 1.2. In the setting of Theorem 1.1, the conclusion may be replaced with the conclusion that there
exists a scalar-valued polynomial p : I→ � of degree O(d · log n) so that

�
uniform

p(I) � 0 and �
planted

p(I) > nΩ(1)
(
�

uniform
p(I)2

)
1/2

To illustrate the power of this conjecture, in the beginning of Section 6 we give a short and

self-contained explanation of how this predicts, via simple linear algebra, our nΩ(1)-degree SoS

lower bound for tensor PCA. As evidence for the conjecture, we verify this prediction by proving

such a lower bound unconditionally.

We also note why Theorem 1.1 does not imply Conjecture 1.2. While, in the notation of that

theorem, the entries of Q(I) are low-degree polynomials in I, the function M 7→ λ+
max
(M) is not (to

the best of our knowledge) a low-degree polynomial in the entries of M (even approximately). (This

stands in contrast to, say the operator norm or Frobenious norm of M, both of which are exactly or

approximately low-degree polynomials in the entries of M.) This means that the final output of the

spectral distinguishing algorithm offered by Theorem 1.1 is not a low-degree polynomial in the

instance I.

1.3 Exponential lower bounds for sparse PCA and tensor PCA

Our other main results are strong exponential lower bound on the sum-of-squares method

(specifically, against 2
nΩ(1)

time or nΩ(1) degree algorithms) for the tensor and sparse principal

component analysis (PCA). We prove the lower bounds by extending the techniques pioneered

in [BHK
+
16]. In the present work we describe the proofs informally, leaving full details to a

forthcoming full version.

Tensor PCA. We start with the simpler case of tensor PCA, introduced by [RM14].

Problem 1.3 (Tensor PCA). Given an order-k tensor in (�n)⊗k
, determine whether it comes from:

• Uniform Distribution: each entry of the tensor sampled independently fromN(0, 1).
• Planted Distribution: a spiked tensor, T � λ · v⊗k + G where v is sampled uniformly from

�n−1
, and where G is a random tensor with each entry sampled independently fromN(0, 1).

Here, we think of v as a signal hidden by Gaussian noise. The parameter λ is a signal-to-noise

ratio. In particular, as λ grows, we expect the distinguishing problem above to get easier.

Tensor PCA is a natural generalization of the PCA problem in machine learning and statistics.

Tensor methods in general are useful when data naturally has more than two modalities: for

example, one might consider a recommender system which factors in not only people and movies

but also time of day. Many natural tensor problems are NP hard in the worst-case. Though this is
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not necessarily an obstacle to machine learning applications, it is important to have average-case

models to in which to study algorithms for tensor problems. The spiked tensor setting we consider

here is one such simple model.

Turning to algorithms: consider first the ordinary PCA problem in a spiked-matrix model.

Given an n × n matrix M, the problem is to distinguish between the case where every entry of M
is independently drawn from the standard Gaussian distributionN(0, 1) and the case when M is

drawn from a distribution as above with an added rank one shift λvv> in a uniformly random

direction v. A natural and well-studied algorithm, which solves this problem to information-

theoretic optimality is to threshold on the largest singular value/spectral norm of the input matrix.

Equivalently, one thresholds on the maximizer of the degree two polynomial 〈x ,Mx〉 in x ∈ �n−1.

A natural generalization of this algorithm to the tensor PCA setting (restricting for simplicity

k � 3 for this discussion) is the maximum of the degree-three polynomial 〈T, x⊗3〉 over the unit
sphere—equivalently, the (symmetric) injective tensor norm of T. This maximum can be shown

to be much larger in case of the planted distribution so long as λ �
√

n. Indeed, this approach
to distinguishing between planted and uniform distributions is information-theoretically optimal

[PWB16, BMVX16]. Since recovering the spike v and optimizing the polynomial 〈T, x⊗3〉 on the

sphere are equivalent, tensor PCA can be thought of as an average-case version of the problem of

optimizing a degree-3 polynomial on the unit sphere (this problem is NP hard in the worst case,

even to approximate [HL09, BBH
+
12]).

Even in this average-case model, it is believed that there is a gap between which signal strengths

λ allow recovery of v by brute-force methods and which permit polynomial time algorithms. This

is quite distinct from the vanilla PCA setting, where eigenvector algorithms solve the spike-recovery

problem to information-theoretic optimality. Nevertheless, the best-known algorithms for tensor

PCA arise from computing convex relaxations of this degree-3 polynomial optimization problem.

Specifically, the SoS method captures the state of the art algorithms for the problem; it is known

to recover the vector v to o(1) error in polynomial time whenever λ � n3/4
[HSS15]. A major

open question in this direction is to understand the complexity of the problem for λ 6 n3/4−ε
.

Algorithms (again captured by SoS) are known which run in 2
nO(ε)

time [RRS16, BGG
+
16]. We

show the following theorem which shows that the sub-exponential algorithm above is in fact nearly

optimal for SoS algorithm.

Theorem 1.4. For a tensor T, let

SoSd(T) � max

˜�

˜�[〈T, x⊗k〉] such that ˜� is a degree d pseudoexpectation and satisfies {‖x‖2 � 1}2

For every small enough constant ε > 0, if T ∈ �n×n×n has iid Gaussian or {±1} entries, �T SoSd(T) >
nk/4−ε, for every d 6 nc·ε for some universal c > 0.

In particular for third order tensors (i.e k � 3), since degree nΩ(ε) SoS is unable to certify that a

random 3-tensor has maximum value much less than n3/4−ε
, this SoS relaxation cannot be used to

distinguish the planted and random distributions above when λ � n3/4−ε
.3

2For definitions of pseudoexpectations and related matters, see the survey [BS14].

3In fact, our proof for this theorem will show somewhat more: that a large family of constraints—any valid constraint

which is itself a low-degree polynomial of T—could be added to this convex relaxation and the lower bound would still

obtain.
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Sparse PCA. We turn to sparse PCA, which we formalize as the following planted distinguishing

problem.

Problem 1.5 (Sparse PCA (λ, k)). Given an n × n symmetric real matrix A, determine whether A
comes from:

• Uniform Distribution: each upper-triangular entry of the matrix A is sampled iid from

N(0, 1); other entries are filled in to preserve symmetry.

• Planted Distribution: a random k-sparse unit vector v with entries {±1/
√

k , 0} is sampled,

and B is sampled from the uniform distribution above; then A � B + λ · vvT .

We defer significant discussion to Section 6, noting just a few things before stating our main

theorem on sparse PCA. First, the planted model above is sometimes called the spiked Wigner
model—this refers to the independence of the entries of the matrix B. An alternative model for

sparse PCA is the spikedWishartmodel: A is replaced by

∑
i6m xi xi

ᵀ
, where each xi ∼ N(0, Id+βvvT ),

for some number m ∈ � of samples and some signal-strength β ∈ �. Though there are technical

differences between the models, to the best of our knowledge all known algorithms with provable

guarantees are equally applicable to either model; we expect that our SoS lower bounds also apply

in the spiked Wishart model.

We generally think of k , λ as small powers of n; i.e. nρ for some ρ ∈ (0, 1); this allows us to

generally ignore logarithmic factors in our arguments. As in the tensor PCA setting, a natural

and information-theoretically optimal algorithm for sparse PCA is to maximize the quadratic

form 〈x ,Ax〉, this time over k-sparse unit vectors. For A from the uniform distribution standard

techniques (ε-nets and union bounds) show that the maximum value achievable is O(
√

k log n)
with high probability, while for A from the planted model of course 〈v ,Av〉 ≈ λ. So, when λ �

√
k

one may distinguish the two models by this maximum value.

However, this maximization problem is NP hard for general quadratic forms A [CPR16]. So,

efficient algorithms must use some other distinguisher which leverages the randomness in the

instances. Essentially only two polynomial-time-computable distinguishers are known.4 If λ �
√

n
then the maximum eigenvalue of A distinguishes the models. If λ � k then the planted model can

be distinguished by the presence of large diagonal entries of A. Notice both of these distinguishers

fail for some choices of λ (that is,

√
k � λ �

√
n , k) for which brute-force methods (optimizing

〈x ,Ax〉 over sparse x) could successfully distinguish planted from uniform A’s. The theorem below

should be interpreted as an impossibility result for SoS algorithms in the

√
k � λ �

√
n , k regime.

This is the strongest known impossibility result for sparse PCA among those ruling out classes of

efficient algorithms (one reduction-based result is also know, which shows sparse PCA is at least

as hard as the planted clique problem [BR13a]. It is also the first evidence that the problem may

require subexponential (as opposed to merely quasi-polynomial) time.

Theorem 1.6. If A ∈ �n×n , let

SoSd ,k(A) � max

˜�

˜�〈x ,Ax〉 s.t. ˜� is degree d and satisfies
{

x3

i � xi , ‖x‖2 � k
}
.

4If one studies the problem at much finer granularity than we do here, in particular studying λ up to low-order

additive terms and how precisely it is possible to estimate the planted signal v, then the situation is more subtle [DM14a].
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There are absolute constants c , ε∗ > 0 so that for every ρ ∈ (0, 1) and ε ∈ (0, ε∗), if k � nρ, then for d 6 nc·ε,

�
A∼{±1}(

n
2
)
SoSd ,k(A) > min(n1/2−εk , nρ−εk) .

For more thorough discussion of the theorem, see Section 6.3.

1.4 Related work

On interplay of SoS relaxations and spectral methods. As we have already alluded to, many

prior works explore the connection between SoS relaxations and spectral algorithms, beginning

with the work of [BBH
+
12] and including the followup works [HSS15, AOW15b, BM16] (plus many

more). Of particular interest are the papers [HSSS16, MS16b], which use the SoS algorithms to

obtain fast spectral algorithms, in some cases running in time linear in the input size (smaller even

than the number of variables in the associated SoS SDP).

In light of our Theorem 1.1, it is particularly interesting to note cases in which the known

SoS lower bounds matching the known spectral algorithms—these problems include planted

clique (upper bound: [AKS98], lower bound:5 [BHK
+
16]), strong refutations for random CSPs

(upper bound:6 [AOW15b, RRS16], lower bounds: [Gri01b, Sch08, KMOW17]), and tensor principal

components analysis (upper bound: [HSS15, RRS16, BGG
+
16], lower bound: this paper).

We also remark that our work applies to several previously-considered distinguishing and

average-case problems within the sum-of-squares algorithmic framework: block models [MS16a] ,

densest-k-subgraph [BCC
+
10]; for each of these problems, we have by Theorem 1.1 an equivalence

between efficient sum-of-squares algorithms and efficient spectral algorithms, and it remains to

establish exactly what the tradeoff is between efficiency of the algorithm and the difficulty of

distinguishing, or the strength of the noise.

To the best of knowledge, no previous work has attempted to characterize SoS relaxations for

planted problems by simpler algorithms in the generality we do here. Some works have considered

characterizing degree-2 SoS relaxations (i.e. basic semidefinie programs) in terms of simpler

algorithms. One such example is recent work of Fan and Montanari [FM16] who showed that

for some planted problems on sparse random graphs, a class of simple procedures called local
algorithms performs as well as semidefinite programming relaxations.

On strong SoS lower bounds for planted problems. By now, there’s a large body of work that

establishes lower bounds on SoS SDP for various average case problems. Beginning with the work

of Grigoriev [Gri01a], a long line work have established tight lower bounds for random constraint

satisfaction problems [Sch08, BCK15, KMOW17] and planted clique [MPW15, DM15, HKP15, RS15,

BHK
+
16]. The recent SoS lower bound for planted clique of [BHK

+
16] was particularly influential

to this work, setting the stage for our main line of inquiry. We also draw attention to previous

work on lower bounds for the tensor PCA and sparse PCA problems in the degree-4 SoS relaxation

[HSS15, MW15b]—our paper improves on this and extends our understanding of lower bounds for

tensor and sparse PCA to any degree.

5SDP lower bounds for the planted clique problem were known for smaller degrees of sum-of-squares relaxations and

for other SDP relaxations before; see the references therein for details.

6There is a long line of work on algorithms for refuting random CSPs, and 3SAT in particular; the listed papers contain

additional references.
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Tensor principle component analysis was introduced by Montanari and Richard [RM14] who

indentified information theoretic threshold for recovery of the planted component and analyzed the

maximum likelihood estimator for the problem. The work of [HSS15] began the effort to analyze

the sum of squares method for the problem and showed that it yields an efficient algorithm for

recovering the planted component with strength ω̃(n3/4). They also established that this threshold is

tight for the sum of squares relaxation of degree 4. Following this, Hopkins et al. [HSSS16] showed

how to extract a linear time spectral algorithm from the above analysis. Tomioka and Suzuki derived

tight information theoretic thresholds for detecting planted components by establishing tight

bounds on the injective tensor norm of random tensors [TS14]. Finally, very recently, Raghavendra

et. al. and Bhattiprolu et. al. independently showed sub-exponential time algorithms for tensor

pca [RRS16, BGL16]. Their algorithms are spectral and are captured by the sum of squares method.

1.5 Organization

In Section 2 we set up and state our main theorem on SoS algorithms versus low-degree spectral

algorithms. In Section 5we show that themain theorem applies to numerous planted problems—we

emphasize that checking each problem is very simple (and barely requires more than a careful

definition of the planted and uniform distributions). In Section 3 and Section 4 we prove the main

theorerm on SoS algorithms versus low-degree spectral algorithms.

In section 7 we get prepared to prove our lower bound for tensor PCA by proving a structural

theorem on factorizations of low-degree matrix polynomials with well-behaved Fourier transforms.

In section 8 we prove our lower bound for tensor PCA, using some tools proved in section 9.

Notation. For two matrices A, B, let 〈A, B〉 def

� Tr(AB). Let ‖A‖Fr denote the Frobenius norm, and

‖A‖ its spectral norm. For matrix valued functions A, B over I and a distribution ν over I ∼ I, we

will denote 〈A, B〉ν � �I∼ν 〈A(I), B(I)〉 and by ‖A‖Fr,ν
def

� (�I∼ν 〈A(I),A(I)〉)1/2.
For a vector of formal variables x � (x1 , . . . , xn), we use x6d

to denote the vector consisting of all

monomials of degree at most d in these variables. Furthermore, let us denote X6d def

� (x6d)(x6d)T .

2 Distinguishing Problems and Robust Inference

In this section, we set up the formal framework within which we will prove our main result.

Uniform vs. Planted Distinguishing Problems

We begin by describing a class of distinguishing problems. ForA a set of real numbers, we will use

I � AN
denote a space of instances indexed by N variables—for the sake of concreteness, it will be

useful to think of I as {0, 1}N ; for example, we could have N �
(n
2

)
and I as the set of all graphs on

n vertices. However, the results that we will show here continue to hold in other contexts, where

the space of all instances is �N
or [q]N .

Definition 2.1 (Uniform Distinguishing Problem). Suppose that I is the space of all instances, and

suppose we have two distributions over I, a product distribution ν (the “uniform” distribution),

and an arbitrary distribution µ (the “planted” distribution).
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In a uniform distinguishing problem, we are given an instance I ∈ I which is sampled with

probability
1

2
from ν and with probability

1

2
from µ, and the goal is to determine with probability

greater than
1

2
+ ε which distribution I was sampled from, for any constant ε > 0.

Polynomial Systems

In the uniform distinguishing problems that we are interested in, the planted distribution µ will be

a distribution over instances that obtain a large value for some optimization problem of interest (i.e.

the max clique problem). We define polynomial systems in order to formally capture optimization

problems.

Program 2.2 (Polynomial System). LetA ,B be sets of real numbers, let n ,N ∈ �, and let I � AN

be a space of instances andX ⊆ Bn
be a space of solutions. A polynomial system is a set of polynomial

equalities

1 j(x ,I) � 0 ∀ j ∈ [m],

where {1 j}mj�1
are polynomials in the program variables {xi}i∈[n], representing x ∈ X, and in the

instance variables {Ij} j∈[N], representing I ∈ I. We define deg
prog
(1 j) to be the degree of 1 j in the

program variables, and deg
inst
(1 j) to be the degree of 1 j in the instance variables.

Remark 2.3. For the sake of simplicity, the polynomial system Program 2.2 has no inequalities.

Inequalities can be incorporated in to the program by converting each inequality in to an equality

with an additional slack variable. Our main theorem still holds, but for some minor modifications

of the proof, as outlined in Section 4.

A polynomial system allows us to capture problem-specific objective functions as well as

problem-specific constraints. For concreteness, consider a quadtratic program which checks if a

graph on n vertices contains a clique of size k. We can express this with the polynomial system over

program variables x ∈ �n
and instance variables I ∈ {0, 1}(n2), where Ii j � 1 iff there is an edge

from i to j, as follows:{∑
i∈[n]

xi − k � 0

}
∪ {xi(xi − 1) � 0}i∈[n] ∪ {(1 − Ii j)xi x j � 0}i , j∈([n]

2
).

Planted Distributions

We will be concerned with planted distributions of a particular form; first, we fix a polynomial

system of interest S � {1 j(x ,I)} j∈[m] and some set X ⊆ Bn
of feasible solutions for S, so that the

program variables x represent elements of X. Again, for concreteness, if I is the set of graphs on n
vertices, we can take X ⊆ {0, 1}n to be the set of indicators for subsets of at least nε vertices.

For each fixed x ∈ X, let µ |x denote the uniformdistribution overI ∈ I forwhich the polynomial

system {1 j(x ,I)} j∈[m] is feasible. The planted distribution µ is given by taking the uniform mixture

over the µ |x , i.e., µ ∼ Ux∼X[µ |x].
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SoS Relaxations

If we have a polynomial system {1 j} j∈[m] where deg
prog
(1 j) 6 2d for every j ∈ [m], then the

degree-2d sum-of-squares SDP relaxation for the polynomial system Program 2.2 can be written as,

Program 2.4 (SoS Relaxation for Polynomial System). Let S � {1 j(x ,I)} j∈[m] be a polynomial

system in instance variables I ∈ I and program variables x ∈ X. If deg
prog
(1 j) 6 2d for all j ∈ [m],

then an SoS relaxation for S is

〈G j(I),X〉 � 0 ∀ j ∈ [m]
X � 0

where X is an [n]6d ×[n]6d
matrix containing the variables of the SDP and G j : I→ �[n]6d×[n]6d

are

matrices containing the coefficients of 1 j(x ,I) in x, so that the constraint 〈G j(I),X〉 � 0 encodes

the constraint 1 j(x ,I) � 0 in the SDP variables. Note that the entries of G j are polynomials of

degree at most deg
inst
(1 j) in the instance variables.

Sub-instances

Suppose that I � AN
is a family of instances; then given an instance I ∈ I and a subset S ⊆ [N],

let IS denote the sub-instance consisting of coordinates within S. Further, for a distribution Θ over

subsets of [N], let IS ∼Θ I denote a subinstance generated by sampling S ∼ Θ. Let I↓ denote the set
of all sub-instances of an instance I, and let I↓ denote the set of all sub-instances of all instances.

Robust Inference

Our result will pertain to polynomial systems that define planted distributions whose solutions to

sub-instances generalize to feasible solutions over the entire instance. We call this property “robust

inference.”

Definition 2.5. Let I � AN
be a family of instances, letΘ be a distribution over subsets of [N], letS

be a polynomial system as in Program 2.2, and let µ be a planted distribution over instances feasible

for S. Then the polynomial system S is said to satisfy the robust inference property for probability
distribution µ on I and subsampling distribution Θ, if given a subsampling IS of an instance I from µ,

one can infer a setting of the program variables x∗ that remains feasible to S for most settings of IS.

Formally, there exists a map x : I↓→ �n
such that

�
I∼µ,S∼Θ, ˜I∼ν|IS

[x(IS) is a feasible for S on IS ◦ ˜I] > 1 − ε(n , d)

for some negligible function ε(n , d). To specify the error probability, we will say that polynomial

system is ε(n , d)-robustly inferable.

Main Theorem

We are now ready to state our main theorem.

Theorem 2.6. Suppose that S is a polynomial system as defined in Program 2.2, of degree at most 2d in the
program variables and degree at most k in the instance variables. Let B > d · k ∈ � such that
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1. The polynpomial system S is 1

n8B -robustly inferable with respect to the planted distribution µ and the
sub-sampling distribution Θ.

2. For I ∼ ν, the polynomial system S admits a degree-d SoS refutation with numbers bounded by nB

with probability at least 1 − 1

n8B .

Let D ∈ � be such that for any subset α ⊆ [N] with |α | > D − 2dk,

�
S∼Θ
[α ⊆ S] 6 1

n8B

There exists a degree 2D matrix polynomial Q : I→ �[n]6d×[n]6d such that,

�I∼µ[λ+
max(Q(I))]

�I∼ν[λ+
max(Q(I))]

> nB/2

Remark 2.7. Our argument implies a stronger result that can be stated in terms of the eigenspaces of

the subsampling operator. Specifically, suppose we define

Sε
def

�

{
α | �

S∼Θ
{α ⊆ S} 6 ε

}
Then, the distinguishing polynomial exhibited by Theorem 2.6 satisfies Q ∈
span{ monomials Iα |α ∈ Sε}. This refinement can yield tighter bounds in cases where all mono-

mials of a certain degree are not equivalent to each other. For example, in the Planted Clique

problem, each monomial consists of a subgraph and the right measure of the degree of a sub-graph

is the number of vertices in it, as opposed to the number of edges in it.

In Section 5, we will make the routine verifications that the conditions of this theorem hold for a

variety of distinguishing problems: planted clique (Lemma 5.2), refuting random CSPs (Lemma 5.4,

stochastic block models (Lemma 5.6), densest-k-subgraph (Lemma 5.8), tensor PCA (Lemma 5.10),

and sparse PCA (Lemma 5.12). Now we will proceed to prove the theorem.

3 Moment-Matching Pseudodistributions

We assume the setup from Section 2: we have a family of instances I � AN
, a polynomial system

S � {1 j(x ,I)} j∈[m] with a family of solutionsX � Bn
, a “uniform” distribution ν which is a product

distribution over I, and a “planted” distribution µ over I defied by the polynomial system S as

described in Section 2.

The contrapositive of Theorem 2.6 is that if S is robustly inferable with respect to µ and a

distribution over sub-instances Θ, and if there is no spectral algorithm for distinguishing µ and

ν, then with high probability there is no degree-d SoS refutation for the polynomial system S (as

defined in Program 2.4). To prove the theorem, we will use duality to argue that if no spectral

algorithm exists, then there must exist an object which is in some sense close to a feasible solution

to the SoS SDP relaxation.

Since each I in the support of µ is feasible for S by definition, a natural starting point is the SoS

SDP solution for instances I ∼µ I. With this in mind, we let Λ : I→ (�[n]6d×[n]6d )+ be an arbitrary

function from the support of µ over I to PSD matrices. In other words, we take

Λ(I) � µ̂(I) ·M(I)
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where µ̂ is the relative density of µ with respect to ν, so that µ̂(I) � µ(I)/ν(I), and M is some

matrix valued function such that M(I) � 0 and ‖M(I)‖ 6 B for all I ∈ I. Our goal is to find a

PSD matrix-valued function P that matches the low-degree moments of Λ in the variables I, while

being supported over most of I (rather than just over the support of µ).

The function P : I → (�[n]6d×[n]6d )+ is given by the following exponentially large convex

program over matrix-valued functions,

Program 3.1 (Pseudodistribution Program).

min ‖P‖2Fr,ν (3.1)

s .t . 〈Q , P〉ν � 〈Q ,Λ′〉ν ∀Q : I→ �[n]6d×[n]6d
, deg

inst
(Q) 6 D (3.2)

P � 0

Λ′ � Λ + η · Id, 2
−2

2
n

> η > 0 (3.3)

The constraint (3.2) fixes�Tr(P), and so the objective function (3.1) can be viewied asminimizing

�Tr(P2), a proxy for the collision probability of the distribution, which is a measure of entropy.

Remark 3.2. We have perturbed Λ in (3.3) so that we can easily show that strong duality holds in

the proof of Claim 3.4. For the remainder of the paper we ignore this perturbation, as we can

accumulate the resulting error terms and set η to be small enough so that they can be neglected.

The dual of the above program will allow us to relate the existence of an SoS refutation to the

existence of a spectral algorithm.

Program 3.3 (Low-Degree Distinguisher).

max 〈Λ,Q〉ν
s .t . Q : I→ �[n]6d×[n]6d

, deg
inst
(Q) 6 D

‖Q+‖2Fr,ν 6 1,

where Q+ is the projection of Q to the PSD cone.

Claim 3.4. Program 3.3 is a manipulation of the dual of Program 3.1, so that if Program 3.1 has

optimum c > 1, Program 3.3 as optimum at least Ω(
√

c).
Before we present the proof of the claim, we summarize its central consequence in the following

theorem: if Program 3.1 has a large objective value (and therefore does not provide a feasible SoS

solution), then there is a spectral algorithm.

Theorem 3.5. Fix a function M : I→ �[n]
6d×[n]6d

+ be such that Id � M � 0. Let λ+
max
(·) be the function

that gives the largest non-negative eigenvalue of a matrix. Suppose Λ � µ · M then the optimum of
Program 3.1 is equal to opt > 1 only if there exists a low-degree matrix polynomial Q such that,

�
I∼µ
[λ+

max(Q(I))] > Ω(
√

opt/nd)

while,
�
I∼ν
[λ+

max(Q(I))] 6 1 .
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Proof. By Claim 3.4, if the value of Program 3.1 is opt > 1, then there is a polynomial Q achieves a

value of Ω(√opt) for the dual. It follows that

�
I∼µ
[λ+

max(Q(I))] >
1

nd
�
I∼µ
[〈Id,Q(I))〉] > 1

nd
〈Λ,Q〉ν � Ω(

√
opt/nd),

while

�
I∼ν
[λ+

max(Q(I))] 6
√
�
I∼ν
[λ+

max
(Q(I))2] 6

√
�
I∼ν
‖Q+(I)‖2Fr 6 1.

�

It is interesting to note that the specific structure of the PSD matrix valued function M plays no

role in the above argument—since M serves as a proxy for monomials in the solution as represented

by the program variables x⊗d
, it follows that the choice of how to represent the planted solution

is not critical. Although seemingly counterintuitive, this is natural because the property of being

distinguishable by low-degre distinguishers or by SoS SDP relaxations is a property of ν and µ.

We wrap up the section by presenting a proof of the Claim 3.4.

Proof of Claim 3.4. We take the Lagrangian dual of Program 3.1. Our dual variables will be some

combination of low-degree matrix polynomials, Q, and a PSD matrix A:

L(P,Q ,A) � ‖P‖2Fr,ν − 〈Q , P −Λ′〉ν − 〈A, P〉ν s .t . A � 0.

It is easy to verify that if P is not PSD, then A can be chosen so that the value of L is∞. Similarly if

there exists a low-degree polynomial upon which P and Λ differ in expectation, Q can be chosen as

a multiple of that polynomial so that the value of L is∞.

Now, we argue that Slater’s conditions are met for Program 3.1, as P � Λ′ is strictly feasible.

Thus strong duality holds, and therefore

min

P
max

A�0,Q
L(P,Q ,A) 6 max

A�0,Q
min

P
L(P,Q ,A).

Taking the partial derivative of L(P,Q ,A)with respect to P, we have

∂
∂P
L(P,Q ,A) � 2 · P −Q − A.

where the first derivative is in the space of functions from I→ �[n]6d×[n]6d
. By the convexity of L

as a function of P, it follows that if we set
∂
∂PL � 0, we will have the minimizer. Substituting, it

follows that

min

P
max

A�0,Q
L(P,Q ,A) 6 max

A�0,Q

1

4

‖A + Q‖2Fr,ν −
1

2

〈Q ,A + Q −Λ′〉ν −
1

2

〈A,A + Q〉ν

� max

A�0,Q
〈Q ,Λ′〉ν −

1

4

‖A + Q‖2Fr,ν (3.4)

Now it is clear that the maximizing choice of A is to set A � −Q−, the negation of the negative-semi-

definite projection of Q. Thus (3.4) simplifies to

min

P
max

A�0,Q
L(P,Q ,A) 6 max

Q
〈Q ,Λ′〉ν −

1

4

‖Q+‖2Fr,ν
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6 max

Q
〈Q ,Λ〉ν + η Trν(Q+) −

1

4

‖Q+‖2Fr,ν , (3.5)

where we have used the shorthand Trν(Q+)
def

� �I∼ν Tr(Q(I)+). Now suppose that the low-degree

matrix polynomial Q∗ achieves a right-hand-side value of

〈Q∗ ,Λ〉ν + η · Trν(Q∗+) −
1

4

‖Q∗+‖2Fr,ν > c.

Consider Q′ � Q∗/‖Q∗+‖Fr,ν . Clearly ‖Q′+‖Fr,ν � 1. Now, multiplying the above inequality through

by the scalar 1/‖Q∗+‖Fr,ν, we have that

〈Q′,Λ〉ν >
c

‖Q∗+‖Fr,ν
− η · Trν(Q∗+)

‖Q∗+‖Fr,ν
+

1

4

‖Q∗+‖Fr,ν

>
c

‖Q∗+‖Fr,ν
− η · nd

+
1

4

‖Q∗+‖Fr,ν .

Therefore 〈Q′,Λ〉ν is at leastΩ(c1/2), as if ‖Q∗+‖Fr,ν >
√

c then the third term gives the lower bound,

and otherwise the first term gives the lower bound.

Thus by substituting Q′, the square root of the maximum of (3.5) within an additive ηnd

lower-bounds the maximum of the program

max 〈Q ,Λ〉ν
s .t . Q : I→ �[n]6d×[n]6d

, deg
inst
(Q) 6 D

‖Q+‖2Fr,ν 6 1.

This concludes the proof. �

4 Proof of Theorem 2.6

We will prove Theorem 2.6 by contradiction. Let us assume that there exists no degree-2D matrix

polynomial that distinguishes ν from µ. First, the lack of distinguishers implies the following fact

about scalar polynomials.

Lemma 4.1. Under the assumption that there are no degree-2D distinguishers, for every degree-D scalar
polynomial Q,

‖Q‖2Fr,µ 6 nB‖Q‖2Fr,ν

Proof. Suppose not, then the degree-2D 1 × 1 matrix polynomial Tr(Q(I)2)will be a distinguisher

between µ and ν. �

Constructing Λ. First, we will use the robust inference property of µ to construct a pseudo-

distribution Λ. Recall again that we have defined µ̂ to be the relative density of µ with respect

to ν, so that µ̂(I) � µ(I)/ν(I). For each subset S ⊆ [N], define a PSD matrix-valued function

ΛS : I→ (�[n]6d×[n]6d )+ as,

ΛS(I) � �
I′

S

[µ̂(IS ◦ I′S)] · x(IS)6d(x(IS)6d)T
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where we use IS to denote the restriction of I to S ⊂ [N], and IS ◦I′S to denote the instance given by

completing the sub-instance IS with the setting I′
S
. Notice that ΛS is a function depending only on

IS—this fact will be important to us. Define Λ
def

� �S∼ΘΛS. Observe that Λ is a PSD matrix-valued

function that satisfies

〈Λ∅,∅ , 1〉ν � �
I∼ν
�

S∼Θ
�
I′

S
∼ν
[µ̂(IS ◦ I′S)] � �S �IS

�
IS◦I′S∼ν

[µ̂(IS ◦ I′S)] � 1 (4.1)

Since Λ(I) is an average over ΛS(I), each of which is a feasible solution with high probability, Λ(I)
is close to a feasible solution to the SDP relaxation for I. The following Lemma formalizes this

intuition.

Define G def

� span{χS · G j | j ∈ [m], S ⊆ [N]}, and use ΠG to denote the orthogonal projection

into G.

Lemma 4.2. Suppose Program 2.2 satisfies the ε-robust inference property with respect to planted distribution
µ and subsampling distribution Θ and if ‖x(IS)6d ‖2

2
6 K for all IS then for every G ∈ G, we have

〈Λ,G〉ν 6
√
ε · K ·

(
�

S∼Θ
�

˜IS∼ν
�
I∼µ
‖G(IS ◦ IS)‖

2

2

) 1/2

Proof. We begin by expanding the left-hand side by substituting the definition of Λ. We have

〈Λ,G〉ν � �
S∼Θ
�
I∼ν
〈ΛS(IS),G(I)〉

� �
S∼Θ
�
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · 〈x(IS)6d(x(IS)6d)T ,G(I)〉

And because the inner product is zero if x(IS) is a feasible solution,

6 �
S∼Θ
�
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · �[x(IS) is infeasible for S(I)] ·

x(IS)6d
2

2
· ‖G(I)‖Fr

6 �
S∼Θ
�
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · �[x(IS) is infeasible for S(I)] · K · ‖G(I)‖Fr

And now letting
˜IS denote the completion of IS to I, so that IS ◦ ˜IS � I, we note that the above

is like sampling I′
S
, ˜IS independently from ν and then reweighting by µ̂(IS ◦ I′S), or equivalently

taking the expectation over IS ◦ I′S � I′ ∼ µ and
˜IS ∼ ν:

� �
S∼Θ

�
I′∼µ

�
˜IS∼ν
· �[x(IS) is infeasible for S(IS ◦ ˜IS)] · K · ‖G(IS ◦ ˜IS)‖Fr

and by Cauchy-Schwarz,

6 K ·
(
�

S∼Θ
�
I′∼µ

�
˜IS∼ν
· �[x(IS) is infeasible for S(IS ◦ ˜IS)]

) 1/2

·
(
�

S∼Θ
�
I′∼µ

�
˜IS∼ν
‖G(IS ◦ ˜IS)‖2Fr

) 1/2

The lemma follows by observing that the first term in the product above is exactly the non-robustness

of inference probability ε. �
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Corollary 4.3. If G ∈ G is a degree-D polynomial in I, then under the assumption that there are no
degree-2D distinguishers for ν, µ,

〈Λ,G〉ν 6
√
ε · K · nB · ‖G‖Fr,ν

Proof. For each fixing of
˜IS, ‖G(IS ◦ ˜IS)‖2

2
is a degree-2D-scalar polynomial in I. Therefore by

Lemma 4.1 we have that,

�
I∼µ
‖G(IS ◦ ˜IS)‖2Fr 6 nB · �

I∼ν
‖G(IS ◦ ˜IS)‖2Fr .

Substituting back in the bound in Lemma 4.2 the corollary follows. �

Now, since there are no degree-D matrix distinguishers Q, for each S in the support ofΘwe can

apply reasoning similar to Theorem 3.5 to conclude that there is a high-entropy PSD matrix-valued

function PS that matches the degree-D moments of ΛS.

Lemma 4.4. If there are no degree-D matrix distinguishers Q for µ, ν, then for each S ∼ Θ, there exists a
solution PS to Program 3.1 (with the variable Λ :� ΛS) and

‖PS‖Fr,ν 6 n(B+d)/4 6 nB/2
(4.2)

This does not follow directly from Theorem 3.5, because a priori a distinguisher for some specific

S may only apply to a small fraction of the support of µ. However, we can show that Program 3.1

has large value for ΛS only if there is a distinguisher for µ, ν.

Proof. By Claim 3.4, it suffices for us to argue that there is no degree-D matrix polynomial Q which

has large inner product with ΛS relative to its Frobenius norm. So, suppose by way of contradiction

that Q is a degree-D matrix that distinguishes ΛS, so that 〈Q ,ΛS〉ν > nB+d
but ‖Q‖Fr,ν 6 1.

It follows by definition of ΛS that

nB+d 6 〈Q ,ΛS〉ν � �
I∼ν
�
I′

S
∼ν
µ̂(IS ◦ I′S) · 〈Q(I), x(IS)6d(x(IS)6d)>〉

� �
IS◦I′S∼µ

〈
�
IS∼ν

Q(IS ◦ IS), x(IS)6d(x(IS)6d)>
〉

6 �
µ

[
λ+

max

(
�
IS∼ν

Q(IS ◦ IS)
)]
·
x(IS)6d

2

2
.

So, we will show that QS(I) � �I′
S
∼ν Q(IS ◦ I′S) is a degree-D distinguisher for µ. The degree of QS

is at most D, since averaging over settings of the variables cannot increase the degree. Applying

our assumption that ‖x(IS)6d ‖2
2
6 K 6 nd

, we already have �µ λ+
max
(QS) > nB

. It remains to show

that �ν λ+
max
(QS) is bounded. For this, we use the following fact about the trace.

Fact 4.5 (See e.g. Theorem 2.10 in [CC09]). For a function f : �→ � and a symmetric matrix A with
eigendecomposition

∑
λ · vv>, define f (A) � ∑

f (λ) · vv>. If f : �→ � is continuous and convex, then
the map A→ Tr( f (A)) is convex for symmetric A.
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The function f (t) � (max{0, t})2 is continuous and convex over�, so the fact above implies that

the map A → ‖A+‖2Fr is convex for symmetric A. We can take QS to be symmetric without loss

of generality, as in the argument above we only consider the inner product of QS with symmetric

matrices. Now we have that

‖(QS(I))+‖2Fr �


(
�
I′

S

[
Q(IS ◦ I′S)

] )
+

2

Fr

6 �
I′

S

(Q(IS ◦ I′S)
)
+

2

Fr
,

where the inequality is the definition of convexity. Taking the expectation over I ∼ ν gives us that
‖(QS)+‖2Fr,ν 6 ‖Q+‖2Fr,ν 6 1, which gives us our contradiciton. �

Now, analogous to Λ, set P def

� �S∼Θ PS.

RandomRestriction. Wewill exploit the crucial property thatΛ and P are averages over functions

that depend on subsets of variables. This has the same effect as a random restriction, in that 〈P, R〉ν
essentially depends on the low-degree part of R. Formally, we will show the following lemma.

Lemma 4.6. (Random Restriction) Fix D , ` ∈ �. For matrix-valued functions R : I→ �`×` and a family
of functions {PS : IS → �`×`}S⊆[N], and a distribution Θ over subsets of [N],

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉 > �

S∼Θ
�
I∼ν
〈PS(IS), R<D

S (IS)〉 − ρ(D ,Θ)1/2 ·
(
�

S∼Θ
‖PS‖2Fr,ν

) 1

2

‖R‖Fr,ν

where
ρ(D ,Θ) � max

α,|α |>D
�

S∼Θ
[α ⊆ S].

Proof. We first re-express the left-hand side as

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉 � �

S∼Θ
�
I∼ν
〈PS(IS), RS(IS)〉

where RS(IS)
def

� �IS
[R(I)] obtained by averaging out all coordinates outside S. Splitting the

function RS into its low-degree and high-degree parts, RS � R6D
S + R>D

S , then applying a Cauchy-

Schwartz inequality we get

�
S∼Θ
�
I∼ν
〈PS(IS), RS(IS)〉 > �

S∼Θ
�
I∼ν
〈PS(IS), R<D

S (IS)〉 −
(
�

S∼Θ
‖PS‖2Fr,ν

) 1/2
·
(
�

S∼Θ
‖R>D

S ‖
2

Fr,ν

) 1/2
.

Expressing R>D(I) in the Fourier basis, we have that over a random choice of S ∼ Θ,

�
S∼Θ
‖R>D

S ‖
2

Fr,ν �
∑

α,|α |>D

�
S∼Θ
[α ⊆ S] · R̂2

α 6 ρ(D ,Θ) · ‖R‖2Fr

Substituting into the above inequality, the conclusion follows. �
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Equality Constraints. Since Λ is close to satisfying all the equality constraints G of the SDP, the

function P approximately satisfies the low-degree part of G. Specifically, we can prove the following.

Lemma 4.7. Let k > deg
inst
(G j) for all G j ∈ S. With P defined as above and under the conditions of

Theorem 2.6 for any function G ∈ G, ��〈P,G6D〉ν
�� 6 2

n2B ‖G‖Fr,ν

Proof. Recall that G � span{χS · G j | j ∈ [m], S ⊆ [N]} and letΠG be the orthogonal projection into

G. Now, since G ∈ G,

G6D
� (ΠGG)6D

� (ΠGG6D−2k)6D
+ (ΠGG>D−2k)6D . (4.3)

Now we make the following claim regarding the effect of projection on to the ideal G, on the

degree of a polynomial.

Claim 4.8. For every polynomial Q, deg(ΠGQ) 6 deg(Q) + 2k. Furthermore for all α, ΠGQ>α
has

no monomials of degree 6 α − k

Proof. To establish the first part of the claim it suffices to show that ΠGQ ∈ span{χS · G j | |S | 6
deg(Q) + k}, since deg(G j) 6 k for all j ∈ [m]. To see this, observe that ΠGQ ∈ span{χS · G j | |S | 6
deg(Q) + k} and is orthogonal to every χS · G j with |S | > deg(Q) + k:

〈ΠGQ , χS · G j〉ν � 〈Q ,ΠGχS · G j〉ν � 〈Q , χS · G j〉ν � 〈QG j , χS〉ν � 0,

where the final equality is because deg(χS) > deg(G j) + deg(Q). On the other hand, for every

subset S with deg(χS) 6 α − k,

〈ΠGQ>α , χS · G j〉 � 〈Q>α ,ΠGχS · G j〉 � 〈Q>α , χS · G j〉 � 0, since α > deg(G j) + deg(χS)

This implies thatΠGQ>α ∈ span{χS ·G j | |S | > α− k}which implies thatΠGQ>α
has no monomials

of degree 6 α − k. �

Incorporating the above claim into (4.3), we have that

G6D
� ΠGG6D−2k

+ (ΠGG>D−2k)[D−3k ,D] ,

where the superscript [D − 3k ,D] denotes the degree range. Now,

〈P,G6D〉ν � 〈P,ΠGG6D−2k〉ν + 〈P, (ΠGG>D−2k)[D−3k ,D]〉ν

And since ΠGG6D−2k
is of degree at most D we can replace P by Λ,

� 〈Λ,ΠGG6D−2k〉ν + 〈P, (ΠGG>D−2k)[D−3k ,D]〉ν

Now bounding the first term using Corollary 4.3 with a nB
bound on K,

6

(
1

n8B

) 1/2
· nB · (nB · ‖ΠGG6D−2k

∅,∅ ‖Fr,ν) + 〈P, (ΠGG>D−2k)[D−3k ,D]〉
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And for the latter term we use Lemma 4.6,

6
1

n2B ‖ΠGG6D−2k
∅,∅ ‖Fr,ν +

1

n4B

(
�
S
‖PS‖2Fr,ν

) 1/2
‖G‖Fr,ν ,

where we have used the fact that (ΠGG>D−2k)[D−3k ,D]
is high degree. By property of orthogonal

projections, ‖ΠGG>D−2k ‖Fr,ν 6 ‖G>D−2k ‖Fr,ν 6 ‖G‖Fr,ν. Along with the bound on ‖PS‖Fr,ν from

(4.2), this implies the claim of the lemma. �

Finally, we have all the ingredients to complete the proof of Theorem 2.6.

Proof of Theorem 2.6. Suppose we sample an instance I ∼ ν, and suppose by way of contradiction

this implies that with high probability the SoS SDP relaxation is infeasible. In particular, this implies

that there is a degree-d sum-of-squares refutation of the form,

−1 � aI(x) +
∑
j∈[m]

1Ij (x) · q
I
j (x),

where aI is a sum-of-squares of polynomials of degree at most 2d in x, and deg(qIj )+deg(1Ij ) 6 2d.

Let AI ∈ �[n]6d×[n]6d
be the matrix of coefficients for aI(c) on input I, and let GI be defined

similarly for

∑
j∈[m] 1 j(x) · q j(x). We can rewrite the sum-of-squares refutation as a matrix equality,

−1 � 〈X6d ,AI〉 + 〈X6d ,GI〉,

where GI ∈ G, the span of the equality constraints of the SDP.

Define s : I→ {0, 1} as

s(I) def

� �[∃ a degree-2d sos-refutation for S(I)]

By assumption, �I∼ν[s(I)] � 1 − 1

n8B . Define matrix valued functions A,G : I→ �[n]6d×[n]6d
by

setting,

A(I) def

� s(I) · AI

G(I) def

� s(I) · GI

With this notation, we can rewrite the sos-refutation identity as a polynomial identity in X and I,

−s(I) � 〈X6d ,A(I)〉 + 〈X6d ,G(I)〉 .

Let e∅,∅ denote the [n]6d × [n]6d
matrix with the entry corresponding to (∅, ∅) equal to 1, while the

remaining entries are zero. We can rewrite the above equality as,

−〈X6d , s(I) · e∅,∅〉 � 〈X6d ,A(I)〉 + 〈X6d ,G(I)〉 .

for all I and formal variables X.

Now, let P � �S∼Θ PS where each PS is obtained by from the Program 3.1 with ΛS. Substituting

X6d
with P(I) and taking an expectation over I,

〈P, s(I) · e∅,∅〉ν � 〈P,A〉ν + 〈P,G〉ν (4.4)
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> 〈P,G〉ν (4.5)

where the inequality follows because A, P � 0. We will show that the above equation is a

contradiction by proving that LHS is less than −0.9, while the right hand side is at least −0.5. First,

the right hand side of (4.4) can be bounded by Lemma 4.7

〈P,G〉ν � �
I∼ν
�

S∼Θ
〈PS(IS),G(I)〉

> �
I∼ν
�

S∼Θ
〈PS(IS),G6D(I)〉 − 1

n4B ·
(
�
S
‖PS‖2Fr,ν

)
1/2
· ‖G‖Fr,ν (random restriction Lemma 4.6)

> − 2

n2B · ‖G‖Fr,ν −
1

n4B

(
�
S
‖PS‖2Fr,ν

) 1/2
‖G‖Fr,ν (using Lemma 4.7)

> −1

2

where the last step used the bounds on ‖PS‖Fr,ν from (4.2) and on ‖G‖Fr,ν from the nB
bound

assumed on the SoS proofs in Theorem 2.6.

Now the negation of the left hand side of (4.4) is

�
I∼ν
〈P(I), s(I) · e∅,∅〉 > �

I∼ν
[P∅,∅(I) · 1] −�[(s − 1)2]1/2 · ‖P‖Fr,ν

The latter term can be simplified by noticing that the expectation of the square of a 0,1 indicator is

equal to the expectation of the indicator, which is in this case
1

n8B by assumption. Also, since 1 is a

constant, P∅,∅ and Λ∅,∅ are equivalent:

� �
I∼ν
[Λ∅,∅(I) · 1] −

1

n4B · ‖P‖Fr,ν

� 1 − 1

n4B · ‖P‖Fr,ν ( using (4.1))

� 1 − 1

n3B (using (4.2))

We have the desired contradiction in (4.4). �

4.1 Handling Inequalities

Suppose the polynomial system Program 2.2 includes inequalities of the form h(I , x) > 0, then a

natural approach would be to introduce a slack variable z and set h(I , x) − z2 � 0. Now, we can

view the vector (x , z) consisting of the original variables along with the slack variables as the hidden

planted solution. The proof of Theorem 2.6 can be carried out as described earlier in this section,

with this setup. However, in many cases of interest, the inclusion of slack variables invalidates the

robust inference property. This is because, although a feasible solution x can be recovered from a

subinstance IS, the value of the corresponding slack variables could potentially depend on IS. For

instance, in a random CSP, the value of the objective function on the assignment x generated from

IS depends on all the constraints outside of S too.

The proof we described is to be modified as follows.
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• As earlier, construct ΛS using only the robust inference property of original variables x, and
the corresponding matrix functions PS.

• Convert each inequality of the form hi(I , x) > 0, in to an equality by setting hi(I , x) � z2

i .

• Now we define a pseudo-distribution
˜ΛS(IS) over original variables x and slack variables z as

follows. It is convenient to describe the pseudo-distribution in terms of the corresponding

pseudo-expectation operator. Specifically, if x(IS) is a feasible solution for Program 2.2 then

define

˜E[zσxα]
def

�

{
0 if σi odd for some i∏

i∈σ(hi(I , x(IS)))σi/2 · x(IS)α otherwise

Intuitively, thepseudo-distributionpicks the sign for each zi uniformly at random, independent

of all other variables. Therefore, all moments involving an odd power of zi are zero. On the

other hand, the moments of even powers of zi are picked so that the equalities hi(I , x) � zi

are satisfied.

It is easy to check that
˜Λ is psd matrix valued, satisfies (4.1) and all the equalities.

• While ΛS in the original proof was a function of IS, ˜ΛS is not. However, the key observation is

that,
˜ΛS is degree at most k · d in the variables outside of S. Each function hi(I , x(IS)) is degree

at most k in IS, and the entries of
˜ΛS(IS) are a product of at most d of these polynomials.

• The main ingredient of the proof that is different from the case of equalities is the random

restriction lemma which we outline below. The error in the random restriction is multiplied

by Ddk/2 6 nB/2
; however this does not substantially change our results, since Theorem 2.6

requires ρ(D ,Θ) < n−8B
, which leaves us enough slack to absorb this factor (and in every

application ρ(D ,Θ) � pO(D)
for some p < 1 sufficiently small that we meet the requirement

that Ddkρ(D − dk ,Θ) is monotone non-increasing in D).

Lemma 4.9. [Random Restriction for Inequalities] Fix D , ` ∈ �. Consider a matrix-valued function
R : I→ �`×` and a family of functions {PS : I→ �`×`}S⊆[N] such that each PS has degree at most dk in
IS. If Θ is a distribution over subsets of [N] with

ρ(D ,Θ) � max

α,|α |>D
�

S∼Θ
[α ⊆ S],

and the additional requirement that Ddk · ρ(D − dk ,Θ) is monotone non-increasing in D, then

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉 > �

S∼Θ
�
I∼ν
〈PS(IS), ˜R<D

S (IS)〉 − Ddk/2 · ρ(D − dk ,Θ)1/2 ·
(
�

S∼Θ
‖PS‖2

2,ν

) 1

2

‖R‖Fr,ν

Proof.

�
I∼ν
�

S∼Θ
〈PS(IS), R(I)〉 � �

S∼Θ
�
I∼ν
〈PS(IS), ˜RS(I)〉

where
˜RS(I) is now obtained by averaging out the values for all monomials whose degree in S is

> dk. Writing
˜RS � ˜R6D

S + ˜R>D
S and applying a Cauchy-Schwartz inequality we get,

�
S∼Θ
�
I∼ν
〈PS(IS), ˜RS(I)〉 > �

S∼Θ
�
I∼ν
〈PS(IS), ˜R<D

S (I)〉 −
(
�

S∼Θ
‖PS‖2Fr,ν

) 1/2
·
(
�

S∼Θ
‖ ˜R>D

S ‖Fr,ν

) 1/2
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Over a random choice of S,

�
S∼Θ
‖ ˜R>D

S ‖
2

Fr,ν �
∑

α,|α |>D

�
S∼Θ
[|α ∩ S | 6 dk] · R̂2

α 6 Ddk · ρ(D − dk ,Θ) · ‖R‖2Fr ,

where we have used that Ddkρ(D − dk ,Θ) is a monotone non-increasing function of D. Substituting

this in the earlier inequality the Lemma follows. �

5 Applications to Classical Distinguishing Problems

In this section, we verify that the conditions of Theorem 2.6 hold for a variety of canonical

distinguishing problems. We’ll rely upon the (simple) proofs in Appendix A, which show that the

ideal term of the SoS proof is well-conditioned.

Problem 5.1 (Planted clique with clique of size nδ). Given a graph G � (V, E) on n vertices,

determine whether it comes from:

• Uniform Distribution: the uniform distribution over graphs on n vertices (G(n , 1

2
)).

• Planted Distribution: the uniform distribution over n-vertex graphs with a clique of size at

least nδ

The usual polynomial program for planted clique in variables x1 , . . . , xn is:

obj 6
∑

i

xi

x2

i � xi ∀i ∈ [n]
xi x j � 0 ∀(i , j) ∈ E

Lemma 5.2. Theorem 2.6 applies to the above planted clique program, so long as obj 6 nδ−ε for any
ε > c·d

D−6d for a fixed constant c.

Proof. For planted clique, for our notion of “instance degree”, rather than themultiplicity of instance

variables, the “degree” of Iα will be the number of distinct vertices incident on the edges in α. The

proof of Theorem 2.6 proceeds identically with this notion of degree, but we will be able to achieve

better bounds on D relative to d.
In this case, the instance degree of the SoS relaxation is k � 2. We have from Corollary A.3 that

the degree-d SoS refutation is well-conditioned, with numbers bounded by nc1·d
for some constant

c1/2. Define B � c1d > dk.
Our subsampling distribution Θ is the distribution given by including every vertex with

probability ρ, producing an induced subgraph of ≈ ρn vertices. For any set of edges α of instance

degree at most D − 6d,
�

S∼Θ
[α ⊆ S] 6 ρD−6d ,

since the instance degree corresponds to the number of vertices incident on α.

This subsampling operation satisfies the subsample inference condition for the clique constraints

with probability 1, since a clique in any subgraph of G is also a clique in G. Also, if there is a clique

of size nδ in G, then by a Chernoff bound

�
S∼Θ
[∃ clique of size > (1 − β)ρnδ ∈ S] > 1 − exp(−

β2ρnδ

2

) .
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Choosing β �

√
10B log n
ρnδ , this gives us that Θ gives n−10B

-robust inference for the planted clique

problem, so long as obj 6 ρn/2. Choosing ρ � n−ε for ε so that

ρD−6d 6 n−8B
�⇒ ε >

c2d
D − 6d

,

for some constant c2, all of the conditions required by Theorem 2.6 now hold. �

Problem 5.3 (Random CSP Refutation at clause density α). Given an instance of a Boolean k-CSP
with predicate P : {±1}k → {±1} on n variables with clause set C, determine whether it comes

from:

• UniformDistribution: m ≈ αn constraints are generated as follows. Each k-tuple of variables
S ∈ [n]k is independently with probability p � αn−k+1

given the constraint P(xS ◦ zS) � bS

(where ◦ is the entry-wise multiplication operation) for a uniformly random zS ∈ {±1}k and
bS ∈ {±1}.

• Planted Distribution: a planted solution y ∈ {±1}n is chosen, and then m ≈ αn constraints

are generated as follows. Each k-tuple of variables S ∈ [n]k is independently with probability

p � αn−k+1
given the constraint P(xS ◦ zS) � bS for a uniformly random zS ∈ {±1}k , but

bS � P(yS ◦ zS)with probability 1 − δ and bS is uniformly random otherwise.

The usual polynomial program for random CSP refutation in variables x1 , . . . , xn is:

obj 6
∑

S∈[n]k
�[∃ constraint on S] ·

(
1 + P(xS ◦ zS) · bS

2

)
x2

i � 1 ∀i ∈ [n]

Lemma 5.4. If α > 1, then Theorem 2.6 applies to the above random k-CSP refutation problem, so long as
obj 6 (1 − δ − ε)m for any ε > c·d log n

D−3d , where c is a fixed constant.

Proof. In this case, the instance degree of the SoS relaxation k � 1. We have from Corollary A.3 that

the degree-d SoS refutation is well-conditioned, with numbers bounded by nc1d
for some constant

c1. Define B � c1d.
Our subsampling distribution Θ is the distribution given by including each constraint indepen-

dentlywith probability ρ, producing an inducedCSP instance on n variableswith approximately ρm
constraints. Since each constraint survives the subsampling with probability ρ, for any α ∈

( C
D−3d

)
,

�
S∼Θ
[α ⊆ S] 6 ρD−3d .

The subsample inference property clearly holds for the boolean constraints {x2

i � 1}i∈[n], as
a Boolean assignment to the variables is valid regardless of the number of constraints. Before

subsampling there are at least (1 − δ)m satisfied constraints, and so letting OS be the number of

constraints satisfied in sub-instance S, we have by a Chernoff bound

�
S∼Θ
[OS > (1 − β) · ρ(1 − δ)m] > 1 − exp

(
−
β2ρ(1 − δ)m

2

)
.
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Choosing β �

√
10B log n
ρ(1−δ)m � o(1) (with overwhelmingprobability sincewehave α > 1 �⇒ �[m] > n),

we have that Θ gives us n−10B
-robust inference for the random CSP refutation problem, so long as

obj 6 (1 − o(1))ρ(1 − δ)m. Choosing ρ � (1 − ε) so that

ρD−3d 6 n−8B
�⇒ ε >

c2d log n
D − 3d

,

for some constant c2. The conclusion follows (after making appropriate adjustments to the

constant). �

Problem 5.5 (Community detection with average degree d (stochastic block model)). Given a graph

G � (V, E) on n vertices, determine whether it comes from:

• UniformDistribution: G(n , b/n), the distribution over graphs in which each edge is included

independently with probability b/n.
• Planted Distribution: the stochastic block model—there is a partition of the vertices into two

equally-sized sets, Y and Z, and the edge (u , v) is present with probability a/n if u , v ∈ Y or

u , v ∈ Z, and with probability (b − a)/n otherwise.

Letting x1 , . . . , xn be variables corresponding to the membership of each vertex’s membership, and

let A be the adjacency of the graph. The canonical polynomial optimization problem is

obj 6 x>Ax

x2

i � 1 ∀i ∈ [n]∑
i

xi � 0.

Lemma 5.6. Theorem 2.6 applies to the community detection problem so long as obj 6 (1− ε) (2a−b)
4

n, for
ε >

c·d log n
D−3d where c is a fixed constant.

Proof. The degree of the SoS relaxation in the instance is k � 1. Since we have only hypercube and

balancedness constraints, we have from Corollary A.3 that the SoS ideal matrix is well-conditioned,

with no number in the SoS refutation larger than nc1d
for some constant c1. Let B � c1d.

Consider the solution x which assigns xi � 1 to i ∈ Y and xi � −1 to i ∈ Z. Our subsampling

operation is to remove every edge independently with probability 1−ρ. The resulting distributionΘ

and the corresponding restriction of x clearly satisfies the Booleanity and balancedness constraints

with probability 1. Since each edge is included independently with probability ρ, for any α ∈
( E
D−3d

)
,

�
S∼Θ
[α ⊆ S] 6 ρD−3d .

In the sub-instance, the expected value (over the choice of planted instance and over the choice

of sub-instance) of the restricted solution x is

ρa
n
·
((
|Y |
2

)
+

(
|Z |
2

))
− ρ b − a

n
· |Y | · |Z | �

(2a − b)ρn
4

− ρa ,

and by a Chernoff bound, the value in the sub instance is within a (1 − β)-factor with probability

1 − n−10B
for β �

√
10B log n

n . On resampling the edges outside the sub-instance from the uniform
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distribution, this value can only decrease by at most (1 − ρ)(1 + β)nb/2 w.h.p over the choice of the

outside edges.

If we set ρ � (1 − ε(2a − b)/10b), then ρD−3d 6 n−8B
for ε >

c2(2a−b) log n
D−3d . for some constant c2,

while the objective value is at least (1 − ε) (2a−b)n
4

. The conclusion follows (after making appropriate

adjustments to the constant). �

Problem 5.7 (Densest-k-subgraph). Given a graph G � (V, E) on n vertices, determine whether it

comes from:

• Uniform Distribution: G(n , p).
• Planted Distribution: A graph from G(n , p)with an instance of G(k , q) planted on a random

subset of k vertices, p < q.

Letting A be the adjacency matrix, the usual polynomial program for densest-k-subgraph in

variables x1 , . . . , xn is:

obj 6 x>Ax

x2

i � xi ∀i ∈ [n]∑
i

xi � k

Lemma 5.8. When k2(p + q) � d log n, Theorem 2.6 applies to the densest-k-subgraph problem with
obj 6 (1 − ε)(p + q)

(k
2

)
for any ε > c·d log n

D−3d for a fixed constant c.

Proof. The degree of the SoS relaxation in the instance is k � 1. We have from Corollary A.3 that the

SoS proof has no values larger than nc1d
for a constant c1; fix B � c1d.

Our subsampling operation is to include each edge independently with probability ρ, and take

the subgraph induced by the included edges. Clearly, the Booleanity and sparsity constraints are

preserved by this subsampling distribution Θ. Since each edge is included independently with

probability ρ, for any α ∈
( E
D−3d

)
,

�
S∼Θ
[α ⊆ S] 6 ρD−3d .

Now, the expected objective value (over the instance and the sub-sampling) is at least ρ(p + q)
(k
2

)
,

and applying a Chernoff bound, we hace that the probability the sub-sampled instance has value

less than (1 − β)ρ(p + q)
(k
2

)
is at most n−10B

if we choose β �

√
10B log n
ρ(p+q)(k

2
) (which is valid since we

assumed that d log n � (p + q)k2
). Further, a dense subgraph on a subset of the edges is still dense

when more edges are added back, so we have the n−10B
-robust inference property.

Thus, choosing ρ � (1 − ε) and setting

ρD−3d 6 n−8B
�⇒ ε >

c2d log n
D − 3d

,

for some constant c2, which concludes the proof (after making appropriate adjustments to the

constant). �

Problem 5.9 (Tensor PCA). Given an order-k tensor in (�n)⊗k
, determine whether it comes from:

• Uniform Distribution: each entry of the tensor sampled independently fromN(0, 1).
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• Planted Distribution: a spiked tensor, T � λ · v⊗k + G where v is sampled uniformly from

{± 1√
n
}n , and where G is a random tensor with each entry sampled independently from

N(0, 1).
Given the tensor T, the canonical program for the tensor PCA problem in variables x1 , . . . , xn is:

obj 6 〈x⊗k ,T〉
‖x‖2

2
� 1

Lemma 5.10. For λn−ε � log n, Theorem 2.6 applies to the tensor PCA problem with obj 6 λn−ε for
any ε > c·d

D−3d for a fixed constant c.

Proof. The degree of the SoS relaxation in the instance is k � 1. Since the entries of the noise

component of the tensor are standard normal variables, with exponentially good probability over

the input tensor T we will have no entry of magnitude greater than nd
. This, together with

Corollary A.3, gives us that except with exponentially small probability the SoS proof will have no

values exceeding nc1d
for a fixed constant c1.

Our subsampling operation is to set to zero every entry of T independently with probability

1 − ρ, obtaining a sub-instance T′ on the nonzero entries. Also, for any α ∈
( [n]k
D−3d

)
,

�
S∼Θ
[α ∈ S] 6 ρD−3d .

This subsampling operation clearly preserves the planted solution unit sphere constraint.

Additionally, let R be the operator that restricts a tensor to the nonzero entries. We have that

〈R(λ · v⊗k), v⊗k〉 has expectation λ · ρ, since every entry of v⊗k
has magnitude n−k/2

. Applying a

Chernoff bound, we have that this quantity will be at least (1 − β)λρ with probability at least n−10B

if we choose β �

√
10B log n

λρ .

It remains to address the noise introduced by GT′ and resampling all the entries outside of the

subinstance T′. Each of these entries is a standard normal entry. The quantity 〈(Id−R)(N), v⊗k〉
is a sum over at most nk

i.i.d. Gaussian entries each with standard deviation n−k/2
(since that is

the magnitude of (v⊗k)α. The entire quantity is thus a Gaussian random variable with mean 0 and

variance 1, and therefore with probability at least n−10B
this quantity will not exceed

√
10B log n. So

long as

√
10B log n � λρ, the signal term will dominate, and the solution will have value at least

λρ/2.
Now, we set ρ � n−ε so that

ρD−3d 6 n−8B
�⇒ ε >

2c1d
D − 3d

,

which concludes the proof (after making appropriate adjustments to the constant c1). �

Problem 5.11 (Sparse PCA). Given an n × m matrix M in �n
, determine whether it comes from:

• Uniform Distribution: each entry of the matrix sampled independently fromN(0, 1).
• Planted Distribution: a random vector with k non-zero entries v ∈ {0,±1/

√
k}n is chosen,

and then the ith column of the matrix is sampled independently by taking si v + γi for a

uniformly random sign si ∈ {±1} and a standard gaussian vector γi ∼ N(0, Id).
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The canonical program for the sparse PCA problem in variables x1 , . . . , xn is:

obj 6 ‖M>x‖2
2

x2

i � xi ∀i ∈ [n]
‖x‖2

2
� k

Lemma 5.12. For kn−ε/2 � log n, Theorem 2.6 applies to the sparse PCA problem with obj 6 k2−εm for
any ε > c·d

D−6d for a fixed constant c.

Proof. The degree of the SoS relaxation in the instance is 2. Since the entries of the noise are standard

normal variables, with exponentially good probability over the input matrix M we will have no

entry of magnitude greater than nd
. This, together with Corollary A.3, gives us that except with

exponentially small probability the SoS proof will have no values exceeding nc1d
for a fixed constant

c1.

Our subsampling operation is to set to zero every entry of M independently with probability

1 − ρ, obtaining a sub-instance M on the nonzero entries. Also, for any α ∈
( M
D−6d

)
,

�
S∼Θ
[α ∈ S] 6 ρD−6d .

This subsampling operation clearly preserves the constraints on the solution variables.

We take our subinstance solution y �
√

kv, which is feasible. Let R be the subsampling operator

that zeros out a set of columns. On subsampling, and then resampling the zeroed out columns

from the uniform distribution, we can write the resulting
˜M as

˜M> � R(svT) + G>

where GT
is a random Gaussian matrix. Therefore, the objective value obtained by the solution

y �
√

kv is

˜M>y �

√
k · R(sv>)v +

√
k · G>v

The first term is a vector usi1nal with m entries, each of which is a sum of k Bernoulli random

variables, all of the same sign, with probability ρ of being nonzero. The second term is a vector

unoise with m entries, each of them an independent Gaussian variable with variance bounded by k.
We have that

�
Θ
[‖usi1nal ‖2

2
] � (ρk)2m ,

and by Chernoff bounds we have that this concentrates within a (1 − β) factor with probability

1 − n−10B
if we take β �

√
10B log n
(ρk)2m .

The expectation of 〈usi1nal , unoise〉 is zero, and applying similar concentration arguments we

have that with probability 1 − n10B
, |〈usi1nal , unoise〉| 6 (1 + β)ρk. Taking the union bound over

these events and applying Cauchy-Schwarz, we have that

‖R(M)y‖2
2
> (ρk)2m − 2km � ρ2k2m − 2km.

so long as ρk � 1, the first term dominates.
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Now, we set ρ � n−ε for ε < 1 so that

ρD−6d 6 n−8B
�⇒ ε >

c2d
D − 6d

,

for some constant c2, which concludes the proof. �

Remark 5.13. For tensor PCA and sparse PCA, the underlying distributions were Gaussian. Applying

Theorem 2.6 in these contexts yields the existence of distinguishers that are low-degree in a non-

standard sense. Specifically, the degree of a monomial will be the number of distinct variables in it,

irrespective of the powers to which they are raised.

6 Exponential lower bounds for PCA problems

In this section we give an overview of the proofs of our SoS lower bounds for the tensor and sparse

PCA problems. We begin by showing how Conjecture 1.2 predicts such a lower bound in the tensor

PCA setting. Following this we state the key lemmas to prove the exponential lower bounds; since

these lemmas can be proved largely by techniques present in the work of Barak et al. on planted

clique [BHK
+
16], we leave the details to a forthcoming full version of the present paper.

6.1 Predicting sos lower bounds from low-degree distinguishers for Tensor PCA

In this section we demonstrate how to predict using Conjecture 1.2 that when λ � n3/4−ε
for ε > 0,

SoS algorithms cannot solve Tensor PCA. This prediction is borne out in Theorem 1.4.

Theorem 6.1. Let µ be the distribution on �n⊗n⊗n which places a standard Gaussian in each entry. Let ν
be the density of the Tensor PCA planted distribution with respect to µ, where we take the planted vector v to
have each entry uniformly chosen from {± 1√

n
}.7 If λ 6 n3/4−ε, there is no degree no(1) polynomial p with

�
µ

p(A) � 0, �
planted

p(A) > nΩ(1) ·
(
�
µ

p(A)
)

1/2
.

We sketch the proof of this theorem. The theorem follows from two claims.

Claim 6.2.

max

deg p6no(1)

,�µ p(T)�0

�ν p(T)(
�µ p(T)2

)
1/2 � (�

µ
(ν6d(T) − 1)2)1/2 (6.1)

where ν6d
is the orthogonal projection (with respect to µ) of the density ν to the degree-d

polynomials. Note that the last quantity is just the 2 norm, or the variance, of the truncation to

low-degree polynomials of the density ν of the planted distribution.

Claim 6.3. (�µ(v6d(T) − 1)2)1/2 � 1 when λ 6 n3/4−ε
for ε > Ω(1) and d � no(1)

.

The theorem follows immediately. We sketch proofs of the claims in order.

7This does not substantially modify the problem but it will make calculations in this proof sketch more convenient.
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Sketch of proof for Claim 6.2. By definition of ν, the maximization is equivalent to maximizing

�µ ν(T) · p(T) among all p of degree d � no(1)
and with �µ p(T)2 � 1 and �µ p(T) � 0. Standard

Fourier analysis shows that this maximum is achieved by the orthogonal projection of ν − 1 into the

span of degree d polynomials.

To make this more precise, recall that the Hermite polynomials provide an orthonormal basis

for real-valued polynomials under the multivariate Gaussian distribution. (For an introduction

to Hermite polynomials, see the book [O’D14].) The tensor T ∼ µ is an n3
-dimensional multi-

variate Gaussian. For a (multi)-set W ⊆ [n]3, let HW be the W-th Hermite polynomial, so that

�µ HW (T)HW′(T) � �W�W′.

Then the best p (ignoring normalization momentarily) will be the function

p(A) � ν6d(A) − 1 �

∑
16 |W |6d

( �
T∼µ

ν(T)HW (T)) · HW (A)

Here �µ ν(T)HW (T) � ν̂(W) is the W-th Fourier coefficient of ν. What value for (6.1) is achieved by

this p? Again by standard Fourier analysis, in the numerator we have,

�
ν

p(T) � �
ν
(ν6D(T) − 1) � �

µ
ν(T) · (ν6D(T) − 1) � �

µ
(ν6d(T) − 1)2

Comparing this to the denominator, the maximum value of (6.1) is (�µ(v6d(T) − 1)2)1/2. This is
nothing more than the 2-norm of the projection of ν − 1 to degree-d polynomials! �

The following fact, used to prove Claim 6.3, is an elementary computation with Hermite

polynomials.

Fact 6.4. Let W ⊆ [n]3. Then ν̂(W) � λ |W |n−3|W |/2 if W , thought of as a 3-uniform hypergraph, has all
even degrees, and is 0 otherwise.

To see that this calculation is straightforward, note that
�ν(W) � �µ ν(T)HW (T) � �ν HW (T),

so it is enough to understand the expectations of the Hermite polynomials under the planted

distribution.

Sketch of proof for Claim 6.3. Working in the Hermite basis (as described above), we get �µ(v6d(T) −
1)2 �

∑
16 |W |6d ν̂(W)2. For the sake of exposition, we will restrict attention in the sum to W in which

no element appears with multiplicity larger than 1 (other terms can be treated similarly).

What is the contribution to

∑
16 |W |6d ν̂(W)2 of terms W with |W | � t? By the fact above, to

contribute a nonzero term to the sum, W ,considered as a 3-uniform hypergraph must have even

degrees. So, if it has t hyperedges, it contains at most 3t/2 nodes. There are n3t/2
choices for these

nodes, and having chosen them, at most tO(t)
3-uniform hypergraphs on those nodes. Hence,∑

16 |W |6d

ν̂(W)2 6
d∑

t�1

n3t/2tO(t)λ2t n−3t .

So long as λ2 6 n3/2−ε
for some ε � Ω(1) and t 6 d 6 nO(ε)

, this is o(1). �
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6.2 Main theorem and proof overview for Tensor PCA

In this section we give an overview of the proof of Theorem 1.4. The techniques involved in proving

the main lemmas are technical refinements of techniques used in the work of Barak et al. on SoS

lower bounds for planted clique [BHK
+
16]; we therefore leave full proofs to a forthcoming full

version of this paper.

To state and prove our main theorem on tensor PCA it is useful to define a Boolean version of

the problem. For technical convenience we actually prove an SoS lower bound for this problem;

then standard techniques (see Section C) allow us to prove the main theorem for Gaussian tensors.

Problem 6.5 (k-Tensor PCA, signal-strength λ, boolean version). Distinguish the following two

distributions on Ωk
def

� {±1}(nk).

• the uniform distribution: A ∼ Ω chosen uniformly at random.

• the planted distribution: Choose v ∼ {±1}n and let B � v⊗k
. Sample A by rerandomizing every

coordinate of B with probability 1 − λn−k/2
.

We show that the natural SoS relaxation of this problem suffers from a large integrality gap, when

λ is slightly less than nk/4
, even when the degree of the SoS relaxation is nΩ(1). (When λ � nk/4−ε

,

algorithmswith running time 2
nO(ε)

are known for k � O(1) [RM14,HSS15,HSSS16, BGL16, RRS16].)

Theorem 6.6. Let k � O(1). For A ∈ Ωk , let

SoSd(A)
def

� max

˜�

˜�〈x⊗k ,A〉 s.t. ˜� is a degree-d pseudoexpectation satisfying {‖x‖2 � 1} .

There is a constant c so that for every small enough ε > 0, if d 6 nc·ε, then for large enough n,

�
A∼Ω
{SoSd(A) > nk/4−ε} > 1 − o(1)

and
�

A∼Ω
SoSd(A) > nk/4−ε .

Moreover, the latter also holds for A with iid entries fromN(0, 1).8

To prove the theorem we will exhibit for a typical sample A from the uniform distribution a

degree nΩ(ε) pseudodistribution ˜� which satisfies {‖x‖2 � 1} and has
˜�〈x⊗k ,A〉 > nk/4−ε

. The

following lemma ensures that the pseudo-distribution we exhibit will be PSD.

Lemma 6.7. Let d ∈ � and let Nd �
∑

s6d n(n − 1) · · · (n − (s − 1)) be the number of 6 d-tuples with
unique entries from [n]. There is a constant ε∗ independent of n such that for any ε < ε∗ also independent of
n, the following is true. Let λ � nk/4−ε. Let µ(A) be the density of the following distribution (with respect to
the uniform distribution on Ω � {±1}(nk)).

The Planted Distribution: Choose v ∼ {±1}n uniformly. Let B � v⊗k . Sample A by

• replacing every coordinate of B with a random draw from {±1} independently with probability
1 − λn−k/2,

8For technical reasons we do not prove a tail bound type statement for Gaussian A, but we conjecture that this is also

true.
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• then choosing a subset S ⊆ [n] by including every coordinate with probability n−ε,

• then replacing every entry of B with some index outside S independently with a uniform draw from
{±1}.

Let Λ : Ω→ �Nd×Nd be the following function

Λ(A) � µ(A) · �
v |A

v⊗62d

Here we abuse notation and denote by x6⊗2d the matrix indexed by tuples of length 6 d with unique entries

from [n]. For D ∈ �, let Λ6D be the projection of Λ into the degree-D real-valued polynomials on {±1}(nk).
There is a universal constant C so that if Cd/ε < D < nε/C, then for large enough n

�
A∼Ω
{Λ6D(A) � 0} > 1 − o(1) .

For a tensor A, the moment matrix of the pseudodistribution we exhibit will beΛ6D(A). We will

need it to satisfy the constraint {‖x‖2 � 1}. This follows from the following general lemma. (The

lemma is much more general than what we state here, and uses only the vector space structures of

space of real matrices and matrix-valued functions.)

Lemma 6.8. Let k ∈ �. Let V be a linear subspace of �N×M . Let Ω � {±1}(nk). Let Λ : Ω→ V . Let Λ6D

be the entrywise orthogonal projection of Λ to polynomials of degree at most D. Then for every A ∈ Ω, the
matrix Λ6D(A) ∈ V .

Proof. The functionΛ is an element of the vector space�N×M ⊗�Ω. The projectionΠV : �N×M → V
and the projectionΠ6D from�Ω to the degree-D polynomials commute as projections on�N×M⊗�Ω,
since they act on separate tensor coordinates. It follows that Λ6D ∈ V ⊗ (�Ω)6D

takes values in

V . �

Last, we will require a couple of scalar functions of Λ6D
to be well concentrated.

Lemma 6.9. Let Λ, d , ε,D be as in Lemma 6.7. The function Λ6D satisfies

• �A∼Ω{Λ6D
∅,∅ (A) � 1 ± o(1)} > 1 − o(1) (Here Λ∅,∅ � 1 is the upper-left-most entry of Λ.)

• �A∼Ω{〈Λ6D(A),A〉 � (1 ± o(1)) · n3k/4−ε} > 1 − o(1) (Here we are abusing notation to write
〈Λ6D(A),A〉 for the inner product of the part of Λ6D indexed by monomials of degree k and A.)

The Boolean case of Theorem 6.6 follows from combining the lemmas. The Gaussian case can

be proved in a black-box fashion from the Boolean case following the argument in Section C.

The proofs of all the lemmas in this section follow analogous lemmas in the work of Barak et al.

on planted clique [BHK
+
16]; we defer them to the full version of the present work.

6.3 Main theorem and proof overview for sparse PCA

In this section we prove the following main theorem. Formally, the theorem shows that with high

probability for a random n × n matrix A, even high-degree SoS relaxations are unable to certify that

no sparse vector v has large quadratic form 〈v ,Av〉.

32



Theorem 6.10 (Restatement of Theorem 1.6). If A ∈ �n×n , let

SoSd ,k(A) � max

˜�

˜�〈x ,Ax〉 s.t. ˜� is degree d and satisfies
{

x3

i � xi , ‖x‖2 � k
}
.

There are absolute constants c , ε∗ > 0 so that for every ρ ∈ (0, 1) and ε ∈ (0, ε∗), if k � nρ, then for d 6 nc·ε,

�
A∼{±1}(

n
2
)
{SoSd ,k(A) > min(n1/2−εk , nρ−εk)} > 1 − o(1)

and
�

A∼{±1}(
n
2
)
SoSd ,k(A) > min(n1/2−εk , nρ−εk) .

Furthermore, the latter is true also if A is symmetric with iid entries fromN(0, 1).9

We turn to some discussion of the theorem statement. First of all, though it is technically

convenient for A in the theorem statement above to be a ±1 matrix, the entries may be replaced by

standard Gaussians (see Section C).

Remark 6.11 (Relation to the spiked-Wigner model of sparse principal component analysis). To
get some intuition for the theorem statement, it is useful to return to a familiar planted problem:

the spiked-Wigner model of sparse principal component analysis. Let W be a symmetric matrix

with iid entries fromN(0, 1), and let v be a random k-sparse unit vector with entries {±1/
√

k , 0}.
Let B � W + λvvT . The problem is to distinguish between a single sample from B and a sample

from W . There are two main algorithms for this problem, both captured by the SoS hierarchy. The

first, applicable when λ �
√

n, is vanilla PCA: the top eigenvalue of B will be larger than the top

eigenvalue of W . The second, applicable when λ � k, is diagonal thresholding: the diagonal entries
of B which corresponds to nonzero coordinates will be noticeably large. The theorem statement

above (transferred to the Gaussian setting, though this has little effect) shows that once λ is well

outside these parameter regimes, i.e. when λ < n1/2−ε , k1−ε
for arbitrarily small ε > 0, even degree

nΩ(ε) SoS programs do not distinguish between B and W .

Remark 6.12 (Interpretation as an integrality gap). A second interpretation of the theorem statement,

independent of any planted problem, is as a strong integrality gap for random instances for the

problem of maximizing a quadratic form over k-sparse vectors. Consider the actual maximum of

〈x ,Ax〉 for random ({±1} or Gaussian) A over k-sparse unit vectors x. There are roughly 2
k log n

points in a
1

2
-net for such vectors, meaning that by standard arguments,

max

‖x‖�1,x is k-sparse
〈x ,Ax〉 6 O(

√
k log n) .

With the parameters of the theorem, this means that the integrality gap of the degree nΩ(ε) SoS
relaxation is at least min(nρ/2−ε , n1/2−ρ/2−ε)when k � nρ.

Remark 6.13 (Relation to spiked-Wishart model). Theorem 1.6 most closely concerns the spiked-

Wigner model of sparse PCA; this refers to independence of the entries of the matrix A. Often,

sparse PCA is instead studied in the (perhaps more realistic) spiked-Wishart model, where the input

9For technical reasons we do not prove a tail bound type statement for Gaussian A, but we conjecture that this is also

true.

33



is m samples x1 , . . . , xm from an n-dimensional Gaussian vector N(0, Id+λ · vv>), where v is

a unit-norm k-sparse vector. Here the question is: as a function of the sparsity k, the ambient

dimension n, and the signal strength λ, how many samples m are needed to recover the vector v?
The natural approach to recovering v in this setting is to solve a convex relaxation of the problem

of maximizing he quadratic form of the empirical covariance M �
∑

i6m xi xi
ᵀ
over k-sparse unit

vectors (the maximization problem itself is NP-hard even to approximate [CPR16]).

Theoretically, one may apply our proof technique for Theorem 1.6 directly to the spiked-Wishart

model, but this carries the expense of substantial technical complication. We may however make

intelligent guesses about the behavior of SoS relaxations for the spiked-Wishart model on the basis

of Theorem 1.6 alone. As in the spiked Wigner model, there are essentially two known algorithms

to recover a planted sparse vector v in the spiked Wishart model: vanilla PCA and diagonal

thresholding [DM14b]. We conjecture that, as in the spiked Wigner model, the SoS hierarchy

requires nΩ(1) degree to improve the number of samples required by these algorithms by any

polynomial factor. Concretely, considering the case λ � 1 for simplicity, we conjecture that there are

constants c , ε∗ such that for every ε ∈ (0, ε∗) if m 6 min(k2−ε , n1−ε) and x1 , . . . , xm ∼ N(0, Id) are
iid, then with high probability for every ρ ∈ (0, 1) if k � nρ,

SoSd ,k

(∑
i6m

xi xi
ᵀ

)
> min(n1−εk , k2−ε)

for all d 6 nc·ε
.

Lemmas for Theorem 1.6. Our proof of Theorem 1.6 is very similar to the analogous proof for

Tensor PCA, Theorem 6.6. We state the analogues of Lemma 6.7 and Lemma 6.9. Lemma 6.8 can be

used unchanged in the sparse PCA setting.

The main lemma, analogous to Lemma 6.7 is as follows.

Lemma 6.14. Let d ∈ � and let Nd �
∑

s6d n(n − 1) · · · (n − (s − 1)) be the number of 6 d-tuples with
unique entries from [n]. Let µ(A) be the density of the following distribution on n × n matrices A with
respect to the uniform distribution on {±1}(n2).

Planted distribution: Let k � k(n) ∈ � and λ � λ(n) ∈ �, and γ > 0, and assume λ 6 k. Sample
a uniformly random k-sparse vector v ∈ �n with entries ±1, 0. Form the matrix B � vv>. For each nonzero
entry of B independently, replace it with a uniform draw from {±1} with probability 1 − λ/k (maintaining
the symmetry B � B>). For each zero entry of B, replace it with a uniform draw from {±1} (maintaining the
same symmetry). Finally, choose every i ∈ [n] with probability n−γ independently; for those indices that were
not chosen, replace every entry in the corresponding row and column of B with random ±1 entries.10 Output
the resulting matrix A. (We remark that this matrix is a Boolean version of the more standard spiked-Wigner
model B + λvv> where B has iid standard normal entries and v is a random k-sparse unit vector with entries
from {±1/

√
k , 0}.)

Let Λ : {±1}(n2) → �Nd×Nd be the following function

Λ(A) � µ(A) · �
v |A

v⊗62d

10This additional n−γ noising step is a technical convenience which has the effect of somewhat decreasing the number

of nonzero entries of v and decreasing the signal-strength λ.
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where the expectation is with respect to the planted distribution above. For D � D(n) ∈ �, let Λ6D be the
entrywise projection of Λ into the Boolean functions of degree at most D.

There are constants C, ε∗ > 0 such that for every γ > 0 and ρ ∈ (0, 1) and every ε ∈ (0, ε∗) (all
independent of n), if k � nρ and λ 6 min{nρ−ε , n1/2−ε}, and if Cd/ε < D < nε/C , then for large enough
n

�
A∼{±1}(

n
2
)
{Λ6D(A) � 0} > 1 − o(1) .

Remark 6.15. Wemake a few remarks about the necessity of some of the assumptions above. A useful

intuition is that the functionΛ6D(A) is (with high probability) positive-valued when the parameters

ρ, ε, γ of the planted distribution are such that there is no degree-D polynomial f : {±1}(n2) → �
whose values distinguish a typical sample from the planted distribution from a null model: a

random symmetric matrix with iid entries.

At this point it is useful to consider a more familiar planted model, which the lemma above

mimics. Let W be a n × n symmetric matrix with iid entries fromN(0, 1). Let v ∈ �n
be a k-sparse

unit vector, with entries in {±1/
√

k , 0}. Let A � W + λvvT . Notice that if λ � k, then diagonal

thresholding on the matrix W identifies the nonzero coordinates of v. (This is the analogue of the
covariance-thresholding algorithm in the spiked-Wishart version of sparse PCA.) On the other

hand, if λ �
√

n then (since typically ‖W ‖ ≈
√

n), ordinary PCA identifies v. The lemma captures

computational hardness for the problem of distinguishing a single sample from A from a sample

from the null model W both diagonal thresholding and ordinary PCA fail.

Next we state the analogue of Lemma 6.9.

Lemma 6.16. Let Λ, d , k , λ, γ,D be as in Lemma 6.14. The function Λ6D satisfies

• �
A∼{±1}(

n
k){Λ

6D
∅,∅ (A) � 1 ± o(1)} > 1 − o(1).

• �
A∼{±1}(

n
k){〈Λ

6D(A),A〉 � (1 ± o(1)) · λnΘ(−γ)} > 1 − o(1).
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A Bounding the sum-of-squares proof ideal term

We give conditions under which sum-of-squares proofs are well-conditioned, using techniques

similar to those that appear in [RW17] for bounding the bit complexity of SoS proofs. We begin

with some definitions.

Definition A.1. Let P be a polynomial optimization problem and letD be the uniform distribution

over the set of feasible solutions S for P. Define the degree-2d moment matrix of D to be

XD � �s∼D[ŝ⊗2d], where ŝ � [1 s]>.

• We say that P is k-complete on up to degree 2d if every zero eigenvector of XD has a degree-k
derivation from the ideal constraints of P.

Theorem A.2. Let P be a polynomial optimization problem over variables x ∈ �n of degree at most 2d, with
objective function f (x) and ideal constraints {1 j(x) � 0} j∈[m]. Suppose also that P is 2d-complete up to
degree 2d. Let G be the matrix of ideal constraints in the degree-2d SoS proof for P. Then if

• the SDP optimum value is bounded by nO(d)

• the coefficients of the objective function are bounded by nO(d),
• there is a set of feasible solutions S ⊆ �n with the property that for each α ⊆ [n]d , |α | 6 d for which
χα is not identically zero over the solution space, there exists some s ∈ S such that the square monomial
χα(s)2 > n−O(d),

it follows that the SoS certificate for the problem is well-conditioned, with no value larger than nO(d).

39



To prove this, we essentially reproduce the proof of the main theorem of [RW17], up to the very

end of the proof at which point we slightly deviate to draw a different conclusion.

Proof. Following our previous convention, the degree-2d sum-of-squares proof for P is of the form

sdpOpt− f (x) � a(x) + 1(x),

where the 1(x) is a polynomial in the span of the ideal constraints, and A is a sum of squares of

polynomials. Alternatively, we have the matrix characterization,

sdpOpt−〈F, x̂⊗2d〉 � 〈A, x̂⊗2d〉 + 〈G, x̂⊗2d〉,

where x̂ � [1 x]>, F,A, and G are matrix polynomials corresponding to f , a, and 1 respectively, and

with A � 0.

Now let s ∈ S be a feasible solution. Then we have that

sdpOpt−〈F, s⊗2d〉 � 〈A, s⊗2d〉 + 〈G, s⊗2d〉 � 〈A, s⊗2d〉,

where the second equality follows because each s ∈ S is feasible. By assumption the left-hand-side

is bounded by nO(d)
.

We will now argue that the diagonal entries of A cannot be too large. Our first step is to argue

that A cannot have nonzero diagonal entries unless there is a solution element in the solution

Let XD � �[x⊗2d] be the 2d-moment matrix of the uniform distribution of feasible solutions to

P. Define Π to be the orthogonal projection into the zero eigenspace of XD . By linearity and

orthonormality, we have that

〈XD ,A〉 �
〈
XD , (Π +Π⊥)A(Π +Π⊥)

〉
�

〈
XD ,Π⊥AΠ⊥

〉
+

〈
XD ,ΠAΠ⊥

〉
+

〈
XD ,Π⊥AΠ

〉
+ 〈XD ,ΠAΠ〉 .

By assumption P is 2d-complete onD up to degree 2d, and therefore Π is derivable in degree 2d
from the ideal constraints {1 j} j∈[m]. Therefore, the latter three terms may be absorbed into G, or

more formally, we can set A′ � Π⊥AΠ⊥, G′ � G + (Π +Π⊥)A(Π +Π⊥) −Π⊥AΠ⊥, and re-write the

original proof

sdpOpt−〈F, x̂⊗2d〉 � 〈A′, x̂⊗2d〉 + 〈G′, x̂⊗2d〉. (A.1)

The left-hand-side remains unchanged, so we still have that it is bounded by nO(d)
for any feasible

solution s ∈ S. Furthermore, the nonzero eigenspaces of XD and A′ are identical, and so A′ cannot
be nonzero on any diagonal entry which is orthogonal to the space of feasible solutions.

Now, we argue that every diagonal entry of A′ is at most nO(d)
. To see this, for each diagonal

term χ2

α, we choose the solution s ∈ S for which χα(s)2 > n−O(d)
. We then have by the PSDness of

A′ that
A′α,α · χα(s)2 6 〈s⊗2d ,A′〉 6 nO(d) ,

which then implies that A′α,α 6 nO(d)
. It follows that Tr(A′) 6 nO(d)

, and again since A′ is PSD,

‖A′‖F 6
√

Tr(A′) 6 nO(d). (A.2)
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Putting things together, we have from our original matrix identity (A.1) that

‖G′‖F � ‖ sdpOpt−A′ − F‖F
6 ‖ sdpOpt ‖F + ‖A′‖F + ‖F‖F (triangle inequality)
6 ‖ sdpOpt ‖F + nO(d)

+ ‖F‖F (from (A.2)).

Therefore by our assumptions that ‖ sdpOpt ‖ , ‖F‖F � nO(d)
, the conclusion follows. �

We now argue that the conditions of this theorem aremet by several general families of problems.

Corollary A.3. The following problems have degree-2d SoS proofs with all coefficients bounded by nO(d):

1. The hypercube: Any polynomial optimization problem with the only constraints being {x2

i � xi}i∈[n]
or {x2

i � 1}i∈[n] and objective value at most nO(d) over the set of integer feasible solutions. (Including
max k-csp).

2. The hypercube with balancedness constraints: Any polynomial optimization problem with the only
constraints being {x2

i − 1}i∈[n] ∪ {
∑

i xi � 0}. (Including community detection).

3. The unit sphere: Any polynomial optimization problem with the only constraints being {∑i∈[n] x2

i � 1}
and objective value at most nO(d) over the set of integer feasible solutions. (Including tensor PCA).

4. The sparse hypercube: As long as 2d 6 k, any polynomial optimization problem with the only
constraints being {x2

i � xi}i∈[n] ∪ {
∑

i∈[n] xi � k}, or {x3

i � xi}i∈[n] ∪ {
∑

i∈[n] x2

i � k}, and objective
value at most nO(d) over the set of integer feasible solutions. (Including densest k-subgraph and the
Boolean version of sparse PCA).

5. The max clique problem.

We prove this corollary below. For each of the above problems, it is clear that the objective value

is bounded and the objective function has no large coefficients. To prove this corollary, we need to

verify the completeness of the constraint sets, and then demonstrate a set of feasible solutions so

that each square term receives non-negligible mass from some solution.

A large family of completeness conditions were already verified by [RW17] and others (see the

references therein):

Proposition A.4 (Completeness of canonical polynomial optimization problems (from Corollary 3.5

of [RW17])). The following pairs of polynomial optimization problems P and distributions over solutionsD
are complete:

1. If the feasible set is x ∈ �n with {x2

i � 1}i∈[n] or {x2

i � xi}i∈[n], P is d-complete up to degree d (e.g. if
P is a CSP). This is still true of the constraints {x2

i � 1}i∈[n] ∪ {
∑

i xi � 0} (e.g. if P is a community
detection problem).

2. If the feasible set is x ∈ �n with
∑

i∈[n] x2

i � α, then P is d-complete onD up to degree d (e.g. if P is
the tensor PCA problem).

3. If P is the max clique problem with feasible set x ∈ �n with {x2

i � xi}i∈[n] ∪ {xi x j � 0}(i , j)∈E, then
P is d-complete onD up to degree d.
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A couple of additional examples can be found in the upcoming thesis of BenjaminWeitz [Wei17]:

Proposition A.5 (Completeness of additional polynomial optimization problems) [Wei17]). The
following pairs of polynomial optimization problems P and distributions over solutionsD are complete:

1. If P is the densest k-subgraph relaxation, with feasible set x ∈ �n with {x2

i � xi}i∈[n]∪{
∑

i∈[n] xi �

k}, P is d-complete onD up to degree d 6 k.

2. If P is the sparse PCA relaxation with sparsity k, with feasible set x ∈ �n with {x3

i � xi}i∈[n] ∪
{∑i∈[n] x2

i � k}, P is d-complete up to degree d 6 k/2.

Proof of Corollary A.3. We verify the conditions of Theorem A.2 separately for each case.

1. The hypercube: the completeness conditions are satisfied by Proposition A.4. We choose the

set of feasible solutions to contain a single point, s � ®1, for which χ2

α(s) � 1 always.

2. The hypercube with balancedness constraints: the completeness conditions are satisfied by

Proposition A.4. We choose the set of feasible solutions to contain a single point, s, some

perfectly balanced vector, for which χ2

α(s) � 1 always.

3. The unit sphere: the completeness conditions are satisfied by Proposition A.4. We choose the

set of feasible solutions to contain a single point, s �
1√
n
· ®1, for which χ2

α(s) > n−d
as long as

|α | 6 d, which meets the conditions of Theorem A.2.

4. The sparse hypercube: the completeness conditions are satisfied by Proposition A.5. Here, we

choose the set of solutions S � {x ∈ {0, 1}n | ∑i xi � k}. as long as k > d, for any |α | 6 d we

have that χS(x)2 � 1 when s is 1 on α.

5. The max clique problem: the completeness conditions are satisfied by Proposition A.4. We

choose the solution set S to be the set of 0, 1 indicators for cliques in the graph. Any α

that corresponds to a non-clique in the graph has χα identically zero in the solution space.

Otherwise, χα(s)2 � 1 when s ∈ S is the indicator vector for the clique on α.

This concludes the proof. �

B Lower bounds on the nonzero eigenvalues of somemoment matrices

In this appendix, we prove lower bounds on the magnitude of nonzero eigenvalues of covariance

matrices for certain distributions over solutions. Many of these bounds are well-known, but we

re-state and re-prove them here for completeness. We first define the property we want:

Definition B.1. Let P be a polynomial optimization problem and letD be the uniform distribution

over the set of feasible solutions S for P. Define the degree-2d moment matrix of D to be

XD � �x∼D[x̂⊗2d], where x̂ � [1 x]>.

• We say thatD is δ-spectrally rich up to degree 2d if every nonzero eigenvalue of XD is at least δ.

Proposition B.2 (Spectral richness of polynomial optimization problems). The following distributions
over solutionsD are polynomially spectrally rich:
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1. IfD is the uniform distribution over {±1}n , thenD is polynomially spectrally rich up to degree d 6 n.

2. If D is the uniform distribution over α · Sn−1, then D is polynomially spectrally rich up to degree
d 6 n.

3. If D is the uniform distribution over x ∈ {1, 0}n with ‖x‖0 � k, then if 2d 6 k, D is polynomially
spectrally rich up to degree d.

4. IfD is the uniform distribution over x ∈ {±1, 0}n with ‖x‖0 � k, then if 2d 6 k,D is polynomially
spectrally rich up to degree d.

Proof. In the proof of each statement, denote the 2dth moment matrix ofD by XD
def

� �x∼D[x⊗2d].
Because XD is a sum of rank-1 outer-products, an eigenvector of XD has eigenvalue 0 if and only if it

is orthogonal to every solution in the support ofD, and therefore the zero eigenvectors correspond

exactly to the degree at most d constraints that can be derived from the ideal constraints.

Now, let p1(x), . . . , pr(x) be a basis for polynomials of degree atmost 2d in x which is orthonormal

with respect toD, so that

�
x∼D
[pi(x)p j(x)] �

{
1 i � j

0 otherwise

If p̂i is the representation of pi in the monomial basis, we have that

(p̂i)>XD p̂ j � �
x∼D
[pi(x)p j(x)].

Therefore, the matrix R �
∑

i ei(p̂i)> diagonalizes XD ,

RXDR> � Id .

It follows that the minimum non-zero eigenvalue of XD is equal to the smallest eigenvalue of

(RR>)−1
, which is in turn equal to

1

σmax(R)2 where σmax(R) is the largest singular value of R. Therefore,

for each of these cases it suffices to bound the singular values of the change-of-basis matrix between

the monomial basis and an orthogonal basis overD. We now proceed to handle each case separately.

1. D uniform over hypercube: In this case, the monomial basis is an orthogonal basis, so R is the

identity on the space orthogonal to the ideal constraints, and σmax(R) � 1, which completes

the proof.

2. D uniform over sphere: Here, the canonical orthonormal basis the spherical harmonic

polynomials. Examining an explicit characterization of the spherical harmonic polynomials

(given for example in [DX13], Theorem 5.1), we have that when expressing pi in the monomial

basis, no coefficient of a monomial (and thus no entry of p̂i) exceeds nO(d)
, and since there are

at most nd
polynomials each with

∑d
i�0

(n
d

)
6 nd

coefficients, employing the triangle inequality

we have that σmax(R) 6 nO(d)
, which completes the proof.

3. D uniform over {x ∈ {0, 1}k | ‖x‖0 � k}: In this case, the canonical orthonormal basis is

the correctly normalized Young’s basis (see e.g. [Fil16] Theorems 3.1,3.2 and 5.1), and agan

we have that when expressing an orthonormal basis polynomial pi in the monomial basis,

no coefficient exceeds nO(d)
. As in the above case, this implies that σmax(R) 6 nO(d)

and

completes the proof.
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4. D uniform over {x ∈ {±1, 0}k | ‖x‖0 � k}: Again the canonical orthonormal basis is Young’s

basis with a correct normalization. We again apply [Fil16] Theorems 3.1,3.2, but this time we

calculate the normalization by hand: we have that in expressing each pi , no element of the

monomial basis has coefficient larger than nO(d)
multiplied by the quantity

�
x∼D

[
d∏

i�1

(x2i−1 − x2i)2
]
� O(1).

This gives the desired conclusion.

�

C From Boolean to Gaussian lower bounds

In this section we show how to prove our SoS lower bounds for Gaussian PCA problems using the

lower bounds for Boolean problems in a black-box fashion. The techniques are standard and more

broadly applicable than the exposition here but we prove only what we need.

The following proposition captures what is needed for tensor PCA; the argument for sparse

PCA is entirely analogous so we leave it to the reader.

Proposition C.1. Let k ∈ � and let A ∼ {±1}(nk) be a symmetric random Boolean tensor. Suppose that for
every A ∈ {±1}(nk) there is a degree-d pseudodistribution ˜� satisfying {‖x‖2 � 1} such that

�
A

˜�〈x⊗k ,A〉 � C .

Let T ∼ N(0, 1)(nk) be a Gaussian random tensor. Then

�
T

max

˜�

˜�〈x⊗k , T〉 > Ω(C)

where the maximization is over pseudodistributions of degree d which satisfy {‖x‖2 � 1}.

Proof. For a tensor T ∈ (�n)⊗k
, let A(T) have entries A(T)α � sign(Tα). Now consider

�
T

˜�A(T)〈x⊗k , T〉 �
∑
α

�
T

˜�A(T)xαTα

where α ranges over multi-indices of size k over [n]. We rearrange each term above to

�
A(T)
( ˜�A(T)xα) · �

Tα |A(T)
Tα � �

A(T)
( ˜�A(T)xα) · A(T)α · � |1 |

where 1 ∼ N(0, 1). Since � |1 | is a constant independent of n, all of this is

Ω(1) ·
∑
α

�
A

˜�Axα · Aα � C . �
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