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Abstract

We study the computational complexity of approximating the 2-to-q norm
of linear operators (defined as ‖A‖2→q = maxv,0‖Av‖q/‖v‖2) for q > 2, as
well as connections between this question and issues arising in quantum
information theory and the study of Khot’s Unique Games Conjecture (UGC).
We show the following:

1. For any constant even integer q > 4, a graph G is a small-set expander
if and only if the projector into the span of the top eigenvectors of G’s
adjacency matrix has bounded 2 → q norm. As a corollary, a good
approximation to the 2→ q norm will refute the Small-Set Expansion
Conjecture — a close variant of the UGC. We also show that such a
good approximation can be computed in exp(n2/q) time, thus obtaining
a different proof of the known subexponential algorithm for Small-Set
Expansion.

2. Constant rounds of the “Sum of Squares” semidefinite programing
hierarchy certify an upper bound on the 2 → 4 norm of the projector
to low-degree polynomials over the Boolean cube, as well certify the
unsatisfiability of the “noisy cube” and “short code” based instances
of Unique Games considered by prior works. This improves on the
previous upper bound of exp(logO(1) n) rounds (for the “short code”),
as well as separates the “Sum of Squares”/“Lasserre” hierarchy from
weaker hierarchies that were known to require ω(1) rounds.
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3. We show reductions between computing the 2→ 4 norm and computing
the injective tensor norm of a tensor, a problem with connections to
quantum information theory. Three corollaries are: (i) the 2→ 4 norm
is NP-hard to approximate to precision inverse-polynomial in the dimen-
sion, (ii) the 2 → 4 norm does not have a good approximation (in the
sense above) unless 3-SAT can be solved in time exp(

√
n poly log(n)),

and (iii) known algorithms for the quantum separability problem imply
a non-trivial additive approximation for the 2→ 4 norm.
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1 Introduction

For a function f : Ω→ � on a (finite) probability space Ω, the p-norm is defined as
‖ f ‖p = (�Ω f p)1/p.1 The p→ q norm ‖A‖p→q of a linear operator A between vector
spaces of such functions is the smallest number c > 0 such that ‖A f ‖q 6 c‖ f ‖p for
all functions f in the domain of A. We also define the p→ q norm of a subspace V
to be the maximum of ‖ f ‖q/‖ f ‖p for f ∈ V; note that for p = 2 this is the same as
the norm of the projector operator into V .

In this work, we are interested in the case p < q and we will call such p → q
norms hypercontractive.2 Roughly speaking, for p < q, a function f with large ‖ f ‖q
compared to ‖ f ‖p can be thought of as “spiky” or somewhat sparse (i.e., much of
the mass concentrated in small portion of the entries). Hence finding a function
f in a linear subspace V maximizing ‖ f ‖q/‖ f ‖2 for some q > 2 can be thought of
as a geometric analogue of the problem finding the shortest word in a linear code.
This problem is equivalent to computing the 2→ q norm of the projector P into V
(since ‖P f ‖2 6 ‖ f ‖2). Also when A is a normalized adjacency matrix of a graph (or
more generally a Markov operator), upper bounds on the p→ q norm are known as
mixed-norm, Nash or hypercontractive inequalities and can be used to show rapid
mixing of the corresponding random walk (e.g., see the surveys [Gro75, SC97]).
Such bounds also have many applications to theoretical computer science, which
are described in the survey [Bis11].

However, very little is known about the complexity of computing these norms.
This is in contrast to the case of p→ q norms for p > q, where much more is known
both in terms of algorithms and lower bounds, see [Ste05, KNS08, BV11].

2 Our Results

We initiate a study of the computational complexity of approximating the 2→ 4 (and
more generally 2→ q for q > 2) norm. While there are still many more questions
than answers on this topic, we are able to show some new algorithmic and hardness
results, as well as connections to both Khot’s unique games conjecture [Kho02]
(UGC) and questions from quantum information theory. In particular our paper
gives some conflicting evidence regarding the validity of the UGC and its close

1 We follow the convention to use expectation norms for functions (on probability spaces) and
counting norms, denoted as ‖‖‖v‖‖‖p = (

∑n
i=1 |vi|

p)1/p, for vectors v ∈ �m. All normed spaces here will
be finite dimensional. We distinguish between expectation and counting norms to avoid recurrent
normalization factors.

2We use this name because a bound of the form ‖A‖p→q 6 1 for p < q is often called a hypercon-
tractive inequality.
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variant— the small set expansion hypothesis (SSEH) of [RS10]. (See also our
conclusions section.)

First, we show in Theorem 2.5 that approximating the 2→ 4 problem to within
any constant factor cannot be done in polynomial time (unless SAT can be solved in
exp(o(n)) time) but yet this problem is seemingly related to the Unique Games and
Small-Set Expansion problems. In particular, we show that approximating the 2→ 4
norm is Small-Set Expansion- hard but yet has a subexponential algorithm closely
related to the [ABS10] algorithm for Unique Games and Small-Set Expansion. Thus
the computational difficulty of this problem can be considered as some indirect
evidence supporting the validity of the UGC (or perhaps some weaker variants of
it). To our knowledge, this is the first evidence of this kind for the UGC.

On the other hand, we show that a natural polynomial-time algorithm (based on
an SDP hierarchy) that solves the previously proposed hard instances for Unique
Games. The previous best algorithms for some of these instances took almost
exponential ( exp(exp(logΩ(1) n)) ) time, and in fact they were shown to require
super-polynomial time for some hierarchies. Thus this result suggests that this
algorithm could potentially refute the UGC, and hence can be construed as evidence
opposing the UGC’s validity.

2.1 Algorithms

We show several algorithmic results for the 2 → 4 (and more generally 2 → q)
norm.

2.1.1 Subexponential algorithm for “good” approximation

For q > 2, we say that an algorithm provides a (c,C)-approximation for the 2→ q
norm if on input an operator A, the algorithm can distinguish between the case
that ‖A‖2→q 6 cσ and the case that ‖A‖2→q > Cσ, where σ = σmin(A) is the
minimum nonzero singular value of A. (Note that since we use the expectation
norm, ‖A f ‖q > ‖A f ‖2 > σ‖ f ‖2 for every function f orthogonal to the Kernel of
A.) We say that an algorithm provides a good approximation for the 2→ q norm
if it provides a (c,C)-approximation for some (dimension independent) constants
c < C. The motivation behind this definition is to capture the notion of a dimension
independent approximation factor, and is also motivated by Theorem 2.4 below,
that relates a good approximation for the 2 → q norm to solving the Small-Set
Expansion problem.

We show the following:
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Theorem 2.1. For every 1 < c < C, there is a poly(n) exp(n2/q)-time algorithm that
computes a (c,C)-approximation for the 2→ q norm of any linear operator whose
range is �n.

Combining this with our results below, we get as a corollary a subexponen-
tial algorithm for the Small-Set Expansion problem matching the parameters of
[ABS10]’s algorithm. We note that this algorithm can be achieved by the “Sum of
Squares” SDP hierarchy described below (and probably weaker hierarchies as well,
although we did not verify this).

2.1.2 Polynomial algorithm for specific instances

We study a natural semidefinite programming (SDP) relaxation for computing the
2→ 4 norm of a given linear operator which we call Tensor-SDP.3 While Tensor-
SDP is very unlikely to provide a poly-time constant-factor approximation for the
2→ 4 norm in general (see Theorem 2.5 below), we do show that it provides such
approximation on two very different types of instances:

– We show that Tensor-SDP certifies a constant upper bound on the ratio
‖A‖2→4/‖A‖2→2 where A : �n → �m is a random linear operator (e.g.,
obtained by a matrix with entries chosen as i.i.d Bernoulli variables) and
m > Ω(n2 log n). In contrast, if m = o(n2) then this ratio is ω(1), and hence
this result is almost tight in the sense of obtaining “good approximation” in
the sense mentioned above. We find this interesting, since random matrices
seem like natural instances; indeed for superficially similar problems such
shortest codeword, shortest lattice vector (or even the 1→ 2 norm), it seems
hard to efficiently certify bounds on random operators.

– We show that Tensor-SDP gives a good approximation of the 2→ 4 norm
of the operator projecting a function f : {±1}n → � into its low-degree
component:

Theorem 2.2. Let Pd be the liner operator that maps a function f : {±1}n →
� of the form f =

∑
α⊆[n] f̂αχα to its low-degree part f ′ =

∑
|α|6d f̂αχα (where

χα(x) =
∏

i∈α xi). Then Tensor-SDP(Pd) 6 9d.

The fact that Pd has bounded 2 → 4 norm is widely used in the literature
relating to the UGC. Previously, no general-purpose algorithm was known to
efficiently certify this fact.

3We use the name Tensor-SDP for this program since it will be a canonical relaxation of the
polynomial program max‖x‖2=1 〈T, x⊗4〉 where T is the 4-tensor such that 〈T, x⊗4〉 = ‖Ax‖44. See
Section 4.5 for more details.

3



2.1.3 Quasipolynomial algorithm for additive approximation

We also consider the generalization of Tensor-SDP to a natural SDP hierarchy.
This is a convex relaxation that starts from an initial SDP and tightens it by adding
additional constraints. Such hierarchies are generally paramaterized by a number
r (often called the number of rounds), where the 1st round corresponds to the
initial SDP, and the nth round (for discrete problems where n is the instance size)
corresponds to the exponential brute force algorithm that outputs an optimal answer.
Generally, the rth-round of each such hierarchy can be evaluated in nO(r) time
(though in some cases nO(1)2O(r) time suffices [BRS11]). See Section 3, as well as
the surveys [CT10, Lau03] and the papers [SA90, LS91, RS09, KPS10] for more
information about these hierarchies.

We call the hierarchy we consider here the Sum of Squares (SoS) hierarchy. It is
not novel but rather a variant of the hierarchies studied by several authors includ-
ing Shor [Sho87], Parrilo [Par00, Par03], Nesterov [Nes00] and Lasserre [Las01].
(Generally in our context these hierarchies can be made equivalent in power, though
there are some subtleties involved; see [Lau09] and Appendix C for more details.)
We describe the SoS hierarchy formally in Section 3. We show that Tensor-SDP’s
extension to several rounds of the SoS hierarchy gives a non-trivial additive approx-
imation:

Theorem 2.3. Let Tensor-SDP(d) denote the nO(d)-time algorithm by extending
Tensor-SDP to d rounds of the Sum-of-Squares hierarchy. Then for all ε, there is
d = O(log(n)/ε2) such that

‖A‖42→4 6 Tensor-SDP(d)(A) 6 ‖A‖42→4 + ε‖A‖22→2‖A‖
2
2→∞ .

The term ‖A‖22→2‖A‖
2
2→∞ is a natural upper bound on ‖A‖42→4 obtained using

Hölder’s inequality. Since ‖A‖2→2 is the largest singular value of A, and ‖A‖2→∞ is
the largest 2-norm of any row of A, they can be computed quickly. Theorem 2.3
shows that one can improve this upper bound by a factor of ε using run time
exp(log2(n)/ε2)). Note however that in the special case (relevant to the UGC)
that A is a projector to a subspace V , ‖A‖2→2 = 1 and ‖A‖2→∞ >

√
dim(V) (see

Lemma 10.1), which unfortunately means that Theorem 2.3 does not give any new
algorithms in that setting.

Despite Theorem 2.3 being a non-quantum algorithm for for an ostensibly non-
quantum problem, we actually achieve it using the results of Brandão, Christandl
and Yard [BaCY11] about the quantum separability problem. In fact, it turns out
that the SoS hierarchy extension of Tensor-SDP is equivalent to techniques that
have been used to approximate separable states [DPS04]. We find this interesting
both because there are few positive general results about the convergence rate of
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SDP hierarchies, and because the techniques of [BaCY11], based on entanglement
measures of quantum states, are different from typical ways of proving correctness
of semidefinite programs, and in particular different techniques from the ones we
use to analyze Tensor-SDP in other settings. This connection also means that
integrality gaps for Tensor-SDP would imply new types of entangled states that
pass most of the known tests for separability.

2.2 Reductions

We relate the question of computing the hypercontractive norm with two other
problems considered in the literature: the small set expansion problem [RS10,
RST10a], and the injective tensor norm question studied in the context of quantum
information theory [HM10, BaCY11].

2.2.1 Hypercontractivity and small set expansion

Khot’s Unique Games Conjecture [Kho02] (UGC) has been the focus of intense
research effort in the last few years. The conjecture posits the hardness of ap-
proximation for a certain constraint-satisfaction problem, and shows promise to
settle many open questions in the theory of approximation algorithms. Many works
have been devoted to studying the plausibility of the UGC, as well as exploring its
implications and obtaining unconditional results inspired or motivated by this effort.
Tantalizingly, at the moment we have very little insight on whether this conjecture is
actually true, and thus producing evidence on the UGC’s truth or falsity is a central
effort in computational complexity. Raghavendra and Steurer [RS10] proposed a
hypothesis closely related to the UGC called the Small-Set Expansion hypothesis
(SSEH). Loosely speaking, the SSEH states that it is NP-hard to certify that a given
graph G = (V, E) is a small-set expander in the sense that subsets with size o(|V |)
vertices have almost all their neighbors outside the set. [RS10] showed that SSEH
implies UGC. While a reduction in the other direction is not known, all currently
known algorithmic and integrality gap results apply to both problems equally well
(e.g., [ABS10, RST10b]), and thus the two conjectures are likely to be equivalent.

We show, loosely speaking, that a graph is a small-set expander if and only if the
projection operator to the span of its top eigenvectors has bounded 2→ 4 norm. To
make this precise, if G = (V, E) is a regular graph, then let P>λ(G) be the projection
operator into the span of the eigenvectors of G’s normalized adjacency matrix with
eigenvalue at least λ, and ΦG(δ) be minS⊆V,|S |6δ|V | �(u,v)∈E[v < S |u ∈ S ].

Then we relate small-set expansion to the 2→ 4 norm (indeed the 2→ q norm
for even q > 4) as follows:

Theorem 2.4. For every regular graph G, λ > 0 and even q,
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1. (Norm bound implies expansion) For all δ > 0, ε > 0, ‖P>λ(G)‖2→q 6
ε/δ(q−2)/2q implies that ΦG(δ) > 1 − λ − ε2.

2. (Expansion implies norm bound) There are constants c1, c2 > 0 such that for
all δ > 0, ΦG(δ) > 1 − c1λ

2q2−c2q implies ‖P>λ(G)‖2→q 6 2/
√
δ.

While one direction (bounded hypercontractive norm implies small-set expan-
sion) was already known,4 to our knowledge the other direction is novel. As a
corollary we show that the SSEH implies that there is no good approximation for
the 2→ 4 norm.

2.2.2 Hypercontractivity and the injective tensor norm

We are able to make progress in understanding both the complexity of the 2 → 4
norm and the quality of our SDP relaxation by relating the 2→ 4 norm to several
natural questions about tensors. An r-tensor can be thought of as an r-linear form
on �n, and the injective tensor norm ‖ · ‖inj of a tensor is given by maximizing
this form over all unit vector inputs. See Section 9 for a precise definition. When
r = 1, this norm is the 2-norm of a vector and when r = 2, it is the operator norm
(or 2→ 2-norm) of a matrix, but for r = 3 it becomes NP-hard to calculate. One
motivation to study this norm comes from quantum mechanics, where computing
it is equivalent to a number of long-studied problems concerning entanglement
and many-body physics [HM10]. More generally, tensors arise in a vast range of
practical problems involving multidimensional data [vL09] for which the injective
tensor norm is both of direct interest and can be used as a subroutine for other tasks,
such as tensor decomposition [dlVKKV05].

It is not hard to show that ‖A‖42→4 is actually equal to ‖T‖inj for some 4-tensor
T = TA. Not all 4-tensors can arise this way, but we show that the injective tensor
norm problem for general tensors can be reduced to those of the form TA. Combined
with known results about the hardness of tensor computations, this reduction implies
the following hardness result. To formulate the theorem, recall that the Exponential
Time Hypothesis (ETH) [IPZ98] states that 3-SAT instances of length n require
time exp(Ω(n)) to solve.

Theorem 2.5 (informal version). Assuming ETH, then for any ε, δ satisfying 2ε+δ <

1, the 2 → 4 norm of an m × m matrix A cannot be approximated to within a
exp(logε(m)) multiplicative factor in time less than mlogδ(m) time. This hardness
result holds even with A is a projector.

4While we do not know who was the first to point out this fact explicitly, within theoretical CS it
was implicitly used in several results relating the Bonami-Beckner-Gross hypercontractivity of the
Boolean noise operator to isoperimetric properties, with one example being O’Donnell’s proof of the
soundness of [KV05]’s integrality gap (see [KV05, Sec 9.1]).
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While we are primarily concerned with the case of Ω(1) approximation factor,
we note that poly-time approximations to within multiplicative factor 1 + 1/n1.01 are
not possible unless P = NP. This, along with Theorem 2.5, is restated more formally
as Theorem 9.4 in Section 9.2. Theorem 2.5 yields as a corollary that, assuming
ETH, there is no polynomial-time algorithm obtaining a good approximation for
the 2→ 4 norm. We note that these results hold under weaker assumptions than the
ETH; see Section 9.2 as well.

Previously no hardness results were known for the 2→ 4 norm, or any p→ q
norm with p < q, even for calculating the norms exactly. However, hardness of
approximation results for 1 + 1/ poly(n) multiplicative error have been proved for
other polynomial optimization problems [BTN98].

2.3 Relation to the Unique Games Conjecture

Our results and techniques have some relevance to the unique games conjecture.
Theorem 2.4 shows that obtaining a good approximation for the 2 → q norm is
Small-Set Expansion hard, but Theorem 2.1 shows that this problem is not “that
much harder” than Unique Games and Small-Set Expansion since it too has a
subexponential algorithm. Thus, the 2→ q problem is in some informal sense “of
similar flavor” to the Unique Games/ Small-Set Expansion. On the other hand, we
actually are able to show in Theorem 2.5 hardness (even if only quasipolynomial)
of this problem, whereas a similar result for Unique Games or Small-Set Expansion
would be a major breakthrough. So there is a sense in which these results can be
thought of as some “positive evidence” in favor of at least weak variants of the
UGC. (We emphasize however that there are inherent difficulties in extending these
results for Unique Games, and it may very well be that obtaining a multiplicative
approximation to the 2 → 4 of an operator is significantly harder problem than
Unique Games or Small-Set Expansion.) In contrast, our positive algorithmic results
show that perhaps the 2 → q norm can be thought of as a path to refuting the
UGC. In particular we are able to extend our techniques to show a polynomial
time algorithm can approximate the canonical hard instances for Unique Games
considered in prior works.

Theorem 2.6. (Informal) Eight rounds of the SoS relaxation certifies that it is
possible to satisfy at most 1/100 fraction of the constraints of Unique Games
instances of the “quotient noisy cube” and “short code” types considered in [RS09,
KS09, KPS10, BGH+11]

These instances are the same ones for which previous works showed that weaker
hierarchies such as “SDP+Sherali Adams” and “Approximate Lasserre” require
ω(1) rounds to certify that one cannot satisfy almost all the constraints [KV05,

7



RS10, KS09, BGH+11]. In fact, for the “short code” based instances of [BGH+11]
there was no upper bound known better than exp(logΩ(1) n) on the number of rounds
required to certify that they are not almost satisfiable, regardless of the power of the
hierarchy used.

This is significant since the current best known algorithms for Unique Games
utilize SDP hierarchies [BRS11, GS11],5 and the instances above were the only
known evidence that polynomial time versions of these algorithms do not refute
the unique games conjecture. Our work also show that strong “basis independent”
hierarchies such as Sum of Squares [Par00, Par03] and Lasserre [Las01] can in fact
do better than the seemingly only slightly weaker variants.6

3 The SoS hierarchy

For our algorithmic results in this paper we consider a semidefinite programming
(SDP) hierarchy that we call the Sum of Squares (SoS) hierarchy. This is not a
novel algorithm and essentially the same hierarchies were considered by many other
researchers (see the survey [Lau09]). Because different works sometimes used
slightly different definitions, in this section we formally define the hierarchy we use
as well as explain the intuition behind it. While there are some subtleties involved,
one can think of this hierarchy as equivalent in power to the programs considered
by Parrilo, Lasserre and others, while stronger than hierarchies such “SDP+Sherali-
Adams” and “Approximate Lasserre” considered in [RS09, KPS10, BRS11].

The SoS SDP is a relaxation for polynomial equations. That is, we consider a
system of the following form: maximize P0(x) over x ∈ �n subject to P2

i (x) = 0
for i = 1 . . .m and P0, . . . , Pm polynomials of degree at most d.7 For r > 2d, the r-
round SoS SDP optimizes over x1, . . . , xn that can be thought of as formal variables
rather than actual numbers. For these formal variables, expressions of the form P(x)
are well defined and correspond to a real number (which can be computed from the
SDP solution) as long as P is a polynomial of degree at most r. These numbers obey
the linearity property which is that (P + Q)(x) = P(x) + Q(x), and, most importantly,

5Both these works showed SDP-hierarchy-based algorithms matching the performance of the
subexponential algorithm of [ABS10]. [GS11] used the Lasserre hierarchy, while [BRS11] used the
weaker “SDP+Sherali-Adams” hierarchy.

6The only other result of this kind we are aware of is [KMN11], that show that Lasserre gives a
better approximation ratio than the linear programming Sherali-Adams hierarchy for the knapsack
problem. We do not know if weaker semidefinite hierarchies match this ratio, although knapsack of
course has a simple dynamic programming based PTAS.

7This form is without loss of generality, as one can translate an inequality constraint of the form
Pi(x) > 0 into the equality constraint (Pi(x) − y2)2 = 0 where y is some new auxiliary variable. It is
useful to show equivalences between various hierarchy formulations; see also Appendix C.
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the positivity property that P2(x) > 0 for every polynomial P of degree at most r/2.
These expressions satisfy all initial constraints (i.e., P2

i (x) = 0 for i = 1 . . .m) and
the value of the SDP is set to be the expression P0(x). The above means that to
show that the SoS relaxation has value at most v it is sufficient to give any proof that
derives from the constraints {P2

i (x) = 0}i=1..m the conclusion that P0(x) 6 v using
only the linearity and positivity properties, without using any polynomials of degree
larger than r in the intermediate steps. In fact, such a proof always has the form

v − P0(x) =

k∑
i=1

Ri(x)2 +

m∑
i=1

Pi(x)Qi(x), (3.1)

where R1, . . . ,Rk,Q1, . . . ,Qm are arbitrary polynomials satisfying deg Ri 6
r/2, deg PiQi 6 r. The polynomial

∑
i Ri(x)2 is a SoS (sum of squares) and op-

timizing over such polynomials (along with the Q1, . . . ,Qm) can be achieved with a
semi-definite program.

Pseudo-expectation view. For more intuition about the SoS hierarchy, one can
imagine that instead of being formal variables, x1, . . . , xn actually correspond to
correlated random variables X1, . . . , Xn over �n, and the expression P(x) is set to
equal the expectation �[P(X)]. In this case, the linearity and positivity properties
are obviously satisfied by these expressions, although other properties that would
be obtained if x1, . . . , xn were simply numbers might not hold. For example, the
property that R(x) = P(x)Q(x) if R = P · Q does not necessarily hold, since its not
always the case that E[XY] = E[X]E[Y] for every three random variables X,Y,Z.
So, another way to describe the r-round SoS hierarchy is that the expressions P(x)
(for P of degree at most r) satisfy some of the constraints that would have been
satisfied if these expressions corresponded to expectations over some correlated
random variables X1, . . . , XN . For this reason, we will use the notation �̃x P(x)
instead of P(x) where we refer to the functional �̃ as a level-r pseudo-expectation
functional (or r-p.e.f. for short). Also, rather than describing x1, . . . , xn as formal
variables, we will refer to them as level-r fictitious random variables (or r-f.r.v. for
short) since in some sense they look like true correlated random variables up to their
rth moment.

We can now present our formal definition of pseudo-expectation and the SoS
hierarchy:8

Definition 3.1. Let �̃ be a functional that maps a polynomial P over �n of degree

8We use the name “Sum of Squares” since the positivity condition below is the most important
constraint of this program. However, some prior works used this name for the dual of the program we
define here. As we show in Appendix C, in many cases of interest to us there is no duality gap.
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at most r into a real number which we denote by �̃x P(x) or �̃ P for short. We say
that �̃ is a level-r pseudo-expectation functional (r-p.e.f. for short) if it satisfies:

Linearity For every polynomials P,Q of degree at most r and α, β ∈ �, �̃(αP +

βQ) = α �̃ P + β �̃Q.

Positivity For every polynomial P of degree at most r/2, �̃ P2 > 0.

Normalization �̃ 1 = 1 where on the RHS, 1 denotes the degree-0 polynomial that
is the constant 1.

Definition 3.2. Let P0, . . . , Pm be polynomials over �n of degree at most d, and
let r > 2d. The value of the r-round SoS SDP for the program “max P0 subject to
P2

i = 0 for i = 1 . . .m”, is equal to the maximum of �̃ P0 where �̃ ranges over all
level r pseudo-expectation functionals satisfying �̃ P2

i = 0 for i = 1 . . .m.

The functional �̃ can be represented by a table of size nO(r) containing the
pseudo-expectations of every monomial of degree at most r (or some other linear
basis for polynomials of degree at most r). For a linear functional �̃, the map
P 7→ �̃ P2 is a quadratic form. Hence, �̃ satisfies the positivity condition if and
only if the corresponding quadratic form is positive semidefinite. It follows that the
convex set of level-r pseudo-expectation functionals over �n admits an nO(r)-time
separation oracle, and hence the r-round SoS relaxation can be solved up to accuracy
ε in time (mn · log(1/ε))O(r).

As noted above, for every random variable X over �n, the functional �̃ P :=
� P(X) is a level-r pseudo-expectation functional for every r. As r → ∞, this
hierarchy of pseudo-expectations will converge to the expectations of a true random
variable [Las01], but the convergence is in general not guaranteed to happen in a
finite number of steps [dKL11].

Whenever there can be ambiguity about what are the variables of the polynomial
P inside an r-p.e.f. �̃, we will use the notation �̃x P(x) (e.g., �̃x x2

3 is the same as
�̃ P where P is the polynomial x 7→ x2

3). As mentioned above, we call the inputs x
to the polynomial level-r fictitious random variables or r-f.r.v. for short.

Remark 3.3. The main difference between the SoS hierarchy and weaker SDP
hierarchies considered in the literature such as SDP+Sherali Adams and the Ap-
proximate Lasserre hierarchies [RS09, KPS10] is that the SoS hierarchy treats all
polynomials equally and hence is agnostic to the choice of basis. For example,
the approximate Lasserre hierarchy can also be described in terms of pseudo-
expectations, but these pseudo-expectations are only defined for monomials, and are
allowed some small error. While they can be extended linearly to other polynomials,
for non-sparse polynomials that error can greatly accumulate.
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3.1 Basic properties of pseudo-expectation

For two polynomials P and Q, we write P � Q if Q = P +
∑m

i=1 R2
i for some

polynomials R1, . . . ,Rm.
If P and Q have degree at most r, then P � Q implies that �̃ P 6 �̃Q for

every r-p.e.f. �̃. This follows using linearity and positivity, as well as the (not too
hard to verify) observation that if Q − P =

∑
i R2

i then it must hold that deg(Ri) 6
max{deg(P), deg(Q)}/2 for every i.

We would like to understand how polynomials behave on linear subspaces of
�n. A map P : �n → � is polynomial over a linear subspace V ⊆ �n if P restricted
to V agrees with a polynomial in the coefficients for some basis of V . Concretely,
if g1, . . . , gm is an (orthonormal) basis of V , then P is polynomial over V if P( f )
agrees with a polynomial in 〈 f , g1〉, . . . , 〈 f , gm〉. We say that P � Q holds over a
subspace V if P − Q, as a polynomial over V , is a sum of squares.

Lemma 3.4. Let P and Q be two polynomials over �n of degree at most r, and let
B : �n → �k be a linear operator. Suppose that P � Q holds over the kernel of B.
Then, �̃ P 6 �̃Q holds for any r-p.e.f. �̃ over �n that satisfies �̃ f ‖B f ‖2 = 0.

Proof. Since P � Q over the kernel of B, we can write Q( f ) = P( f ) +
∑m

i=1 R2
i ( f ) +∑k

j=1(B f ) jS j( f ) for polynomials R1, . . . ,Rm and S 1, . . . , S k over �n. By positivity,
�̃ f R2

i ( f ) > 0 for all i ∈ [m]. We claim that �̃ f (B f ) jS j( f ) = 0 for all j ∈ [k] (which
would finish the proof). This claim follows from the fact that �̃ f (B f )2

j = 0 for all
j ∈ [k] and Lemma 3.5 below. �

Lemma 3.5 (Pseudo Cauchy-Schwarz). Let P and Q be two polynomials of degree
at most r. Then, �̃ PQ 6

√
�̃ P2 ·

√
�̃Q2 for any degree-2r pseudo-expectation

functional �̃.

Proof. We first consider the case �̃ P2, �̃Q2 > 0. Then, by linearity of �̃, we may
assume that �̃ P2 = �̃Q2 = 1. Since 2PQ � P2 + Q2 (by expanding the square
(P − Q)2), it follows that �̃ PQ 6 1

2 �̃ P2 + 1
2 �̃Q2 = 1 as desired. It remains

to consider the case �̃ P2 = 0. In this case, 2αPQ � P2 + α2Q2 implies that
�̃ PQ 6 α · 1

2 �̃Q2 for all α > 0. Thus �̃ PQ = 0, as desired. �

Lemma 3.5 also explains why our SDP in Definition 3.2 is dual to the one in
(3.1). If �̃ is a level-r pseudo-expectation functional satisfying �̃[P2

i ] = 0, then
Lemma 3.5 implies that �̃[PiQi] = 0 for all Qi with deg PiQi 6 r.

Appendix A contains some additional useful facts about pseudo-expectation
functionals. In particular, we will make repeated use of the fact that they satisfy
another Cauchy-Schwarz analogue: namely, for any level-2 f.r.v.’s f , g, we have

�̃ f ,g〈 f , g〉 6
√
�̃ f ‖ f ‖2

√
�̃g‖g‖2. This is proven in Lemma A.4.
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3.2 Why is this SoS hierarchy useful?

Consider the following example. It is known that if f : {±1}` → � is a degree-d
polynomial then

9d
(
�

w∈{±1}`
f (w)2

)2

> �
w∈{±1}n

f (w)4 , (3.2)

(see e.g. [O’D07]). Equivalently, the linear operator Pd on �{±1}` that projects
a function into the degree d polynomials satisfies ‖Pd‖2→4 6 9d/4. This fact is
known as the hypercontractivity of low-degree polynomials, and was used in several
integrality gaps results such as [KV05]. By following the proof of (3.2) we show in
Lemma 5.1 that a stronger statement is true:

9d
(
�

w∈{±1}`
f (w)2

)2

= �
w∈{±1}`

f (w)4 +

m∑
i=1

Qi( f )2 , (3.3)

where the Qi’s are polynomials of degree 6 2 in the
(
`
d

)
variables { f̂ (α)}α∈([`]

d )
specifying the coefficients of the polynomial f . By using the positivity constraints,
(3.3) implies that (3.2) holds even in the 4-round SoS relaxation where we consider
the coefficients of f to be given by 4-f.r.v. This proves Theorem 2.2, showing that
the SoS relaxation certifies that ‖Pd‖2→4 6 9d/4.

Remark 3.6. Unfortunately to describe the result above, we needed to use the
term “degree” in two different contexts. The SDP relaxation considers polynomial
expressions of degree at most 4 in the coefficients of f . This is a different notion
of degree than the degree d of f itself as a polynomial over �`. In particular the
variables of this SoS program are the

(
`
d

)
coefficients { f̂ (α)}α∈([`]

d ). Note that for every
fixed w, the expression f (w) is a linear polynomial over these variables, and hence
the expressions

(
�w∈{±1}` f (w)2

)2
and �w∈{±1}` f (w)4 are degree 4 polynomials over

the variables.

While the proof of (3.3) is fairly simple, we find the result— that hypercontrac-
tivity of polynomials is efficiently certifiable—somewhat surprising. The reason
is that hypercontractivity serves as the basis of the integrality gaps results which
are exactly instances of maximization problems where the objective value is low
but this is supposedly hard to certify. In particular, we consider integrality gaps
for Unique Games considered before in the literature. All of these instances follow
the framework initiated by Khot and Vishnoi [KV05]. Their idea was inspired by
Unique Games hardness proofs, with the integrality gap obtained by composing an
initial instance with a gadget. The proof that these instances have “cheating” SDP
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solutions is obtained by “lifting” the completeness proof of the gadget. On the other
hand, the soundness property of the gadget, combined with some isoperimetric
results, showed that the instances do not have real solutions. This approach of lifting
completeness proofs of reductions was used to get other integrality gap results as
well [Tul09]. We show that the SoS hierarchy allows us to lift a certain soundness
proof for these instances, which includes a (variant of) the invariance principle
of [MOO05], influence-decoding a la [KKMO04], and hypercontractivity of low-
degree polynomials. It turns out all these results can be proven via sum-of-squares
type arguments and hence lifted to the SoS hierarchy.

4 Overview of proofs

We now give a very high level overview of the tools we use to obtain our results,
leaving details to the later sections and appendices.

4.1 Subexponential algorithm for the 2-to-q norm

Our subexponential algorithm for obtaining a good approximation for the 2 → q
norm is extremely simple. It is based on the observation that a subspace V ⊆ �n

of too large a dimension must contain a function f such that ‖ f ‖q � ‖ f ‖2. For
example, if dim(V) �

√
n, then there must be f such that ‖ f ‖4 � ‖ f ‖2. This

means that if we want to distinguish between, say, the case that ‖V‖2→4 6 2 and
‖V‖2→4 > 3, then we can assume without loss of generality that dim(V) = O(

√
n) in

which case we can solve the problem in exp(O(
√

n)) time. To get intuition, consider
the case that V is spanned by an orthonormal basis f 1, . . . , f d of functions whose
entries are all in ±1. Then clearly we can find coefficients a1, . . . , ad ∈ {±1} such
that the first coordinate of g =

∑
a j f j is equal to d, which means that its 4-norm is

at least (d4/n)1/4 = d/n1/4. On the other hand, since the basis is orthonormal, the
2-norm of g equals

√
d which is� d/n1/4 for d �

√
n.

Note the similarity between this algorithm and [ABS10]’s algorithm for Small-
Set Expansion, that also worked by showing that if the dimension of the top
eigenspace of a graph is too large then it cannot be a small-set expander. In-
deed, using our reduction of Small-Set Expansion to the 2 → q norm, we can
reproduce a similar result to [ABS10].

4.2 Bounding the value of SoS relaxations

We show that in several cases, the SoS SDP hierarchy gives strong bounds on various
instances. At the heart of these results is a general approach of “lifting” proofs
about one-dimensional objects into the SoS relaxation domain. Thus we transform
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the prior proofs that these instances have small objective value, into a proof that
the SoS relaxation also has a small objective The crucial observation is that many
proofs boil down to the simple fact that a sum of squares of numbers is always
non-negative. It turns out that this “sum of squares” axiom is surprisingly powerful
(e.g. implying a version of the Cauchy–Schwarz inequality given by Lemma A.4),
and many proofs boil down to essentially this principle.

4.3 The 2-to-4 norm and small-set expansion

Bounds on the p → q norm of operators for p < q have been used to show fast
convergence of Markov chains. In particular, it is known that if the projector to
the top eigenspace of a graph G has bounded 2 → 4 norm, then that graph is a
small-set expander in the sense that sets of o(1) fraction of the vertices have most of
their edges exit the set. In this work we show a converse to this statement, proving
that if G is a small-set expander, then the corresponding projector has bounded
2→ 4 norm. As mentioned above, one corollary of this result is that a good (i.e.,
dimension-independent) approximation to the 2→ 4 norm will refute the Small-Set
Expansion hypothesis of [RS10].

We give a rough sketch of the proof. Suppose that G is a sufficiently strong
small-set expander, in the sense that every set S with |S | 6 δ|V(G)| has all but a tiny
fraction of the edges (u, v) with u ∈ S satisfying v < S . Let f be a function in the
eigenspace of G corresponding to eigenvalues larger than, say 0.99. Since f is in
the top eigenspace, for the purposes of this sketch let’s imagine that it satisfies

∀x ∈ V, �
y∼x

f (y) > 0.9 f (x), (4.1)

where the expectation is over a random neighbor y of x. Now, suppose that� f (x)2 =

1 but� f (x)4 = C for some C � poly(1/δ). That means that most of the contribution
to the 4-norm comes from the set S of vertices x such that f (x) > (1/2)C1/4, but
|S | � δ|V(G)|. Moreover, suppose for simplicity that f (x) ∈ ((1/2)C1/4, 2C1/4), in
which case the condition (*) together with the small-set expansion condition that
for most vertices y in Γ(S ) (the neighborhood of S ) satisfy f (y) > C1/4/3, but the
small-set expansion condition, together with the regularity of the graph imply that
|Γ(S )| > 200|S | (say), which implies that � f (x)4 > 2C—a contradiction.

The actual proof is more complicated, since we can’t assume the condition
(4.1). Instead we will approximate it it by assuming that f is the function in the top
eigenspace that maximizes the ratio ‖ f ‖4/‖ f ‖2. See Section 8 for the details.
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4.4 The 2-to-4 norm and the injective tensor norm

To relate the 2 → 4 norm to the injective tensor norm, we start by establishing
equivalences between the 2 → 4 norm and a variety of different tensor problems.
Some of these are straightforward exercises in linear algebra, analogous to proving
that the largest eigenvalue of MT M equals the square of the operator norm of M.

One technically challenging reduction is between the problem of optimizing a
general degree-4 polynomial f (x) for x ∈ �n and a polynomial that can be written
as the sum of fourth powers of linear functions of x. Straightforward approaches
will magnify errors by poly(n) factors, which would make it impossible to rule
out a PTAS for the 2 → 4 norm. This would still be enough to prove that a
1/ poly(n) additive approximation is NP-hard. However, to handle constant-factor
approximations, we will instead use a variant of a reduction in [HM10]. This
will allow us to map a general tensor optimization problem (corresponding to a
general degree-4 polynomial) to a 2→ 4 norm calculation without losing very much
precision.

To understand this reduction, we first introduce the n2 × n2 matrix A2,2 (defined
in Section 9) with the property that ‖A‖42→4 = max zT A2,2z, where the maximum
is taken over unit vectors z that can be written in the form x ⊗ y. Without this last
restriction, the maximum would simply be the operator norm of A2,2. Operationally,
we can think of A2,2 as a quantum measurement operator, and vectors of the form
x ⊗ y as unentangled states (equivalently we say that vectors in this form are tensor
product states, or simply “product states”). Thus the difference between ‖A‖42→4 and
‖A2,2‖

2
2→2 can be thought of as the extent to which the measurement A2,2 can notice

the difference between product states and (some) entangled state.
Next, we define a matrix A′ whose rows are of the form (x′ ⊗ y′)∗

√
A2,2, where

x′, y′ ∈ �n range over a distribution that approximates the uniform distribution. If
A′ acts on a vector of the form x⊗y, then the maximum output 4-norm (over L2-unit
vectors x, y) is precisely ‖A‖2→4. Intuitively, if A′ acts on a highly “entangled” vector
z, meaning that 〈z, x⊗y〉 is small for all unit vectors x, y, then ‖A′z‖4 should be small.
This is because z will have small overlap with x′ ⊗ y′, and A2,2 is positive semi-
definite, so its off-diagonal entries can be upper-bounded in terms of its operator
norm. These arguments (detailed in Section 9.2) lead to only modest bounds on
A′, but then we can use an amplification argument to make the 2→ 4 norm of A′

depend more sensitively on that of A, at the cost of blowing up the dimension by a
polynomial factor.

The reductions we achieve also permit us, in Section 9.3, to relate our Tensor-
SDP algorithm with the sum-of-squares relaxation used by Doherty, Parrilo, and
Spedalieri [DPS04] (henceforth DPS). We show the two relaxations are essentially
equivalent, allowing us to import results proved, in some cases, with techniques
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from quantum information theory. One such result, from [BaCY11], requires relat-
ing A2,2 to a quantum measurement of the 1-LOCC form. This means that there
are two n-dimensional subsystems, combined via tensor products, and A2,2 can be
implemented as a measurement on the first subsystem followed by a measurement
on the second subsystem that is chosen conditioned on the results of the first mea-
surement. The main result of [BaCY11] proved that such 1-LOCC measurements
exhibit much better behavior under DPS, and they obtain nontrivial approximation
guarantees with only O(log(n)/ε2) rounds. Since this is achieved by DPS, it also
implies an upper bound on the error of Tensor-SDP. This upper bound is εZ, where
Z is the smallest number for which A2,2 6 ZM for some 1-LOCC measurement
M. While Z is not believed to be efficiently computable, it is at least ‖A2,2‖2→2,
since any measurement M has ‖M‖2→2 6 1. To upper bound Z, we can explicitly
construct A2,2 as a quantum measurement. This is done by the following protocol.
Let a1, . . . , am be the rows of A. One party performs the quantum measurement with
outcomes {αaiaT

i }
m
i=1 (where α is a normalization factor) and transmits the outcome i

to the other party. Upon receiving message i, the second party does the two outcome
measurement {βaiaT

i , I − βaiaT
i } and outputs 0 or 1 accordingly, where β is another

normalization factor. The measurement A2,2 corresponds to the “0” outcomes. For
this to be a physically realizable 1-LOCC measurement, we need α 6 ‖AT A‖2→2 and
β 6 ‖A‖22→∞. Combining these ingredients, we obtain the approximation guarantee
in Theorem 2.3. More details on this argument are in Section 9.3.1.

4.5 Definitions and Notation

LetU be some finite set. For concreteness, and without loss of generality, we can let
U be the set {1, . . . , n}, where n is some positive integer. We write �U f to denote
the average value of a function f : U → � over a random point in U (omitting
the subscriptU when it is clear from the context). We let L2(U) denote the space
of functions f : U → � endowed with the inner product 〈 f , g〉 = �U fg and its
induced norm ‖ f ‖ = 〈 f , f 〉1/2. For p > 1, the p-norm of a function f ∈ L2(U) is
defined as ‖ f ‖p := (� | f |p)1/p. A convexity argument shows ‖ f ‖p 6 ‖ f ‖q for p 6 q.
If A is a linear operator mapping functions from L2(U) to L2(V), and p, q > 1,
then the p-to-q norm of A is defined as ‖A‖p→q = max0, f∈L2(U)‖A f ‖q/‖ f ‖p. If
V ⊆ L2(U) is a linear subspace, then we denote ‖V‖p→q = max f∈V‖ f ‖q/‖ f ‖p.

Counting norms. In most of this paper we use expectation norms defined as
above, but in some contexts the counting norms will be more convenient. We will
usually stick to the convention that functions use expectation norms while vectors
use the counting norms. For a vector v ∈ �U and p > 1, the p counting norm of v,
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denoted ‖‖‖v‖‖‖p, is defined to be
(∑

i∈U |vi|
p)1/p. The counting inner product of two

vectors u, v ∈ �U , denoted as 〈〈〈u, v〉〉〉, is defined to be
∑

i∈U uiv
∗
i .

5 The Tensor-SDP algorithm

There is a very natural SoS program for the 2→ 4 norm for a given linear operator
A : L2(U)→ L2(V):

Algorithm Tensor-SDP(d)(A):

Maximize �̃ f ‖A f ‖44 subject to

– f is a d-f.r.v. over L2(U),

– �̃ f (‖ f ‖2 − 1)2 = 0.

Note that ‖A f ‖44 is indeed a degree 4 polynomial in the variables { f (u)}u∈U . The
Tensor-SDP(d) algorithm makes sense for d > 4, and we denote by Tensor-SDP its
most basic version where d = 4. The Tensor-SDP algorithm applies not just to the
2→ 4 norm, but to optimizing general polynomials over the unit ball of L2(U) by
replacing ‖A f ‖44 with an arbitrary polynomial P.

While we do not know the worst-case performance of the Tensor-SDP algo-
rithm, we do know that it performs well on random instances (see Section 7), and
(perhaps more relevant to the UGC) on the projector to low-degree polynomials
(see Theorem 2.2). The latter is a corollary of the following result:

Lemma 5.1. Over the space of n-variate Fourier polynomials9 f with degree at
most d,

� f 4 � 9d
(
� f 2

)2
,

where the expectations are over {±1}n.

Proof. The result is proven by a careful variant of the standard inductive proof of the
hypercontractivity for low-degree polynomials (see e.g. [O’D07]). We include it in
this part of the paper since it is the simplest example of how to “lift” known proofs
about functions over the reals into proofs about the fictitious random variables
that arise in semidefinite programming hierarchies. To strengthen the inductive
hypothesis, we will prove the more general statement that for f and g being n-
variate Fourier polynomials with degrees at most d and e, it holds that � f 2g2 �

9An n-variate Fourier polynomial with degree at most d is a function f : {±1}n → � of the form
f =

∑
α⊆[n],|α|6d f̂αχα where χα(x) =

∏
i∈α xi.
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9
d+e

2
(
� f 2

) (
� g2

)
. (Formally, this polynomial relation is over the linear space of

pairs of n-variate Fourier polynomials ( f , g), where f has degree at most d and g
has degree at most e.) The proof is by induction on the number of variables.

If one of the functions is constant (so that d = 0 or e = 0), then
� f 2g2 = (� f 2)(� g2), as desired. Otherwise, let f0, f1, g0, g1 be Fourier poly-
nomials depending only on x1, . . . , xn−1 such that f (x) = f0(x) + xn f1(x) and
g(x) = g0(x) + xng1(x). The Fourier polynomials f0, f1, g0, g1 depend linearly
on f and g (because f0(x) = 1

2 f (x1, . . . , xn−1, 1) + 1
2 f (x1, . . . , xn−1,−1) and f1(x) =

1
2 f (x1, . . . , xn−1, 1) − 1

2 f (x1, . . . , xn−1,−1)). Furthermore, the degrees of f0, f1, g0,
and g1 are at most d, d − 1, e, and e − 1, respectively.

Since � xn = � x3
n = 0, if we expand � f 2g2 = �( f0 + xn f1)2(g0 + xng1)2 then

the terms where xn appears in an odd power vanish, and we obtain

� f 2g2 = � f 2
0 g

2
0 + f 2

1 g
2
1 + f 2

0 g
2
1 + f 2

1 g
2
0 + 4 f0 f1g0g1

By expanding the square expression 2�( f0 f1 − g0g1)2, we get 4� f0 f1g0g1 �

2� f 2
0 g

2
1 + f 2

1 g
2
0 and thus

� f 2g2 � � f 2
0 g

2
0 + � f 2

1 g
2
1 + 3� f 2

0 g
2
1 + 3� f 2

1 g
2
0 . (5.1)

Applying the induction hypothesis to all four terms on the right-hand side of (5.1)
(using for the last two terms that the degree of f1 and g1 is at most d − 1 and e − 1),

� f 2g2 � 9
d+e

2
(
� f 2

0

) (
� g2

0

)
+ 9

d+e
2

(
� f 2

1

) (
� g2

1

)
+ 3 · 9

d+e
2 −1/2

(
� f 2

0

) (
� g2

1

)
+ 3 · 9

d+e
2 −1/2

(
� f 2

1

) (
� g2

0

)
= 9

d+e
2

(
� f 2

0 + � f 2
1

) (
� g2

0 + � g2
1

)
.

Since � f 2
0 + � f 2

1 = �( f0 + xn f1)2 = � f 2 (using � xn = 0) and similarly � g2
0 +

� g2
1 = � g2, we derive the desired relation � f 2g2 � 9

d+e
2

(
� f 2

) (
� g2

)
. �

6 SoS succeeds on Unique Games integrality gaps

In this section we prove Theorem 2.6, showing that 8 rounds of the SoS hierarchy
can beat the Basic SDP program on the canonical integrality gaps considered in the
literature.

Theorem 6.1 (Theorem 2.6, restated). For sufficiently small ε and large k, and
every n ∈ �, letW be an n-variable k-alphabet Unique Games instance of the type
considered in [RS09, KS09, KPS10] obtained by composing the “quotient noisy
cube” instance of [KV05] with the long-code alphabet reduction of [KKMO04]
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so that the best assignment toW’s variable satisfies at most an ε fraction of the
constraints. Then, on inputW, eight rounds of the SoS relaxation outputs at most
1/100.

6.1 Proof sketch of Theorem 6.1

The proof is very technical, as it is obtained by taking the already rather technical
proofs of soundness for these instances, and “lifting” each step into the SoS hier-
archy, a procedure that causes additional difficulties. The high level structure of
all integrality gap instances constructed in the literature was the following: Start
with a basic integrality gap instance of Unique Games where the Basic SDP out-
puts 1 − o(1) but the true optimum is o(1), the alphabet size ofU is (necessarily)
R = ω(1). Then, apply an alphabet-reduction gadget (such as the long code, or
in the recent work [BGH+11] the so called “short code”) to transform U into an
instanceW with some constant alphabet size k. The soundness proof of the gadget
guarantees that the true optimum ofU is small, while the analysis of previous works
managed to “lift” the completeness proofs, and argue that the instanceU survives
a number of rounds that tends to infinity as ε tends to zero, where (1 − ε) is the
completeness value in the gap constructions, and exact tradeoff between number of
rounds and ε depends on the paper and hierarchy.

The fact that the basic instance U has small integral value can be shown by
appealing to hypercontractivity of low-degree polynomials, and hence can be “lifted”
to the SoS world via Lemma 5.1. The bulk of the technical work is in lifting the
soundness proof of the gadget. On a high level this proof involves the following
components: (1) The invariance principle of [MOO05], saying that low influence
functions cannot distinguish between the cube and the sphere; this allows us to argue
that functions that perform well on the gadget must have an influential variable,
and (2) the influence decoding procedure of [KKMO04] that maps these influential
functions on each local gadget into a good global assignment for the original instance
U.

The invariance principle poses a special challenge, since the proof of [MOO05]
uses so called “bump” functions which are not at all low-degree polynomials.10 We
use a weaker invariance principle, only showing that the 4 norm of a low influence
function remains the same between two probability spaces that agree on the first 2
moments. Unlike the usual invariance principle, we do not move between Bernoulli
variables and Gaussian space, but rather between two different distributions on the
discrete cube. It turns out that for the purposes of these Unique Games integrality

10A similar, though not identical, challenge arises in [BGH+11] where they need to extend the
invariance principle to the “short code” setting. However, their solution does not seem to apply in our
case, and we use a different approach.
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gaps, the above suffices. The lifted invariance principle is proven via a “hybrid”
argument similar to the argument of [MOO05], where hypercontractivity of low-
degree polynomials again plays an important role.

The soundness analysis of [KKMO04] is obtained by replacing each local
function with an average over its neighbors, and then choosing a random influ-
ential coordinate from the new local function as an assignment for the original
uniquegames instance. We follow the same approach, though even simple tasks
such as independent randomized rounding turn out to be much subtler in the lifted
setting. However, it turns out that by making appropriate modification to the analysis,
it can be lifted to complete the proof of Theorem 2.6.

In the following, we give a more technical description of the proof. Let T1−η
be the η-noise graph on {±1}R. Khot and Vishnoi [KV05] constructed a unique
gameU with label-extended graph T1−η. A solution to the level-4 SoS relaxation
of U is 4-f.r.v. h over L2({±1}R). This variable satisfies h(x)2 ≡h h(x) for all
x ∈ {±1}R and also �̃h(� h)2 6 1/R2. (The variable h encodes a 0/1 assignment
to the vertices of the label-extended graph. A proper assignment assigns 1 only
to a 1/R fraction of these vertices.) Lemma 6.7 allows us to bound the objective
value of the solution h in terms of the fourth moment �̃h�(P>λh)4, where P>λ is
the projector into the span of the eigenfunctions of T1−η with eigenvalue larger
than λ ≈ 1/Rη. (Note that �(P>λh)4 is a degree-4 polynomial in h.) For the
graph T1−η, we can bound the degree of P>λh as a Fourier polynomial (by about
log(R)). Hence, the hypercontractivity bound (Lemma 5.1) allows us to bound the
fourth moment �̃h�(P>λh)4 6 �̃h(� h2)2. By our assumptions on h, we have
�̃h(� h2)2 = �̃h(� h)2 6 1/R2. Plugging these bounds into the bound of Lemma 6.7
demonstrates that the objective value of h is bounded by 1/RΩ(η) (see Theorem 6.11).

Next, we consider a unique gameW obtained by composing the unique game
U with the alphabet reduction of [KKMO04]. Suppose that W has alphabet
Ω = {0, . . . , k − 1}. The vertex set ofW is V ×ΩR (with V being the vertex set of
U). Let f = { fu}u∈V be a solution to the level-8 SoS relaxation ofW. To bound the
objective value of f , we derive from it a level-4 random variable h over L2(V × [R]).
(Encoding a function on the label-extended graph of the unique game U.) We
define h(u, r) = Inf(6`)

r f̄u, where ` ≈ log k and f̄u is a variable of L2(ΩR) obtained
by averaging certain values of fu (“folding”). It is easy to show that h2 � h (using
Lemma A.1) and �̃h(� h)2 6 `/R (bound on the total influence of low-degree Fourier
polynomials). Theorem 6.9 (influence decoding) allows us to bound the objective
value of f in terms of the correlation of h with the label-extended graph ofU (in our
case, T1−η). Here, we can use again Theorem 6.11 to show that the correlation of h
with the graph T1−η is very small. (An additional challenge arises because h does
not satisfy h2 ≡h h, but only the weaker condition h2 � h. Corollary 6.5 fixes this
issue by simulating independent rounding for fictitious random variables.) To prove
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Theorem 6.9 (influence decoding), we analyze the behavior of fictitious random
variables on the alphabet-reduction gadget of [KKMO04]. This alphabet-reduction
gadget essentially corresponds to the ε-noise graph T1−ε on ΩR. Suppose g is a
fictitious random variables over L2(ΩR) satisfying g2 � g. By Lemma 6.7, we can
bound the correlation of g with the graph T1−ε in terms of the fourth moment of
P>λg. At this point, the hypercontractivity bound (Lemma 5.1) is too weak to be
helpful. Instead we show an “invariance principle” result (Theorem 6.2), which
allows us to relate the fourth moment of P>λg to the fourth moment of a nicer
random variable and the influences of g.

Organization of the proof. We now turn to the actual proof of Theorem 6.1. The
proof consists of lifting to the SoS hierarchy all the steps used in the analysis of
previous integrality gaps, which themselves arise from hardness reductions. We
start in Section 6.2 by showing a sum-of-squares proof for a weaker version of
[MOO05]’s invariance principle. Then in Section 6.3 we show how one can perform
independent rounding in the SoS world (this is a trivial step in proofs involving true
random variables, but becomes much more subtle when dealing with SoS solutions).
In Sections 6.4 and 6.5 we lift variants of the [KKMO04] dictatorship test. The
proof uses a SoS variant of influence decoding, which is covered in Section 6.6.
Together all these sections establish SoS analogs of the soundness properties of
the hardness reduction used in the previous results. Then, in Section 6.7 we show
that analysis of the basic instance has a sum of squares proof (since it is based on
hypercontractivity of low-degree polynomials). Finally in Section 6.8 we combine
all these tools to conclude the proof. In Section 6.9 we discuss why this proof applies
(with some modifications) also to the “short-code” based instances of [BGH+11].

6.2 Invariance Principle for Fourth Moment

In this section, we will give a sum-of-squares proof for a variant of the invariance
principle of [MOO05]. Instead of for general smooth functionals (usually con-
structed from “bump functions”), we show invariance only for the fourth moment.
It turns out that invariance of the fourth moment is enough for our applications.

Let k = 2t for t ∈ � and let X = (X1, . . . ,XR) be an independent sequence11 of
orthonormal ensembles Xr = (Xr,0, . . . , Xr,k−1). Concretely, we choose Xr,i = χi(xr),
where χ0, . . . , χk−1 is the set of characters of �t

2 and x is sampled uniformly from
(�t

2)R. Every random variable over (�t
2)R can be expressed as a multilinear

11An orthonormal ensemble is a collection of orthonormal real-valued random variables, one being
the constant 1. A sequence of such ensembles is independent if each ensemble is defined over an
independent probability space. (See [MOO05] for details.)
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polynomial over the sequence X. In this sense, X is maximally dependent. On the
other hand, letY = (Y1, . . . ,YR) be a sequence of ensemblesYr = (Yr,0, . . . ,Yr,k−1),
where Yr,0 ≡ 1 and Yr, j are independent, unbiased {±1} Bernoulli variables. The
sequence Y is maximally independent since it consists of completely independent
random variables.

Let f be a 4-f.r.v. over the space of multilinear polynomials with degree at most
` and monomials indexed by [k]R. Suppose �̃ f ‖ f ‖4 6 1. (In the following, we
mildly overload notation and use [k] to denote the set {0, . . . , k − 1}.) Concretely,
we can specify f by the set of monomial coefficients { f̂α}α∈[k]R, |α|6`, where |α| is
the number of non-zero entries in α. As usual, we define Infr f =

∑
α∈[k]R, αr,0 f̂ 2

α .
Note that Infr f is a degree-2 polynomial in f . (Hence, the pseudo-expectation of
(Infr f )2 is defined.)

Theorem 6.2 (Invariance Principle for Fourth Moment). For τ = �̃ f
∑

r(Infr f )2,

�̃
f
�
X

f 4 = �̃
f
�
Y

f 4 ± kO(`) √τ .

(Since the expressions�X f 4 and�Y f 4 are degree-4 polynomials in f , their pseudo-
expectations are defined.)

Using the SoS proof for hypercontractivity of low-degree polynomials (over
the ensemble Y), the fourth moment �̃ f �Y f 4 is bounded in terms of the second
moment �̃ f �Y f 2. Since the first two moments of the ensembles X and Y match,
we have �̃ f �Y f 2 = �̃ f �X f 2. Hence, we can bound the fourth moment of f over
X in terms of the its second moment and τ.

Corollary 6.3.
�̃
f
�
X

f 4 = 2O(`)
�̃
f
(�
X

f 2)2 ± kO(`) √τ .

(The corollary shows that for small enough τ, the 4-norm and 2-norm of f are
within a factor of 2O(`). This bound is useful because the worst-case ratio of these
norms is kO(`) � 2O(`).)

Proof of Theorem 6.2. We consider the following intermediate sequences of ensem-
bles Z(r) = (X1, . . . ,Xr,Yr+1, . . . ,YR). Note that Z(0) = Y and Z(R) = X. For
r ∈ �, we write f = Er f + Dr f , where Er f is the part of f that does not dependent
on coordinate r and Dr f = f − Er f . For all r ∈ �, the following identities (between
polynomials in f ) hold

�
Z(r)

f 4 − �
Z(r−1)

f 4 = �
Z(r)

(Er f + Dr f )4 − �
Z(r−1)

(Er f + Dr f )4

= �
Z(r)

4(Er f )(Dr f )3 + (Dr f )4 − �
Z(r−1)

4(Er f )(Dr f )3 + (Dr f )4 .
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The last step uses that the first two moments of the ensembles Xr and Yr match and
that Er f does not dependent on coordinate r.

Hence,

�
X

f 4 − �
Y

f 4 =
∑

r

�
Z(r)

4(Er f )(Dr f )3 + (Dr f )4 − �
Z(r−1)

4(Er f )(Dr f )3 + (Dr f )4

It remains to bound the pseudo-expectation of the right-hand side. First, we
consider the term

∑
r �Z(r)(Dr f )4. The expression �Z(r)(Dr f )4 is the fourth moment

of a Fourier-polynomial with degree at most t · `. (Here, we use that the ensembles
in the sequence Y consist of characters of �t

2, which are Fourier polynomials of
degree at most t.) Furthermore, Infr f = �Z(r)(Dr f )2 is the second moment of
the this Fourier-polynomial. Hence, by hypercontractivity of low-degree Fourier-
polynomials,

∑
r �Z(r)(Dr f )4 �

∑
r 2O(t·`)(Infr f )2. Thus, the pseudo-expectation is

at most �̃ f
∑

r �Z(r)(Dr f )4 6 2O(t·`)τ = kO(`)τ.
Next, we consider the term

∑
r �Z(r)(Er f )(Dr f )3. (The remaining two terms are

analogous.) To bound its pseudo-expectation, we apply Cauchy-Schwarz,

�̃
f

∑
r

�
Z(r)

(Er f )(Dr f )3 6

�̃f ∑
r

�
Z(r)

(Er f )2(Dr f )2

1/2

·

�̃f ∑
r

�
Z(r)

(Dr f )4

1/2

(6.1)

Using hypercontractivity of low-degree Fourier-polynomials, we can bound the
second factor of (6.1) by �̃ f

∑
r �Z(r)(Dr f )4 = kO(`)τ. It remains to bound the

first factor of (6.1). Again by hypercontractivity, �Z(r)(Er f )2(Dr f )2 � kO(`) ·

‖Er f ‖2 · ‖Dr f ‖2 � kO(`)‖ f ‖2 · ‖Dr f ‖2. By the total influence bound for low-degree
polynomials, we have

∑
r‖Dr f ‖2 � `‖ f ‖2. Thus

∑
r �Z(r)(Er f )2(Dr f )2 � kO(`)‖ f ‖4.

Using the assumption �̃ f ‖ f ‖4 6 1, we can bound the first factor of (6.1) by kO(`).
We conclude as desired that∣∣∣∣∣∣�̃f �X f 4 − �

Y
f 4

∣∣∣∣∣∣ 6 kO(`) √τ .

�

6.3 Interlude: Independent Rounding

In this section, we will show how to convert variables that satisfy f 2 � f to variables
f̄ satisfying f̄ 2 = f̄ . The derived variables f̄ will inherit several properties of the
original variables f (in particular, multilinear expectations). This construction
corresponds to the standard independent rounding for variables with values between
0 and 1. The main challenge is that our random variables are fictitious.

Let f be a 4-f.r.v. over �n. Suppose f 2
i � fi (in terms of an unspecified jointly-

distributed 4-f.r.v.). Note that for real numbers x, the condition x2 6 x is equivalent
to x ∈ [0, 1].
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Lemma 6.4. Let f be a 4-f.r.v. over �n and let i ∈ [n] such that f 2
i � fi. Then,

there exists an 4-f.r.v. ( f , f̄i) over �n+1 such that �̃ f , f̄i( f̄ 2
i − f̄i)2 = 0 and for every

polynomial P which is linear in f̄i and has degree at most 4,

�̃
f , f̄i

P( f , f̄i) = �̃
f

P( f , fi) .

Proof. We define the pseudo-expectation functional �̃ f , f̄i as follows: For every
polynomial P in ( f , f̄i) of degree at most 4, let P′ be the polynomial obtained by
replacing f̄ 2

i by f̄i until P′ is (at most) linear in f̄i. (In other words, we reduce
P modulo the relation f̄ 2

i = f̄i.) We define �̃ f , f̄i P( f , f̄i) = �̃ f P′( f , fi). With
this definition, �̃ f , f̄i( f̄ 2

i − f̄i)2 = 0. The operator �̃ f , f̄i is clearly linear (since
(P + Q)′ = P′ + Q′). It remains to verify positivity. Let P be a polynomial of
degree at most 4. We will show � f , f̄i P2( f , f̄i) > 0. Without loss of generality
P is linear in f̄i. We express P = Q + f̄iR, where Q and R are polynomials in
f . Then, (P2)′ = Q2 + 2 f̄iQR + f̄iR2. Using our assumption f 2

i � fi, we get
(P2)′( f , fi) = Q2 + 2 fiQR + fiR2 � Q2 + 2 fiQR + f 2

i R2 = P2( f , fi). It follows as
desired that

�̃
f , f̄i

P2 = �̃
f
(P2)′( f , fi) > �̃

f
P2( f , fi) > 0 .

�

Corollary 6.5. Let f be a 4-f.r.v. over �n and let I ⊆ [n] such that f 2
i � fi for all

i ∈ I. Then, there exists an 4-f.r.v. ( f , f̄I) over �n+|I| such that �̃ f , f̄I ( f̄ 2
i − f̄i)2 = 0 for

all i ∈ I and for every polynomial P which is multilinear in the variables { f̄i}i∈I and
has degree at most 4,

�̃
f , f̄I

P( f , f̄I) = �̃
f

P( f , fI) .

6.4 Dictatorship Test for Small-Set Expansion

Let Ω = {0, . . . , k − 1} and let T1−ε be the noise graph on ΩR with second largest
eigenvalue 1 − ε. Let f be a 4-f.r.v. over L2(ΩR). Suppose f 2 � f (in terms of an
unspecified jointly-distributed 4-f.r.v.). Note that for real numbers x, the condition
x2 6 x is equivalent to x ∈ [0, 1].

The following theorem is an analog of the “Majority is Stablest” result
[MOO05].

Theorem 6.6. Suppose �̃ f (� f )2 6 δ2. Let τ = �̃ f
∑

r(Inf(6`)
r f )2 for ` =

Ω(log(1/δ)). Then,

�̃
f
〈 f ,T1−ε f 〉 6 δ1+Ω(ε) + kO(log(1/δ)) · τ1/8 .

(Here, we assume that ε, δ and τ are sufficiently small.)
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The previous theorem is about graph expansion (measured by the quadratic form
〈 f ,T1−ε f 〉). The following lemma allows us to relate graph expansion to the 4-norm
of the projection of f into the span of the eigenfunctions of T1−ε with significant
eigenvalue. We will be able to bound this 4-norm in terms of the influences of f
(using the invariance principle in the previous section).

Lemma 6.7. Let f be a 4-f.r.v. over L2(ΩR). Suppose f 2 � f (in terms of unspecified
jointly-distributed 4-f.r.v. s). Then for all λ > 0,

�̃
f
〈 f ,T1−ε f 〉 6 (�̃

f
� f )3/4(�̃

f
�(P>λ f )4)1/4 + λ �̃

f
� f .

Here, P>λ is the projector into the span of the eigenfunctions of T1−ε with eigenvalue
larger than λ.

Proof. The following relation between polynomials holds

〈 f ,T1−ε f 〉 � � f · (P>λ f ) + λ� f 2 .

By Corollary 6.5, there exists a 4-f.r.v. ( f , f̄ ) over L2(ΩR)×L2(ΩR) such that f̄ 2 ≡ f̄ f̄ .
Then,

�̃
f
� f · (P>λ f ) = �̃

f , f̄
� f̄ · (P>λ f ) (using linearity in f̄ )

= �̃
f , f̄
� f̄ 3 · (P>λ f ) (using f̄ 2 ≡ f̄ f̄ )

6
(
�̃ f̄ � f̄ 4

)3/4
·
(
�̃ f �(P>λ f )4

)1/4
(using Lemma A.5 (Hölder))

=
(
�̃ f̄ � f̄

)3/4
·
(
�̃ f �(P>λ f )4

)1/4
(using f̄ 2 ≡ f̄ f̄ )

=
(
�̃ f � f

)3/4
·
(
�̃ f �(P>λ f )4

)1/4
(using linearity in f̄ ) �

Proof of Theorem 6.6. By Lemma 6.7,

�̃
f
〈 f ,T1−ε f 〉 6 (�̃

f
� f )3/4(�̃

f
�(P>λ f )4)1/4 + λ �̃

f
� f 2 .

Using Corollary 6.3,

�̃
f
〈 f ,T1−ε f 〉 6 2O(`) · (�̃

f
� f )3/4(�̃

f
(� f 2)2 +

√
τ · kO(`))1/4 + λ �̃

f
� f 2 .

Here, ` = log(1/λ)/ε. Using the relation f 2 � f and our assumption �̃ f (� f )2 6 δ2,
we get �̃ f � f 2 6 �̃ f � f 6 (�̃ f (� f )2)1/2 6 δ (by Cauchy–Schwarz). Hence,

�̃
f
〈 f ,T1−ε f 〉 6 (1/λ)O(1/ε)δ3/4(δ2 +

√
τ · (1/λ)O(log k)/ε)1/4 + λδ
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6 (1/λ)O(1/ε)δ5/4 + (1/λ)O(log k)/εδ3/4τ1/8 + λ · δ .

To balance the terms (1/λ)O(1/ε)δ5/4 and λδ, we choose λ = δΩ(ε). We conclude the
desired bound,

�̃
f
〈 f ,T1−ε f 〉 6 δ1+Ω(ε) + kO(log(1/δ)) · τ1/8 . �

6.5 Dictatorship Test for Unique Games

Let Ω = �k (cyclic group of order k) and let f be a 4-f.r.v. over L2(Ω ×ΩR). Here,
f (a, x) is intended to be 0/1 variable indicating whether symbol a is assigned to the
point x.

The following graph T ′1−ε on Ω × ΩR corresponds to the 2-query dictatorship
test for Unique Games [KKMO04],

T ′1−ε f (a, x) = �
c∈Ω

�
y∼1−εx

f (a + c, y − c · �) .

Here, y ∼1−ε x means that y is a random neighbor of x in the graph T1−ε (the ε-noise
graph on ΩR).

We define f̄ (x) := �c∈Ω f (c, x− c · �). (We think of f̄ as a variable over L2(ΩR).)
Then, the following polynomial identity (in f ) holds

〈 f ,T ′1−ε f 〉 = 〈 f̄ ,T1−ε f̄ 〉.

Theorem 6.8. Suppose f 2 � f and �̃ f (� f )2 6 δ2. Let τ = �̃ f
∑

r(Inf(6`)
r f̄ )2 for

` = Ω(log(1/δ)). Then,

�̃
f
〈 f ,T ′1−ε f 〉 6 δ1+Ω(ε) + kO(log(1/δ)) · τ1/8 .

(Here, we assume that ε, δ and τ are sufficiently small.)

Proof. Apply Theorem 6.6 to bound �̃ f 〈 f̄ ,T1−ε f̄ 〉. Use that fact that � f = � f̄ (as
polynomials in f ). �

6.6 Influence Decoding

LetU be a unique game with vertex set V and alphabet [R]. Recall that we represent
U as a distribution over triples (u, v, π) where u, v ∈ V and π is a permutation of
[R]. The triples encode the constraints ofU. We assume that the unique gameU is
regular in the same that every vertex participates in the same fraction of constraints.

Let Ω = �k (cyclic group of order k). We reduce U to a unique gameW =

Wε,k(U) with vertex set V ×ΩR and alphabet Ω. Let f = { fu}u∈V be a variable over
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L2(Ω × ΩR)V . The unique gameW corresponds to the following quadratic form in
f ,

〈 f ,W f 〉 := �
u∈V

�
(u,v,π)∼U|u

(u,v′,π′)∼U|u

〈 f (π)
v ,T ′1−ε f (π′)

v′ 〉 .

Here, (u, v, π) ∼ U | u denotes a random constraint of U incident to vertex u,
the graph T ′1−ε corresponds to the dictatorship test of Unique Games defined in
Section 6.5, and f (π)

v (a, x) = fv(a, π.x) is the function obtained by permuting the last
R coordinates according to π (where π.x(i) = xπ(i)).

We define gu = �(u,v,π)∼U|u f (π)
v . Then,

〈 f ,W f 〉 = �
u∈V
〈gu,T ′1−εgu〉 . (6.2)

Bounding the value of SoS solutions. Let f = { fu}u∈V be a solution to the level-d
SoS relaxation for the unique gameW. In particular, f is a d-f.r.v. over L2(Ω×ΩR)V .
Furthermore, �̃ f (� fu)2 6 1/k2 for all vertices u ∈ V .

By applying Theorem 6.8 to (6.2), we can bound the objective value of f

�̃
f
〈 f ,W f 〉 6 1/k1+Ω(ε) + kO(log k)

(
�̃
f
�

u∈V
τu

)1/8

,

where τu =
∑

r(Inf(6`)
r ḡu)2, ḡu(x) = �(u,v,π)∼U|u f̄ (π)

v , and f̄v(x) = �c∈Ω fv(c, x−c ·�).
Since Inf(6`)

r is a positive semidefinite form,

τu �
∑

r

(
�

(u,v,π)∼U|u
Inf(6`)

r f̄ (π)
v

)2

=
∑

r

(
�

(u,v,π)∼U|u
Inf(6`)

π(r) f̄v

)2

.

Let h be the level-d/2 fictitious random variable over L2(V × [R]) with h(u, r) =

Inf(6`)
r f̄u. Let GU be the label-extended graph of the unique gameU. Then, the

previous bound on τu shows that �u∈V τu � R · ‖GUh‖2 . Lemma A.1 shows that
h2 � h. On the other hand,

∑
r h(u, r) � `‖ f̄u‖2 � `‖ fu‖2 (bound on the total

influence of low-degree Fourier polynomials). In particular, � h � `�u∈V‖ fu‖2/R.
Since f is a valid SoS solution for the unique gameW, we have �̃ f ‖ fu‖d 6 1/kd/2

for all u ∈ V . (Here, we assume that d is even.) It follows that �̃h(� h)d/2 6 ( `
k·R )d/2.

The arguments in this subsection imply the following theorem.

Theorem 6.9. The optimal value of the level-d SoS relaxation for the unique game
W =Wε,k(U) is bounded from above by

1/kΩ(ε) + kO(log k)
(
R ·max

h
�̃
h
‖GUh‖2

)1/8
,

where the maximum is over all level-d/2 fictitious random variables h over L2(V ×
[R]) satisfying h2 � h and �̃h(� h)d/2 6 `/Rd/2.
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Remark 6.10. Since the quadratic form ‖GUh‖2 has only nonnegative coefficients
(in the standard basis), we can use Corollary 6.5 to ensure that the level-d/2 random
variable h satisfies in addition h2 ≡h h.

6.7 Certifying Small-Set Expansion

Let T1−ε be a the noise graph on {±1}R with second largest eigenvalue 1 − ε.

Theorem 6.11. Let f be level-4 fictitious random variables over L2({±1}R). Suppose
that f 2 � f (in terms of unspecified jointly-distributed level-4 fictitious random
variables) and that �̃ f (� f )2 6 δ2. Then,

�̃
f
〈 f ,T1−ε f 〉 6 δ1+Ω(ε) .

Proof. By Lemma 6.7 (applying it for the case Ω = {0, 1}), for every λ > 0,

�̃
f
〈 f ,T1−ε f 〉 6 (�̃

f
� f )3/4(�̃

f
�(P>λ f )4)1/4 + λ �̃

f
� f .

For the graph T1−ε, the eigenfunctions with eigenvalue larger than λ are char-
acters with degree at most log(1/λ)/ε. Hence, Lemma 5.1 implies �(P>λ f )4 �

(1/λ)O(1/ε)‖ f ‖4. Since f 2 � f , we have ‖ f ‖4 � (� f )2. Hence, �̃ f �(P>λ f )4 6
(1/λ)O(1/ε)δ2. Plugging in, we get

�̃
f
〈 f ,T1−ε f 〉 6 (1/λ)O(1/ε)δ5/4 + λ · δ .

To balance the terms, we choose λ = δΩ(ε), which gives the desired bound. �

6.8 Putting Things Together

Let T1−η be a the noise graph on {±1}R with second largest eigenvalue 1 − η. Let
U = Uη,R be an instance of Unique Games with label-extended graph GU = T1−η
(e.g., the construction in [KV05]).

Combining Theorem 6.9 (with d = 4) and Theorem 6.11 gives the following
result.

Theorem 6.12. The optimal value of the level-8 SoS relaxation for the unique game
W =Wε,k(Uη,R) is bounded from above by

1/kΩ(ε) + kO(log k) · R−Ω(η) .

In particular, the optimal value of the relaxation is close to 1/kΩ(ε) if log R �
(log k)2/η.
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6.9 Refuting Instances based on Short Code

LetU′ = U′η,R be an instance of Unique Games according to the basic construction
in [BGH+11]. (The label-extended graph ofU will be a subgraph of T1−ε induced
by the subset of {±1}R corresponding to a Reed–Muller code, that is, evaluations of
low-degree �2-polynomials.)

LetW′ =W′
ε,k(U′η,R) be the unique game obtained by applying the short-code

alphabet reduction of [BGH+11].
The following analog of Theorem 6.12 holds.

Theorem 6.13. The optimal value of the level-8 SoS relaxation for the unique game
W′ =W′

ε,k(U′η,R) is bounded from above by

1/kΩ(ε) + kO(log k) · R−Ω(η) .

In particular, the optimal value of the relaxation is close to 1/kΩ(ε) if log R �
(log k)2/η.

The proof of Theorem 6.13 is almost literally the same as the proof of Theo-
rem 6.12. In the following, we sketch the main arguments why the proof doesn’t
have to change. First, several of the results of the previous sections apply to general
graphs and instances of Unique Games. In particular, Lemma 6.7 applies to general
graphs and Theorem 6.9 applies to general gadget-composed instances of unique
games assuming a “Majority is Stablest” result for the gadget. In fact, the only
parts that require further justification are the invariance principle (Theorem 6.2)
and hypercontractivity bound (Lemma 5.1). Both the invariance principle and the
hypercontractivity bound are about the fourth moment of a low-degree Fourier poly-
nomial (whose coefficients are fictitious random variables). For the construction of
[BGH+11], we need to argue about the fourth moment with respect to a different
distribution over inputs. (Instead of the uniform distribution, [BGH+11] considers a
distribution over inputs related to the Reed–Muller code.) However, this distribution
happens to be k-wise independent for k/4 larger than the degree of our Fourier
polynomial. Hence, as a degree-4 polynomial in Fourier coefficients, the fourth
moment with respect to the [BGH+11]-input distribution is the same as with respect
to the uniform distribution, which considered here.

7 Hypercontractivity of random operators

We already saw that the Tensor-SDP algorithm provides non-trivial guarantees on
the 2 → 4 norms of the projector to low-degree polynomials. In this section we
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show that it also works for a natural but very different class of instances, namely
random linear operators.

Let A =
∑m

i=1 eiaT
i /
√

n, where ei is the vector with a 1 in the ith position, and
each ai is chosen i.i.d. from a distributionD on �n. Three natural possibilities are

1. Dsign: the uniform distribution over {−1, 1}n

2. DGaussian: a vector of n independent Gaussians with mean zero and variance 1

3. Dunit: a uniformly random (expectation-norm) unit vector on �n.

Our arguments will apply to any of these cases, or even to more general nearly-unit
vectors with bounded sub-Gaussian moment (details below).

Before discussing the performance of Tensor-SDP, we will discuss how the
2 → 4-norm of A behaves as a function of n and m. We can gain intuition by
considering two limits in the case of DGaussian. If n = 1, then ‖A‖2→4 = ‖a‖4,
for a random Gaussian vector a. For large m, ‖a‖4 is likely to be close to 31/4,
which is the fourth moment of a mean-zero unit-variance Gaussian. By Dvoretzky’s
theorem [Pis99], this behavior can be shown to extend to higher values of n. Indeed,
there is a universal c > 0 such that if n 6 c

√
mε2, then w.h.p. ‖A‖2→4 6 31/4 + ε. In

this case, the maximum value of ‖Ax‖4 looks roughly the same as the average or
the minimum value, and we also have ‖Ax‖4 > (31/4 − ε)‖x‖2 for all x ∈ �n. In the
cases ofDsign andDunit, the situation is somewhat more complicated, but for large
n, their behavior becomes similar to the Gaussian case.

On the other hand a simple argument (a variant of Corollary 10.2) shows that
‖A‖2→4 > n1/2/m1/4 for any (not only random) m × n matrix with all ±1/

√
n

entries. A nearly identical bound applies for the case when the ai are arbitrary
unit or near-unit vectors. Thus, in the regime where n > ω(

√
m), we always have

‖A‖2→4 > ω(1).
The following theorem shows that Tensor-SDP achieves approximately the

correct answer in both regimes.

Theorem 7.1. Let a1, . . . , am be drawn i.i.d. from a distributionD on �n withD ∈
{DGaussian,Dsign,Dunit}, and let A =

∑m
i=1 eiaT

i /
√

n. Then w.h.p. Tensor-SDP(A) 6
3 + c max( n√

m
, n2

m ) for some constant c > 0.

From Theorem 7.1 and the fact that ‖A‖42→4 6 Tensor-SDP(A), we obtain:

Corollary 7.2. Let A be as in Theorem 7.1. Then ∃c > 0 such that w.h.p.

‖A‖2→4 6

31/4 + c n√
m

if n 6
√

m

c n1/2

m1/4 if n >
√

m
(7.1)
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Before proving Theorem 7.1, we introduce some more notation. This will in fact
imply that Theorem 7.1 applies to a broader class of distributions. For a distribution
D on �N , define the ψp norm ‖D‖ψp to be the smallest C > 0 such that

max
v∈S (�N )

�
a∼D

e
|〈v,a〉|pN p/2

Cp 6 2, (7.2)

or∞ if no finite such C exists. We depart from the normal convention by including
a factor of N p/2 in the definition, to match the scale of [ALPTJ11]. The ψ2 norm
(technically a seminorm) is also called the sub-Gaussian norm of the distribution.
One can verify that for each of the above examples (sign, unit and Gaussian vectors),
ψ2(D) 6 O(1).

We also require thatD satisfies a boundedness condition with constant K > 1,
defined as

�

[
max
i∈[m]
‖ai‖2 > K max(1, (m/N)1/4)

]
6 e−

√
N . (7.3)

Similarly, K can be taken to be O(1) in each case that we consider.
We will require a following result of [ALPTJ10, ALPTJ11] about the conver-

gence of sums of i.i.d rank-one matrices.

Lemma 7.3 ([ALPTJ11]). LetD′ be a distribution on �N such that �v∼D′ vvT = I,
‖D′‖ψ1 6 ψ and (7.3) holds for D′ with constant K. Let v1, . . . , vm be drawn i.i.d.
fromD′. Then with probability > 1 − 2 exp(−c

√
N), we have

(1 − ε)I 6
1
m

m∑
i=1

viv
T
i 6 (1 + ε)I, (7.4)

where ε = C(ψ + K)2 max(N/m,
√

N/m) with c,C > 0 universal constants.

The N 6 m case (when the
√

N/m term is applicable) was proven in Theorem
1 of [ALPTJ11], and the N > m case (i.e. when the max is achieved by N/m) was
proven in Theorem 2 of [ALPTJ11] (see also Theorem 3.13 of [ALPTJ10]).

Proof of Theorem 7.1. Define A2,2 = 1
m

∑m
i=1 aiaT

i ⊗ aiaT
i . For n2 × n2 real matrices

X,Y , define 〈X,Y〉 := Tr XT Y/n2 = �i, j∈[n] Xi, jYi, j. Additionally define the convex
set X to be the set of n2 × n2 real matrices X = (X(i1,i2),(i3,i4))i1,i2,i3,i4∈[n] with X � 0,
�i, j∈[n] X(i, j),(i, j) = 1 and X(i1,i2),(i3,i4) = X(iπ(1),iπ(2)),(iπ(3),iπ(4)) for any permutation π ∈ S4.
Finally, let hX(Y) := maxX∈X〈X,Y〉. It is straightforward to show (c.f. Lemma 9.3)
that

Tensor-SDP(A) = hX(A2,2) = max
X∈X
〈X, A2,2〉. (7.5)
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We note that if X were defined without the symmetry constraint, it would simply be
the convex hull of xxT for unit vectors x ∈ �n2

and Tensor-SDP(A) would simply
be the largest eigenvalue of A2,2. However, we will later see that the symmetry
constraint is crucial to Tensor-SDP(A) being O(1).

Our strategy will be to analyze A2,2 by applying Lemma 7.3 to the vectors
vi := Σ−1/2(ai ⊗ ai), where Σ = � aiaT

i ⊗ aiaT
i , and −1/2 denotes the pseudo-inverse.

First, observe that, just as the ψ2 norm of the distribution over ai is constant, a
similar calculation can verify that the ψ1 norm of the distribution over ai ⊗ ai is also
constant. Next, we have to argue that Σ−1/2 does not increase the norm by too much.

To do so, we compute Σ for each distribution over ai that we have considered.
Let F be the operator satisfying F(x ⊗ y) = y ⊗ x for any x, y ∈ �n; explicitly
F = Pn((1, 2)) from (9.9). Define

Φ :=
n∑

i=1

ei ⊗ ei (7.6)

∆ :=
n∑

i=1

eieT
i ⊗ eieT

i (7.7)

Direct calculations (omitted) can verify that the cases of random Gaussian vectors,
random unit vectors and random ±1 vectors yield respectively

ΣGaussian = I + F + ΦΦT (7.8a)

Σunit =
n

n + 1
ΣGaussian (7.8b)

Σsign = ΣGaussian − 2∆ (7.8c)

In each case, the smallest nonzero eigenvalue of Σ is Ω(1), so vi = Σ−1/2(ai ⊗ ai)
has ψ1 6 O(1) and satisfies the boundedness condition (7.3) with K 6 O(1).

Thus, we can apply Lemma 7.3 (with N = rank Σ 6 n2 and ε :=
c max(n/

√
m, n2/m)) and find that in each case w.h.p.

A2,2 =
1
m

m∑
i=1

aiaT
i ⊗ aiaT

i � (1 + ε)) Σ � (1 + ε) (I + F + ΦΦT ) (7.9)

Since hX(Y) > 0 whenever Y � 0, we have hX(A2,2) 6 (1+ε)hX(Σ). Additionally,
hX(I + F + ΦΦT ) 6 hX(I) + hX(F) + hXΦΦT ), so we can bound each of three terms
separately. Observe that I and F each have largest eigenvalue equal to 1, and so
hX(I) 6 1 and hX(F) 6 1. (In fact, these are both equalities.)

However, the single nonzero eigenvalue of ΦΦT is equal to n. Here we will
need to use the symmetry constraint on X. Let XΓ be the matrix with entries
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XΓ
(i1,i2),(i3,i4) := X(i1,i4),(i3,i2). If X ∈ X then X = XΓ. Additionally, 〈X,Y〉 = 〈XΓ,YΓ〉.

Thus
hX(ΦΦT ) = hX((ΦΦT )Γ) 6 ‖(ΦΦT )Γ‖2→2 = 1.

This last equality follows from the fact that (ΦΦT )Γ = F.
Putting together these ingredients, we obtain the proof of the theorem. �

It may seem surprising that the factor of 31/4 emerges even for matrices with,
say, ±1 entries. An intuitive justification for this is that even if the columns of A are
not Gaussian vectors, most linear combinations of them resemble Gaussians. The
following Lemma shows that this behavior begins as soon as n is ω(1).

Lemma 7.4. Let A =
∑m

i=1 eiaT
i /
√

n with �i ‖ai‖
4
2 > 1. Then ‖A‖2→4 > (3/(1 +

2/n))1/4.

To see that the denominator cannot be improved in general, observe that when
n = 1 a random sign matrix will have 2→ 4 norm equal to 1.

Proof. Choose x ∈ �n to be a random Gaussian vector such that �x ‖x‖22 = 1. Then

�
x
‖Ax‖44 = �

i
�
x

n−2(aT
i x)4 = n2

�
i
�
x
〈ai, x〉4 = 3�

i
‖ai‖

4
2 > 3. (7.10)

The last equality comes from the fact that 〈ai, x〉 is a Gaussian random variable with
mean zero and variance ‖ai‖

2
2/n. On the other hand, �x ‖x‖42 = 1 + 2/n. Thus, there

must exist an x for which ‖Ax‖44/‖x‖
4
2 > 3/(1 + 2/n). �

Remark 7.5. It is instructive to consider a variant of the above argument. A simpler
upper bound on the value of Tensor-SDP(A) is given simply by ‖A2,2‖. However,
the presence of the ΦΦT term means that this bound will be off by an n-dependent
factor. Thus we observe that the symmetry constraints of Tensor-SDP(4) provide
a crucial advantage over the simpler bound using eigenvalues. In the language
of quantum information (see Section 9.3), this means that the PPT constraint is
necessary for the approximation to succeed. See Section 9.3.2 for an example of
this that applies to higher levels of the hierarchy as well.

On the other hand, when the ai are chosen to be random complex Gaussian
vectors, we simply have � aia∗i ⊗ aia∗i = I + F. In this case, the upper bound
Tensor-SDP(A) 6 ‖A2,2‖ is already sufficient. Thus, only real random vectors
demonstrate a separation between these two bounds.

Remark 7.6. Our results can be seen as proving that hPPT(M) is close to hSep(M)
when M is of the form 1

m
∑m

i=1 aiaT
i ⊗ aiaT

i and a1, . . . , am are random vectors.
In the case when M is instead a randomly chosen projector of an appropriately
chosen dimension, Montanaro [Mon11] proved a similar bound, using much more
sophisticated techniques.
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8 The 2-to-q norm and small-set expansion

In this section we show that a graph is a small-set expander if and only if the
projector to the subspace of its adjacency matrix’s top eigenvalues has a bounded
2→ q norm for even q > 4. While the “if” part was known before, the “only if” part
is novel. This characterization of small-set expanders is of general interest, and also
leads to a reduction from the Small-Set Expansion problem considered in [RS10]
to the problem of obtaining a good approximation for the 2→ q norms.

Notation. For a regular graph G = (V, E) and a subset S ⊆ V , we define the
measure of S to be µ(S ) = |S |/|V | and we define G(S ) to be the distribution
obtained by picking a random x ∈ S and then outputting a random neighbor y of
x. We define the expansion of S , to be ΦG(S ) = �y∈G(S )[y < S ]. For δ ∈ (0, 1), we
define ΦG(δ) = minS⊆V:µ(S )6δ ΦG(S ). We often drop the subscript G from ΦG when
it is clear from context. We identify G with its normalized adjacency (i.e., random
walk) matrix. For every λ ∈ [−1, 1], we denote by V>λ(G) the subspace spanned by
the eigenvectors of G with eigenvalue at least λ. The projector into this subspace is
denoted P>λ(G). For a distribution D, we let cp(D) denote the collision probability
of D (the probability that two independent samples from D are identical).

Our main theorem of this section is the following:

Theorem (Restatement of Theorem 2.4). For every regular graph G, λ > 0 and
even q,

1. (Norm bound implies expansion) For all δ > 0, ε > 0, ‖P>λ(G)‖2→q 6
ε/δ(q−2)/2q implies that ΦG(δ) > 1 − λ − ε2.

2. (Expansion implies norm bound) There are constants c1, c2 > 0 such that for
all δ > 0, ΦG(δ) > 1 − c1λ

2q2−c2q implies ‖P>λ(G)‖2→q 6 2/
√
δ.

One corollary of Theorem 2.4 is that a good approximation to the 2→ q norm
implies an approximation of Φδ(G)

Corollary 8.1. If there is a polynomial-time computable relaxation R yielding good
approximation for the 2→ q, then the Small-Set Expansion Hypothesis of [RS10]
is false.

Proof. Using [RST10a], to refute the small-set expansion hypothesis it is enough
to come up with an efficient algorithm that given an input graph G and sufficiently
small δ > 0, can distinguish between the Yes case: ΦG(δ) < 0.1 and the No case
ΦG(δ′) > 1 − 2−c log(1/δ′) for any δ′ > δ and some constant c. In particular for all
η > 0, if δ is small enough then in the No case ΦG(δ0.4) > 1 − η.
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Using Theorem 2.4, in the Yes case we know ‖P>1/2‖2→q > 1/(10δ(q−2)/2q),
while in the No case, if we choose δ sufficiently small so that η is smaller than
c1(1/2)q2−c2q, then we know that ‖P>1/2‖2→q 6 2/

√
δ0.2. Clearly, if we have a good

approximation for the 2→ q norm then, for sufficiently small δ, we can distinguish
between these two cases. �

The first part of Theorem 2.4 follows from previous work (e.g., see [KV05]).
For completeness, we include a proof in Appendix B. The second part will follow
from the following lemma:

Lemma 8.2. Set e = e(λ, q) := c12c2q/λq, with universal constants c1, c2 > 0. Then
for every λ > 0 and 1 > δ > 0, if G is a graph that satisfies cp(G(S )) 6 1/(e|S |) for
all S with µ(S ) 6 δ, then ‖ f ‖q 6 2‖ f ‖2/

√
δ for all f ∈ V>λ(G).

Proving the second part of Theorem 2.4 from Lemma 8.2. We use the variant
of the local Cheeger bound obtained in [Ste10, Theorem 2.1], stating that if ΦG(δ) >
1 − η then for every f ∈ L2(V) satisfying ‖ f ‖21 6 δ‖ f ‖

2
2, ‖G f ‖22 6 c

√
η‖ f ‖22. The

proof follows by noting that for every set S , if f is the characteristic function of S
then ‖ f ‖1 = ‖ f ‖22 = µ(S ), and cp(G(S )) = ‖G f ‖22/(µ(S )|S |). �

Proof of Lemma 8.2. Fix λ > 0. We assume that the graph satisfies the condition of
the Lemma with c12c2q/λq, for constants c1, c2 that we will set later. Let G = (V, E)
be such a graph, and f be function in V>λ(G) with ‖ f ‖2 = 1 that maximizes ‖ f ‖q. We
write f =

∑m
i=1 αiχi where χ1, . . . , χm denote the eigenfunctions of G with values

λ1, . . . , λm that are at least λ. Assume towards a contradiction that ‖ f ‖q > 2/
√
δ.

We’ll prove that g =
∑m

i=1(αi/λi)χi satisfies ‖g‖q > 5‖ f ‖q/λ. This is a contradiction
since (using λi ∈ [λ, 1]) ‖g‖2 6 ‖ f ‖2/λ, and we assumed f is a function in V>λ(G)
with a maximal ratio of ‖ f ‖q/‖ f ‖2.

Let U ⊆ V be the set of vertices such that | f (x)| > 1/
√
δ for all x ∈ U.

Using Markov inequality and the fact that �x∈V [ f (x)2] = 1, we know that µ(U) =

|U |/|V | 6 δ, meaning that under our assumptions any subset S ⊆ U satisfies
cp(G(S )) 6 1/(e|S |). On the other hand, because ‖ f ‖qq > 2q/δq/2, we know that U
contributes at least half of the term ‖ f ‖qq = �x∈V f (x)q. That is, if we define α to
be µ(U)�x∈U f (x)q then α > ‖ f ‖qq/2. We will prove the lemma by showing that
‖g‖

q
q >

(
10λ−1

)q
α.

Let c be a sufficiently large constant (c = 100 will do). We define Ui to be
the set {x ∈ U : f (x) ∈ [ci/

√
δ, ci+1/

√
δ)}, and let I be the maximal i such that

Ui is non-empty. Thus, the sets U0, . . . ,UI form a partition of U (where some
of these sets may be empty). We let αi be the contribution of Ui to α. That is,
αi = µi�x∈Ui f (x)q, where µi = µ(Ui). Note that α = α0 + · · · + αI . We’ll show that
there are some indices i1, . . . , iJ such that:
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(i) αi1 + · · · + αiJ > α/(2c10).

(ii) For all j ∈ [J], there is a non-negative function g j : V → � such that
�x∈V g j(x)q > eαi j/(10c2)q/2.

(iii) For every x ∈ V , g1(x) + · · · + gJ(x) 6 |g(x)|.

Showing these will complete the proof, since it is easy to see that for two non-
negative functions g′, g′′ and even integer q, �(g′(x)+g′′(x))q > � g′(x)q +� g′′(x)q,
and hence (ii) and (iii) imply that

‖g‖
q
q = � g(x)q > (e/(10c2)q/2)

∑
j

αi j . (8.1)

Using (i) we conclude that for e > 2c1010q(10c2)q/2/λq, the right-hand side of (8.1)
will be larger than (10/λ)qα.

We find the indices i1, . . . , iJ iteratively. We let I be initially the set {0..I} of all
indices. For j = 1, 2, ... we do the following as long as I is not empty:

1. Let i j be the largest index in I.

2. Remove from I every index i such that αi 6 c10αi j/2
i−i j .

We let J denote the step when we stop. Note that our indices i1, . . . , iJ are sorted
in descending order. For every step j, the total of the αi’s for all indices we removed
is less than c10αi j and hence we satisfy (i). The crux of our argument will be to
show (ii) and (iii). They will follow from the following claim:

Claim 8.3. Let S ⊆ V and β > 0 be such that |S | 6 δ and | f (x)| > β for all x ∈ S .
Then there is a set T of size at least e|S | such that �x∈T g(x)2 > β2/4.

The claim will follow from the following lemma:

Lemma 8.4. Let D be a distribution with cp(D) 6 1/N and g be some function.
Then there is a set T of size N such that �x∈T g(x)2 > (� g(D))2/4.

Proof. Identify the support of D with the set [M] for some M, we let pi denote
the probability that D outputs i, and sort the pi’s such that p1 > p2 · · · pM. We
let β′ denote � g(D); that is, β′ =

∑M
i=1 pig(i). We separate to two cases. If∑

i>N pig(i) > β′/2, we define the distribution D′ as follows: we set �[D′ = i] to be
pi for i > N, and we let all i 6 N be equiprobable (that is be output with probability
(
∑N

i=1 pi)/N). Clearly, � |g(D′)| >
∑

i>N pig(i) > β′/2, but on the other hand, since
the maximum probability of any element in D′ is at most 1/N, it can be expressed
as a convex combination of flat distributions over sets of size N, implying that one
of these sets T satisfies �x∈T |g(x)| > β′/2, and hence �x∈T g(x)2 > β′2/4.
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The other case is that
∑N

i=1 pig(i) > β′/2. In this case we use Cauchy-Schwarz
and argue that

β′2/4 6

 N∑
i=1

p2
i


 N∑

i=1

g(i)2

 . (8.2)

But using our bound on the collision probability, the right-hand side of (8.2) is upper
bounded by 1

N
∑N

i=1 g(i)2 = �x∈[N] g(x)2. �

Proof of Claim 8.3 from Lemma 8.4. By construction f = Gg, and hence we know
that for every x, f (x) = �y∼x g(y). This means that if we let D be the distribution
G(S ) then

� |g(D)| = �
x∈S
�
y∼x
|g(y)| > �

x∈S
| �
y∼x

g(y)| = �
x∈S
| f (x)| > β .

By the expansion property of G, cp(D) 6 1/(e|S |) and thus by Lemma 8.4 there is a
set T of size e|S | satisfying �x∈T g(x)2 > β2/4. �

We will construct the functions g1, . . . , gJ by applying iteratively Claim 8.3. We
do the following for j = 1, . . . , J:

1. Let T j be the set of size e|Ui j | that is obtained by applying Claim 8.3 to
the function f and the set Ui j . Note that �x∈T j g(x)2 > β2

i j
/4, where we let

βi = ci/
√
δ (and hence for every x ∈ Ui, βi 6 | f (x)| 6 cβi).

2. Let g′j be the function on input x that outputs γ·|g(x)| if x ∈ T j and 0 otherwise,
where γ 6 1 is a scaling factor that ensures that �x∈T j g

′(x)2 equals exactly
β2

i j
/4.

3. We define g j(x) = max{0, g′j(x) −
∑

k< j gk(x)}.

Note that the second step ensures that g′j(x) 6 |g(x)|, while the third step ensures
that g1(x) + · · ·+ g j(x) 6 g′j(x) for all j, and in particular g1(x) + · · ·+ gJ(x) 6 |g(x)|.
Hence the only thing left to prove is the following:

Claim 8.5. �x∈V g j(x)q > eαi j/(10c)q/2

Proof. Recall that for every i, αi = µi�x∈Ui f (x)q, and hence (using f (x) ∈ [βi, cβi)
for x ∈ Ui):

µiβ
q
i 6 αi 6 µicqβ

q
i . (8.3)
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Now fix T = T j. Since �x∈V g j(x)q is at least (in fact equal) µ(T )�x∈T g j(x)q

and µ(T ) = eµ(Ui j), we can use (8.3) and �x∈T g j(x)q > (Ex∈Tg j(x)2)q/2, to reduce
proving the claim to showing the following:

�
x∈T

g j(x)2 > (cβi j)
2/(10c2) = β2

i j
/10 . (8.4)

We know that �x∈T g
′
j(x)2 = β2

i j
/4. We claim that (8.4) will follow by showing

that for every k < j,
�

x∈T
g′k(x)2 6 100−i′ · β2

i j
/4 , (8.5)

where i′ = ik − i j. (Note that i′ > 0 since in our construction the indices i1, . . . , iJ

are sorted in descending order.)

Indeed, (8.5) means that if we let momentarily ‖g j‖ denote
√
�x∈T g j(x)2 then

‖g j‖ > ‖g
′
j‖ − ‖

∑
k< j gk‖ > ‖g

′
j‖ −

∑
k< j

‖gk‖ > ‖g
′
j‖(1 −

∞∑
i′=1

10−i′) > 0.8‖g′j‖ . (8.6)

The first inequality holds because we can write g j as g′j − h j, where h j =

min{g′j,
∑

k< j gk}. Then, on the one hand, ‖g j‖ > ‖g
′
j‖ − ‖h j‖, and on the other hand,

‖h j‖ 6 ‖
∑

k< j gk‖ since g′j > 0. The second inequality holds because ‖gk‖ 6 ‖g
′
k‖.

By squaring (8.6) and plugging in the value of ‖g′j‖
2 we get (8.4).

Proof of (8.5). By our construction, it must hold that

c10αik/2
i′ 6 αi j , (8.7)

since otherwise the index i j would have been removed from the I at the kth step.
Since βik = βi jc

i′ , we can plug (8.3) in (8.7) to get

µik c
10+4i′/2i′ 6 c4µi j

or
µik 6 µi j(2/c)4i′c−6 .

Since |Ti| = e|Ui| for all i, it follows that |Tk|/|T | 6 (2/c)4i′c−6. On the other
hand, we know that �x∈Tk g

′
k(x)2 = β2

ik
/4 = c2i′β2

i j
/4. Thus,

�
x∈T

g′k(x)2 6 24i′c2i′−4i′−6β2
i j
/4 6 (24/c2)i′β2

i j
/4 ,

and now we just choose c sufficiently large so that c2/24 > 100. �

�
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9 Relating the 2-to-4 norm and the injective tensor norm

In this section, we present several equivalent formulations of the 2-to-4 norm: 1)
as the injective tensor norm of a 4-tensor, 2) as the injective tensor norm of a
3-tensor, and 3) as the maximum of a linear function over a convex set, albeit a
set where the weak membership problem is hard. Additionally, we can consider
maximizations over real or complex vectors. These equivalent formulations are
discussed in Section 9.1.

We use this to show hardness of approximation (Theorem 2.5) for the 2-to-4
norm in Section 9.2, and then show positive algorithmic results (Theorem 2.3) in
Section 9.3. Somewhat surprisingly, many of the key arguments in these sections
are imported from the quantum information literature, even though no quantum
algorithms are involved. It is an interesting question to find a more elementary proof
of the result in Section 9.3.

In this section, it will be convenient to sometimes work with the counting norms
‖‖‖.‖‖‖, which we recall are defined as ‖‖‖x‖‖‖p := (

∑
i |xi|

p)1/p, and the counting inner
product, defined by 〈〈〈x, y〉〉〉 := x∗y, where ∗ denotes the conjugate transpose.

9.1 Equivalent maximizations

9.1.1 Injective tensor norm and separable states

Recall from the introduction the definition of the injective tensor norm: if V1, . . . ,Vr

are vector spaces with T ∈ V1 ⊗ · · · ⊗ Vr, then ‖‖‖T‖‖‖inj = max{|〈〈〈T, (x1 ⊗ · · · ⊗ xr)〉〉〉| :
x1 ∈ S(V1), . . . , xr ∈ S(Vr)}, where S(V) denotes the L2-unit vectors in a vector
space V . In this paper we use the term “injective tensor norm” to mean the injective
tensor norm of `2 spaces, and we caution the reader that in other contexts it has a
more general meaning. These norms were introduced by Grothendieck, and they
are further discussed in [Rya02].

We will also need the definition of separable states from quantum information.
For a vector space V , define L(V) to be the linear operators on V , and define
D(V) := {ρ ∈ L(V) : ρ � 0,Tr ρ = 1} = conv{vv∗ : v ∈ S(V)} to be the density
operators on V . The trace induces an inner product on operators: 〈〈〈X,Y〉〉〉 := Tr X∗Y .
An important class of density operators are the separable density operators. For
vector spaces V1, . . . ,Vr, these are

Sep(V1, . . . ,Vr) := conv
{
v1v
∗
1 ⊗ · · · ⊗ vrv

∗
r : ∀i, vi ∈ S(Vi)

}
.

If V = V1 = · · · = Vr, then let Sepr(V) denote Sep(V1, . . . ,Vr). Physically, density
operators are the quantum analogues of probability distributions, and separable
density operators describe unentangled quantum states; conversely, entangled states

39



are defined to be the set of density operators that are not separable. For readers
familiar with quantum information, we point out that our treatment differs principally
in its use of the expectation for norms and inner products, rather than the sum.

For any bounded convex set K, define the support function of K to be

hK(x) := max
y∈K
|〈〈〈x, y〉〉〉|.

Define ei ∈ �
n to be the vector with 1 in the ith position. Now we can give the

convex-optimization formulation of the injective tensor norm.

Lemma 9.1. Let V1, . . . ,Vr be vector spaces with ni := dim Vi, and T ∈ V1⊗· · ·⊗Vr.
Choose an orthonormal basis e1, . . . , enr for Vr. Define T1, . . . ,Tnr ∈ V1 ⊗ · · · ⊗Vr1

by T =
∑nr

i=1 Ti ⊗ ei and define M ∈ L(V1 ⊗ · · · ⊗ Vr−1) by M =
∑nr

i=1 TiT ∗i . Then

‖‖‖T‖‖‖2inj = hSep(V1,...,Vr−1)(M). (9.1)

Observe that any M � 0 can be expressed in this form, possibly by padding nr to
be at least rank M. Thus calculating ‖‖‖ · ‖‖‖inj for r-tensors is equivalent in difficulty to
computing hSepr−1 for p.s.d. arguments. This argument appeared before in [HM10],
where it was explained using quantum information terminology.

It is instructive to consider the r = 2 case. In this case, T is equivalent to a
matrix T̂ and ‖‖‖T‖‖‖inj = ‖‖‖T̂‖‖‖2→2. Moreover Sep1(�n1) = D(�n1) is simply the convex
hull of vv∗ for unit vectors v. Thus hSep1(�n1 )(M) is simply the maximum eigenvalue
of M = TT ∗. In this case, Lemma 9.1 merely states that the square of the largest
singular value of T̂ is the largest eigenvalue of T̂ T̂ ∗. The general proof follows this
framework.

Proof of Lemma 9.1.

‖‖‖T‖‖‖inj = max
x1∈S(V1),...,xr∈S(Vr)

|〈〈〈T, x1 ⊗ · · · ⊗ xr〉〉〉| (9.2)

= max
x1∈S(V1),...,xr−1∈S(Vr−1)

max
xr∈S(Vr)

∣∣∣∣∣∣∣
n∑

i=1

〈〈〈Ti, x1 ⊗ · · · ⊗ xr−1〉〉〉 · 〈〈〈ei, xr〉〉〉

∣∣∣∣∣∣∣ (9.3)

= max
x1∈S(V1),...,xr−1∈S(Vr−1)

‖‖‖

n∑
i=1

〈〈〈Ti, x1 ⊗ · · · ⊗ xr−1〉〉〉ei‖‖‖2 (9.4)

Therefore

‖‖‖T‖‖‖2inj = max
x1∈S(V1),...,xr−1∈S(Vr−1)

‖‖‖

nr∑
i=1

〈〈〈Ti, x1 ⊗ · · · ⊗ xr−1〉〉〉ei‖‖‖
2
2 (9.5)
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= max
x1∈S(V1),...,xr−1∈S(Vr−1)

nr∑
i=1

|〈〈〈Ti, x1 ⊗ · · · ⊗ xr−1〉〉〉|
2
2 (9.6)

= max
x1∈S(V1),...,xr−1∈S(Vr−1)

〈〈〈

nr∑
i=1

TiT ∗i , x1x∗1 ⊗ · · · ⊗ xr x∗r〉〉〉 (9.7)

= hSep(V1,...,Vr1 )

 nr∑
i=1

TiT ∗i

 (9.8)

�

In what follows, we will also need to make use of some properties of symmetric
tensors. Define Sk to be the group of permutations of [k] and define Pn(π) ∈
L((�n)⊗k) to be the operator that permutes k tensor copies of �n according to π.
Formally,

Pn(π) :=
∑

i1,...,ir∈[d]

r⊗
k=1

eik e
T
iπ(k)
. (9.9)

Then define ∨k�n to be the subspace of vectors in (�n)⊗r that are unchanged by each
Pn(π). This space is called the symmetric subspace. A classic result in symmetric
polynomials states that ∨r�n is spanned by the vectors {v⊗r : v ∈ �n}.12

One important fact about symmetric tensors is that for injective tensor norm,
the vectors in the maximization can be taken to be equal. Formally,

Fact 9.2. If T ∈ ∨r�n then

‖‖‖T‖‖‖inj = max
x∈S(�n)

|〈〈〈T, x⊗r〉〉〉|. (9.10)

This has been proven in several different works; see the paragraph above
Eq. (3.1) of [CKP00] for references.

9.1.2 Connection to the 2-to-4 norm

Let A =
∑m

i=1 eiaT
i , so that a1, . . . , am ∈ �

n are the rows of A. Define

A4 =

m∑
i=1

a⊗4
i ∈ (�n)⊗4 (9.11)

12For the proof, observe that v⊗r ∈ ∨r�n for any v ∈ �n. To construct a basis for ∨r�n out of linear
combinations of different v⊗r, let z1, . . . , zn be indeterminates and evaluate the r-fold derivatives of
(z1e1 + · · · + znen)⊗r at z1 = · · · = zn = 0.
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A3 =

m∑
i=1

ai ⊗ ai ⊗ ei ∈ �n ⊗�n ⊗�m (9.12)

A2,2 =

m∑
i=1

aiaT
i ⊗ aiaT

i ∈ L((�n)⊗2) (9.13)

The subscripts indicate that that Ar is an r-tensor, and Ar,s is a map from r-tensors
to s-tensors.

Further, for a real tensor T ∈ (�n)⊗r, define ‖‖‖T‖‖‖inj[�] to be the injective tensor
norm that results from treating T as a complex tensor; that is, max{|〈〈〈T, x1⊗· · ·⊗xr〉〉〉| :
x1, . . . , xr ∈ S(�n)}. For r > 3, ‖‖‖T‖‖‖inj[�] can be larger than ‖‖‖T‖‖‖inj by as much as
√

2 [CKP00].
Our main result on equivalent forms of the 2→ 4 norm is the following.

Lemma 9.3.

‖‖‖A‖‖‖42→4 = ‖‖‖A4‖‖‖inj = ‖‖‖A3‖‖‖
2
inj = ‖‖‖A4‖‖‖inj[�] = ‖‖‖A3‖‖‖

2
inj[�] = hSep2(�n)(A2,2) = hSep2(�n)(A2,2)

Proof.

‖‖‖A‖‖‖42→4 = max
x∈S(�n)

m∑
i=1

〈〈〈ai, x〉〉〉4 (9.14)

= max
x∈S(�n)

〈〈〈A4, x⊗4〉〉〉 (9.15)

= max
x1,x2,x3,x4∈S(�n)

|〈〈〈A4, x1 ⊗ x2 ⊗ x3 ⊗ x4〉〉〉| (9.16)

= ‖‖‖A4‖‖‖inj (9.17)

Here (9.16) follows from Fact 9.2.
Next one can verify with direct calculation (and using maxz∈S(�n) 〈〈〈v, z〉〉〉 = ‖‖‖v‖‖‖2)

that

max
x∈S(�n)

〈〈〈A4, x⊗4〉〉〉 = max
x∈S(�n)

〈〈〈A2,2, xxT ⊗ xxT〉〉〉 = max
x∈S(�n)

max
z∈S(�m)

〈〈〈A3, x⊗ x⊗z〉〉〉2. (9.18)

Now define z(i) := 〈〈〈ei, z〉〉〉 and continue.

max
x∈S(�n)

max
z∈S(�m)

|〈〈〈A3, x ⊗ x ⊗ z〉〉〉| = max
x∈S(�n)

max
z∈S(�m)

Re
m∑

i=1

z(i)〈〈〈ai, x〉〉〉2 (9.19)

= max
x∈S(�n)

max
z∈S(�m)

Re
m∑

i=1

z(i)〈〈〈ai, x〉〉〉2 (9.20)
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= max
z∈S(�m)

‖‖‖

m∑
i=1

z(i)aiaT
i ‖‖‖2→2 (9.21)

= max
z∈S(�m)

max
x,y∈S(�n)

Re
m∑

i=1

z(i)〈〈〈x∗, ai〉〉〉〈〈〈ai, y〉〉〉 (9.22)

= ‖‖‖A3‖‖‖inj[�] = ‖‖‖A3‖‖‖inj (9.23)

From Lemma 9.1, we thus have ‖‖‖A‖‖‖42→4 = hSep2(�n)(A2,2) = hSep2(�n)(A2,2).
To justify (9.22), we argue that the maximum in (9.21) is achieved by taking all

the z(i) real (and indeed nonnegative). The resulting matrix
∑

i z(i)aiaT
i is real and

symmetric, so its operator norm is achieved by taking x = y to be real vectors. Thus,
the maximum in ‖‖‖A3‖‖‖inj[�] is achieved for real x, y, z and as a result ‖‖‖A3‖‖‖inj[�] =

‖‖‖A3‖‖‖inj.
Having now made the bridge to complex vectors, we can work backwards

to establish the last equivalence: ‖A4‖inj[�]. Repeating the argument that led to
(9.17) will establish that ‖‖‖A4‖‖‖inj[�] = maxx∈S(�n) maxz∈S(�m) |〈〈〈A3, x ⊗ x ⊗ z〉〉〉|2 =

‖‖‖A3‖‖‖
2
inj[�]. �

9.2 Hardness of approximation for the 2-to-4 norm

This section is devoted to the proof of Theorem 2.5, establishing hardness of
approximation for the 2-to-4 norm.

First, we restate Theorem 2.5 more precisely. We omit the reduction to when A
is a projector, deferring this argument to Corollary 9.9, where we will further use a
randomized reduction.

Theorem 9.4. (restatement of Theorem 2.5) Let φ be a 3-SAT instance with n
variables and O(n) clauses. Determining whether φ is satisfiable can be reduced
in polynomial time to determining whether ‖A‖2→4 > C or ‖A‖2→4 6 c where
0 6 c < C and A is an m ×m matrix. This is possible for two choices of parameters:

1. m = poly(n), and C/c > 1 + 1/n poly log(n); or,

2. m = exp(
√

n poly log(n) log(C/c)).

The key challenge is establishing the following reduction.

Lemma 9.5. Let M ∈ L(�n ⊗ �n) satisfy 0 6 M 6 I. Assume that either (case Y)
hSep(n,n)(M) = 1 or (case N) hSep(n,n)(M) 6 1 − δ. Let k be a positive integer. Then
there exists a matrix A of size n4k × n2k such that in case Y, ‖A‖2→4 = 1, and in case
N, ‖A‖2→4 = (1 − δ/2)k. Moreover, A can be constructed efficiently from M.
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Proof of Theorem 9.4. Once Lemma 9.5 is proved, Theorem 2.5 follows from pre-
viously known results about the hardness of approximating hSep). Let φ be a 3-SAT
instance with n variables and O(n) clauses. In Theorem 4 of [GNN] (improving on
earlier work of [Gur03]), it was proved that φ can be reduced to determining whether
hSep(nc,nc)(M) is equal to 1 (“case Y”) or 6 1 − 1/n logc(n) (“case N”), where c > 0
is a universal constant, and M is an efficiently constructible matrix with 0 6 M 6 I.
Now we apply Lemma 9.5 with k = 1 to find that exists a matrix A of dimension
poly(n) such that in case Y, ‖‖‖A‖‖‖2→4 = 1, and in case N, ‖‖‖A‖‖‖2→4 6 1 − 1/2n logc(n).
Thus, distinguishing these cases would determine whether φ is satisfiable. This
establishes part (1) of Theorem 2.5.

For part (2), we start with Corollary 14 of [HM10], which gives a reduc-
tion from determining the satisfiability of φ to distinguishing between (“case Y”)
hSep(m,m)(M) = 1 and (“case N”) hSep(m,m)(M) 6 1/2. Again 0 6 M 6 I, and M
can be constructed in time poly(m) from φ, but this time m = exp(

√
n poly log(n)).

Applying Lemma 9.5 in a similar fashion completes the proof. �

Proof of Lemma 9.5. The previous section shows that computing ‖‖‖A‖‖‖2→4 is equiva-
lent to computing hSep(n,n)(A2,2), for A2,2 defined as in (9.13). However, the hardness
results of [Gur03, GNN, HM10] produce matrices M that are not in the form of A2,2.
The reduction of [HM10] comes closest, by producing a matrix that is a sum of
terms of the form xx∗⊗yy∗. However, we need a sum of terms of the form xx∗⊗ xx∗.
This will be achieved by a variant of the protocol used in [HM10].

Let M0 ∈ L(�n ⊗ �n) satisfy 0 6 M 6 I. Consider the promise problem of dis-
tinguishing the cases hSep(n,n)(M0) = 1 (called “case Y”) from hSep(n,n)(M0) 6 1/2
(called “case N”). We show that this reduces to finding a multiplicative approxima-
tion for ‖‖‖A‖‖‖2→4 for some real A of dimension nα for a constant α > 0. Combined
with known hardness-of-approximation results (Corollary 15 of [HM10]), this will
imply Theorem 2.5.

Define P to be the projector onto the subspace of (�n)⊗4 that is invariant under
Pn((1, 3)) and Pn((2, 4)) (see Section 9.1 for definitions). This can be obtained by
applying Pn((2, 3)) to ∨2�n ⊗ ∨2�n, where we recall that ∨2�n is the symmetric
subspace of (�n)⊗2. Since P projects onto the vectors invariant under the 4-element
group generated by Pn((1, 3)) and Pn((2, 4)), we can write it as

P =
I + Pn((1, 3))

2
·

I + Pn((2, 4))
2

. (9.24)

An alternate definition of P is due to Wick’s theorem:

P = �
a,b

[aa∗ ⊗ bb∗⊗̂ aa∗ ⊗ bb∗], (9.25)
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where the expectation is taken over complex-Gaussian-distributed vectors a, b ∈ �n

normalized so that � ‖a‖22 = � ‖b‖22 = n/
√

2. Here we use the notation ⊗̂ to mark
the separation between systems that we will use to define the separable states
Sep(n2, n2). We could equivalently write P = �a,b[(aa∗ ⊗ bb∗)⊗̂2]. We will find that
(9.24) is more useful for doing calculations, while (9.25) is helpful for converting
M0 into a form that resembles A2,2 for some matrix A.

Define M1 = (
√

M0 ⊗̂
√

M0)P (
√

M0 ⊗̂
√

M0), where
√

M0 is taken to be the
unique positive-semidefinite square root of M0. Observe that

M1 = �
a,b

[va,bv
∗
a,b⊗̂ va,bv

∗
a,b] = �

a,b
[V ⊗̂2

a,b], (9.26)

where we define va,b :=
√

M0(a ⊗ b) and Va,b := va,bv
∗
a,b. We claim that hSep(M1)

gives a reasonable proxy for hSep(M0) in the following sense.

Lemma 9.6.

hSep(n2,n2)(M1)

= 1 in case Y
6 1 − δ/2 in case N.

(9.27)

The proof of Lemma 9.6 is deferred to the end of this section. The analysis is
very similar to Theorem 13 of [HM10], but the analysis here is much simpler because
M0 acts on only two systems. However, it is strictly speaking not a consequence of
the results in [HM10], because that paper considered a slightly different choice of
M1.

The advantage of replacing M0 with M1 is that (thanks to (9.25)) we now have a
matrix with the same form as A2,2 in (9.13), allowing us to make use of Lemma 9.3.
However, we first need to amplify the separation between cases Y and N. This is
achieved by the matrix M2 := M⊗k

1 . This tensor product is not across the cut we use
to define separable states; in other words:

M2 = �
a1,...,ak
b1,...,bk

[(Va1,b1 ⊗ · · · ⊗ Vak ,bk )
⊗̂2]. (9.28)

Now Lemma 12 from [HM10] implies that hSep(n2k ,n2k)(M2) = hSep(n2,n2)(M1)k. This
is either 1 or 6 (3/4)k, depending on whether we have case Y or N.

Finally, we would like to relate this to the 2 → 4 norm of a matrix. It will be
more convenient to work with M1, and then take tensor powers of the corresponding
matrix. Naively applying Lemma 9.3 would relate hSep(M1) to ‖‖‖A‖‖‖2→4 for an
infinite-dimensional A. Instead, we first replace the continuous distribution on
a (resp. b) with a finitely-supported distribution in a way that does not change
�a aa∗ ⊗ aa∗ (resp. �b bb∗ ⊗ bb∗). Such distributions are called complex-projective
(2,2)-designs or quantum (state) 2-designs, and can be constructed from spherical
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4-designs on �2n [AE07]. Finding these designs is challenging when each vector
needs to have the same weight, but for our purposes we can use Carathéodory’s
theorem to show that there exist vectors z1, . . . , zm with m = n2 such that

�
a

[aa∗ ⊗ aa∗] =
∑
i∈[m]

ziz∗i ⊗ ziz∗i . (9.29)

In what follows, assume that the average over a, b used in the definitions of
P,M1,M2 is replaced by the sum over z1, . . . , zm. By (9.29) this change does
not affect the values of P,M1,M2.

For i, j ∈ [m], define wi, j :=
√

M0(zi ⊗ z j), and let ei, j := ei ⊗ e j. Now we can
apply Lemma 9.3 to find that hSep(M1) = ‖‖‖A1‖‖‖

4
2→4, where

A1 =
∑

i, j∈[m]

ei, jw
∗
i, j.

The amplified matrix M2 similarly satisfies hSep(n2k ,n2k)(M2) = ‖‖‖A2‖‖‖
4
2→4, where

A2 := A⊗k
1 =

∑
i1,...,ik , j1,..., jk∈[m]

(ei1, j1 ⊗ eik , jk )(wi1. j1 ⊗ · · · ⊗ wik , jk )
∗.

The last step is to relate the complex matrix A2 to a real matrix A3 with the same
2 → 4 norm once we restrict to real inputs. This can be achieved by replacing a
single complex entry α + iβ with the 6 × 2 real matrix

1
√

2



1 1
1 −1

21/4 0
21/4 0

0 21/4

0 21/4


·

(
α −β

β α

)

A complex input x + iy is represented by the column vector
(
x
y

)
. The initial 2 × 2

matrix maps this to the real representation of (α + iβ)(x + iy), and then the fixed
6 × 2 matrix maps this to a vector whose 4-norm equals |(α + iβ)(x + iy)|4.

�

We conclude with the proof of Lemma 9.6, mostly following [HM10].

Proof. Case Y is simplest, and also provides intuition for the choices of the M1
construction. Since the extreme points of Sep(n, n) are of the form xx∗ ⊗ yy∗ for
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x, y ∈ S(�n), it follows that there exists x, y ∈ S(�n) with 〈〈〈x ⊗ y,M(x ⊗ y)〉〉〉 = 1.
Since M 6 I, this implies that M(x ⊗ y) = (x ⊗ y). Thus

√
M0(x ⊗ y) = (x ⊗ y). Let

z = x ⊗ y ⊗ x ⊗ y.

Then z is an eigenvector of both
√

M0 ⊗
√

M0 and P, with eigenvalue 1 in each
case. To see this for P, we use the definition in (9.24). Thus 〈〈〈z,M1z〉〉〉 = 1, and
it follows that hSep(n2,n2)(M1) > 1. On the other hand, M1 6 I, implying that
hSep(n2,n2)(M1) 6 1. This establishes case Y.

For case N, we assume that hSep(n,n)(M0) 6 1 − δ for any x, y ∈ S(�n). The idea
of the proof is that for any x, y ∈ S(�n2

), we must either have x, y close to a product
state, in which case the

√
M0 step will shrink the vector, or if they are far from a

product state and preserved by
√

M0 ⊗
√

M0, then the P step will shrink the vector.
In either case, the length will be reduced by a dimension-independent factor.

We now spell this argument out in detail. Choose x, y ∈ S(�n2
) to achieve

s := 〈〈〈x ⊗ y,M1(x ⊗ y)〉〉〉 = hSep(n2,n2)(M1). (9.30)

Let X,Y ∈ L(�n) be defined by√
M0x =:

∑
i, j∈[n]

Xi, jei ⊗ e j and
√

M0y =:
∑

i, j∈[n]

Yi, jei ⊗ e j (9.31)

Note that 〈〈〈X, X〉〉〉 = 〈〈〈x,M0x〉〉〉 6 1 and similarly for 〈〈〈Y,Y〉〉〉. We wish to estimate

s =
∑

i, j,k,l,i′, j′,k′,l′∈[n]

X̄i′, j′ Ȳk′,l′Xi, jYk,l〈〈〈ei′ ⊗ e j′ ⊗ ek′ ⊗ el′ , P(ei ⊗ e j ⊗ ek ⊗ el)〉〉〉 (9.32)

Using (9.24) we see that the expression inside the 〈〈〈 · 〉〉〉 is

δi,i′δ j, j′δk,k′δl,l′ + δi,k′δ j, j′δk,i′δl,l′ + δi,i′δ j,l′δk,k′δl, j′ + δi,k′δ j,l′δk,i′δl, j′

4
(9.33)

Rearranging, we find

s =
〈〈〈X, X〉〉〉〈〈〈Y,Y〉〉〉 + 〈〈〈X,Y〉〉〉〈〈〈X,Y〉〉〉 + 〈〈〈YY∗, XX∗〉〉〉 + 〈〈〈Y∗Y, X∗X〉〉〉

4
. (9.34)

Using the AM-GM inequality we see that the maximum of this expression is
achieved when X = Y , in which case we have

s =
〈〈〈X, X〉〉〉2 + 〈〈〈X∗X, X∗X〉〉〉

2
6

1 + 〈〈〈X∗X, X∗X〉〉〉
2

. (9.35)
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Let the singular values of X be σ1 > · · · > σn. Observe that ‖‖‖σ‖‖‖22 = 〈〈〈X, X〉〉〉 6 1, and
thus ‖‖‖σ‖‖‖44 = 〈〈〈X∗X, X∗X〉〉〉 6 σ2

1. On the other hand,

σ2
1 = max

a,b∈S(�n)
|〈〈〈a, Xb〉〉〉|2 (9.36)

= max
a,b∈S(�n)

|〈〈〈a ⊗ b,
√

M0x〉〉〉|2 (9.37)

= max
a,b∈S(�n)

|〈〈〈
√

M0(a ⊗ b), x〉〉〉|2 (9.38)

= max
a,b∈S(�n)

〈〈〈
√

M0(a ⊗ b),
√

M0(a ⊗ b)〉〉〉 (9.39)

= max
a,b∈S(�n)

〈〈〈a ⊗ b,M0(a ⊗ b)〉〉〉 (9.40)

= hSep(n,n)(M0) 6 1 − δ (9.41)

�

Remark: It is possible to extend Lemma 9.5 to the situation when case Y has
hS ep(M) > 1 − δ′ for some constant δ′ < δ. Since the details are somewhat tedious,
and repeat arguments in [HM10], we omit them here.

9.2.1 Hardness of approximation for projectors

Can Theorem 2.5 give any super-polynomial lower bound for the SSE problem if
we assume the Exponential-Time Hypothesis for 3-SAT? To resolve this question
using our techniques, we would like to reduce 3-SAT to estimating the 2→ 4 norm
of the projector onto the eigenvectors of a graph that have large eigenvalue. We do
not know how to do this. However, instead, we show that the matrix A constructed
in Theorem 2.5 can be taken to be a projector. This is almost WLOG, except that
the resulting 2→ 4 norm will be at least 31/4.

Lemma 9.7. Let A be a linear map from �k to �n and 0 < c < C , ε > 0 some
numbers. Then there is m = O(n2/ε2) and a map A′ from �k to �m such that
σmin(A′) > 1 − ε and (i) if ‖A‖2→4 6 c then ‖A′‖2→4 6 31/4 + ε, (ii) ‖A‖2→4 > C
then ‖A′‖2→4 > Ω(εC/c).

Proof. We let B be a random map from �k to �O(n2/δ2) with entries that are i.i.d.
Gaussians with mean zero and variance 1/

√
k. Then Dvoretzky’s theorem [Pis99]

implies that for every f ∈ �k, ‖B f ‖4 ∈ 31/4(1 ± δ)‖ f ‖2. Consider the operator

A′ =

(
A
B

)
that maps f into the concatenation of A f and B f . Moreover we take

multiple copies of each coordinate so that the measure of output coordinates of A′
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corresponding to A is α = δ/c4, while the measure of coordinates corresponding to
B is 1 − α.

Now for every function f , we get that ‖A′ f ‖44 = α‖A f ‖44 + (1 − α)‖B f ‖44. In
particular, since ‖B f ‖44 ∈ 3(1±δ)‖ f ‖42, we get that if f is a unit vector and ‖A f ‖44 6 c4

then ‖A′ f ‖44 6 δ
1/4 + 3(1 + δ), while if ‖A f ‖44 > C4, then ‖A′ f ‖44 > δ(C/c)4.

Also note that the random operator B will satisfy that for every function f ,
‖B f ‖2 > (1 − δ)‖ f ‖2, and hence ‖A′ f ‖ > (1 − α)(1 − δ)‖ f ‖. Choosing δ = ε/2
concludes the proof. �

It turns out that for the purposes of hardness of good approximation, the case
that A is a projector is almost without loss of generality.

Lemma 9.8. Suppose that for some ε > 0,C > 1 + ε there is a poly(n) algorithm
that on input a subspace V ⊆ �n can distinguish between the case (Y) ‖ΠV‖2→4 > C
and the case (N) ‖ΠV‖2→4 6 31/4 + ε, where ΠV denotes the projector onto V. Then
there is δ = Ω(ε) and a poly(n) algorithm that on input an operator A : �k → �n

with σmin(A) > 1 − δ can distinguish between the case (Y) ‖A‖2→4 > C(1 + δ) and
(N) ‖A‖2→4 6 31/4(1 + δ).

Proof. First we can assume without loss of generality that ‖A‖2→2 = σmax(A) 6 1+δ,
since otherwise we could rule out case (N). Now we let V be the image of A. In the
case (N) we get that that for every f ∈ �k

‖A f ‖4 6 31/4(1 + δ)‖ f ‖2 6 31/4(1 + δ)‖A f ‖2/σmin(A) 6 31/4(1 + O(δ))‖A f ‖2 ,

implying ‖ΠV‖2→4 6 31/4 + O(δ). In the case (Y) we get that there is some f such
that ‖A f ‖4 > C(1 + δ)‖ f ‖2, but since ‖A f ‖2 6 σmax(A)‖ f ‖2, we get that ‖A f ‖4 > C,
implying ‖ΠV‖2→4 > C. �

Together these two lemmas effectively extend Theorem 2.5 to the case when
A is a projector. We focus on the hardness of approximating to within a constant
factor.

Corollary 9.9. For any `, ε > 0, if φ is a 3-SAT instance with n variables and
O(n) clauses, then determining satisfiability of φ can be reduced to distinguishing
between the cases ‖A‖2→4 6 31/4 +ε and ‖A‖2→4 > `), where A is a projector acting
on m = exp(

√
n poly log(n) log(`/ε)) dimensions.

Proof. Start as in the proof of Theorem 2.5, but in the application of Lemma 9.5,
take k = O(log(`/ε)). This will allow us to take C/c = Ω(`/ε) in Lemma 9.7.
Translating into a projector with Lemma 9.8, we obtain the desired result. �

49



9.3 Algorithmic applications of equivalent formulations

In this section we discuss the positive algorithmic results that come from the
equivalences in Section 9.1. Since entanglement plays such a central role in quantum
mechanics, the set Sep2(�n) has been extensively studied. However, because its
hardness has long been informally recognized (and more recently has been explicitly
established [Gur03, Liu07, HM10, GNN]), various relaxations have been proposed
for the set. These relaxations are generally efficiently computable, but also have
limited accuracy; see [BS10] for a review.

Two of the most important relaxations are the PPT condition and k-extendability.
For an operator X ∈ L((�n)⊗r) and a set S ⊆ [r], define the partial transpose XTS to
be the result of applying the transpose map to the systems S . Formally, we define

(X1 ⊗ · · · ⊗ Xr)TS :=
r⊗

k=1

fk(Xk)

fk(M) :=

M if k < S
MT if k ∈ S

and extend TS linearly to all of L((�n)⊗r). One can verify that if X ∈ Sepr(�n) then
XTS � 0 for all S ⊆ [r]. In this case we say that X is PPT, meaning that it has
Positive Partial Transposes. However, the converse is not always true. If n > 2 or
r > 2, then there are states which are PPT but not in Sep [HHH96].

The second important relaxation of Sep is called r-extendability. To define this,
we need to introduce the partial trace. For S ⊆ [r], we define TrS to be the map
from L((�n)⊗r) to L((�n)⊗r−|S |) that results from applying Tr to the systems in S .
Formally

TrS

r⊗
k=1

Xk =
∏
k∈S

Tr Xk

⊗
k<S

Xk,

and TrS extends by linearity to all of L((�n)⊗r).
To obtain our relaxation of Sep, we say that ρ ∈ D(�n ⊗ �n) is r-extendable

if there exists a symmetric extension σ ∈ D(�n ⊗ ∨r�n) such that Tr{3,...,r+1} σ =

ρ. Observe that if ρ ∈ Sep2(�n), then we can write ρ =
∑

i xix∗i ⊗ yiy
∗
i , and so

σ =
∑

i xix∗i ⊗ (yiy
∗
i )⊗r is a valid symmetric extension. Thus the set of k-extendable

states contains the set of separable states, but again the inclusion is strict. Indeed,
increasing k gives an infinite hierarchy of strictly tighter approximations of Sep2(�n).
This hierarchy ultimately converges [DPS04], although not always at a useful
rate (see Example IV.1 of [CKMR07]). Interestingly this relaxation is known to
completely fail as a method of approximating Sep2(�n) [CFS02], but our Lemma 9.3
is evidence that those difficulties do not arise in the 2→4-norm problem.
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These two relaxations can be combined to optimize over symmetric extensions
that have positive partial transposes [DPS04]. Call this the level-r DPS relax-
ation. It is known to converge in some cases more rapidly than r-extendability
alone [NOP09], but also is never exact for any finite r [DPS04]. Like SoS, this
relaxation is an SDP with size nO(r). In fact, for the case of the 2 → 4 norm, the
relaxations are equivalent.

Lemma 9.10. When the level-r DPS relaxation is applied to A2,2, the resulting
approximation is equivalent to Tensor-SDP(2r+2)

Proof. Suppose we are given an optimal solution to the level-r DPS relaxation. This
can be thought of as a density operator σ ∈ D(�n ⊗ ∨r�n) whose objective value is
λ := 〈〈〈A2,2,Tr{3,...,r+1} σ〉〉〉 = 〈〈〈A2,2 ⊗ I⊗r−1

n , σ〉〉〉. Let Π
(2)
sym := (I + Pn((1, 2)))/2 be the

orthogonal projector onto ∨2�n. Then A2,2 = Π
(2)
symA2,2Π

(2)
sym. Thus, we can replace

σ by σ′ := (Π(2)
sym ⊗ I⊗r−1

n )σ(Π(2)
sym ⊗ I⊗r−1

n ) without changing the objective function.
However, unless σ′ = σ, we will have Trσ′ < 1. In this case, either σ′ = 0 and
λ = 0, or σ′/Trσ′ is a solution of the DPS relaxation with a higher objective value.
In either case, this contradicts the assumption that λ is the optimal value. Thus,
we must have σ = σ′, and in particular suppσ ⊆ ∨2�n ⊗ (�n)⊗r−1. Since we had
suppσ ⊆ �n ⊗ ∨r�n by assumption, it follows that

suppσ ⊆ (∨2
�

n ⊗ (�n)⊗r−1) ∩ (�n ⊗ ∨r
�

n) = ∨r+1
�

n

Observe next that σT is also a valid and optimal solution to the DPS relaxation,
and so σ′ = (σ + σT )/2 is as well. Since σ′ is both symmetric and Hermitian, it
must be a real matrix. Replacing σ with σ′, we see that we can assume WLOG that
σ is real.

Similarly, the PPT condition implies that σTA > 0. (Recall that the first system
is A and the rest are B1, . . . , Br.) Since the partial transpose doesn’t change the
objective function, σ′ = (σ + σTA)/2 is also an optimal solution. Replacing σ with
σ′, we see that we can assume WLOG that σ = σTA . Let ~σ ∈ (�n)⊗2r+2 denote the
flattening of σ; i.e. 〈〈〈x ⊗ y, ~σ〉〉〉 = 〈〈〈x, σy〉〉〉 for all x, y ∈ (�n)r+1. Then the fact that
σ = σTA means that ~σ is invariant under the action of Pn((1, r + 1)). Similarly, the
fact that suppσ ⊆ ∨r+1�n implies that ~σ ∈ ∨r+1�n ⊗ ∨r+1�n. Combining these
two facts we find that ~σ ∈ ∨2r+2�n.

Now that ~σ is fully symmetric under exchange of all 2r + 2 indices, we can
interpret it as a real-valued pseudo-expectation �̃σ for polynomials of degree 2r + 2.
More precisely, we can define the linear map coeff that sends homogeneous degree-
2r + 2 polynomials to ∨2r+2�n by its action on monomials:

coeff ( f α1
1 · · · f αn

n ) := Π
(2r+2)
sym (e⊗α1

1 ⊗ · · · ⊗ e⊗αn
n ), (9.42)
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where Π
(2r+2)
sym := 1

2r+2!
∑
π∈S2r+2 Pn(π). For a homogenous polynomial Q( f ) of even

degree 2r′ 6 2r + 2 we define coeff by

coeff (Q( f )) := coeff (Q( f ) · ‖‖‖ f‖‖‖2r+2−2r′
2 ).

For a homogenous polynomial Q( f ) of odd degree, we set coeff (Q) := 0. Then we
can extend coeff by linearity to all polynomials of degree 6 2r + 2. Now define

�̃
σ

[Q] := 〈〈〈 coeff (Q), ~σ〉〉〉.

We claim that this is a valid pseudo-expectation. For normalization, observe that
�̃[1] = 〈〈〈 coeff (‖‖‖ f‖‖‖2r+2

2 ), ~σ〉〉〉 = Trσ = 1. Similarly, the Tensor-SDP constraint of
�̃[(‖‖‖ f‖‖‖22 − 1)2] = 0 is satisfied by our definition of coeff . Linearity follows from the
linearity of coeff and the inner product. For positivity, consider a polynomial Q( f )
of degree 6 r+1. Write Q = Qo+Qe, where Qo collects all monomials of odd degree
and Qe collects all monomials of even degree (i.e. Qe,Qo = (Q( f ) ± Q(− f ))/2).
Then �̃[Q2] = �̃[Q2

o] + �̃[Q2
e], using the property that the pseudo-expectation of a

monomial of odd degree is zero.
Consider first �̃[Q2

e]. Let r′ = 2b r+1
2 c (i.e. r′ is r + 1 rounded down to the

nearest even number), so that Qe =
∑r′/2

i=0 Q2i, where Q2i is homogenous of degree
2i. Define Q′e :=

∑r′/2
i=0 Q2i‖ f ‖r

′−2i
2 . Observe that Q′e is homogenous of degree

r′ 6 r + 1, and that �̃[Q2
e] = �̃[(Q′e)2]. Next, define coeff ′ to map homogenous

polynomials of degree r′ into ∨r′�n by replacing 2r+2 in (9.42) with r′. If r′ = r+1
then define σ′ = σ, or if r′ = r then define σ′ = TrA σ. Thus σ′ acts on r′ systems.
Define ~σ′ ∈ ∨2r′�n to be the flattened version of σ′. Finally we can calculate

�̃[Q2
e] = �̃[(Q′e)2] = 〈〈〈 coeff ′(Q′e)⊗ coeff ′(Q′e), ~σ′〉〉〉 = 〈〈〈 coeff ′ Q′e, σ

′ coeff ′ Q′e〉〉〉 > 0.

A similar argument establishes that �̃[Q2
o] > 0 as well. This establishes that any

optimal solution to the DPS relaxation translates into a solution of the Tensor-SDP
relaxation.

To translate a Tensor-SDP solution into a DPS solution, we run this construction
in reverse. The arguments are essentially the same, except that we no longer need to
establish symmetry across all 2r + 2 indices. �

9.3.1 Approximation guarantees and the proof of Theorem 2.3

Many approximation guarantees for the k-extendable relaxation (with or without
the additional PPT constraints) required that k be poly(n), and thus do not lead to
useful algorithms. Recently, [BaCY11] showed that in some cases it sufficed to
take k = O(log n), leading to quasi-polynomial algorithms. It is far from obvious
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that their proof translates into our sum-of-squares framework, but nevertheless
Lemma 9.10 implies that Tensor-SDP can take advantage of their analysis.

To apply the algorithm of [BaCY11], we need to upper-bound A2,2 by an
1-LOCC measurement operator. That is, a quantum measurement that can be im-
plemented by one-way Local Operations and Classical Communication (LOCC).
Such a measurement should have a decomposition of the form

∑
i Vi ⊗Wi where

each Vi,Wi � 0,
∑

i Vi � In and each Wi � In. Thus, for complex vectors
v1, . . . , vm, w1, . . . , wm satisfying

∑
i viv

∗
i � In and ∀i, wiw

∗
i � In, the operator∑

i viv
∗
i ⊗ wiw

∗
i is a 1-LOCC measurement.

To upper-bound A2,2 by a 1-LOCC measurement, we note that aiaT
i � ‖‖‖ai‖‖‖

2
2In.

Thus, if we define Z := ‖‖‖
∑

i aiaT
i ‖‖‖2→2 maxi ‖‖‖ai‖‖‖

2, then A2,2/Z is a 1-LOCC measure-
ment. Note that this is a stricter requirement than merely requiring A2,2/Z � In2 . On
the other hand, in some cases (e.g. ai all orthogonal), it may be too pessimistic.

In terms of the original matrix A =
∑

i eiaT
i , we have maxi ‖‖‖ai‖‖‖2 = ‖‖‖A‖‖‖2→∞.

Also ‖‖‖
∑

i aiaT
i ‖‖‖2→2 = ‖‖‖AT A‖‖‖2→2 = ‖‖‖A‖‖‖22→2. Thus

Z = ‖‖‖A‖‖‖22→2‖‖‖A‖‖‖
2
2→∞.

Recall from the introduction that Z is an upper bound on ‖‖‖A‖‖‖42→4, based on the fact
that ‖‖‖x‖‖‖4 6

√
‖‖‖x‖‖‖2‖‖‖x‖‖‖∞ for any x. (This bound also arises from using interpolation

of norms [Ste56].)
We can now apply the argument of [BaCY11] and show that optimizing over

O(r)-extendable states will approximate ‖‖‖A‖‖‖42→4 up to additive error
√

log(n)
r Z.

Equivalently, we can obtain additive error εZ using O(log(n)/ε2)-round Tensor-
SDP. Whether the relaxation used is the DPS relaxation or our SoS-based Tensor-
SDP algorithm, the resulting runtime is exp(O(log2(n)/ε2)).

9.3.2 Gap instances

Since Tensor-SDP is equivalent than the DPS relaxation for separable states, any gap
instance for Tensor-SDP would translate into a gap instance for the DPS relaxation.
This would mean the existence of a state that passes the k-extendability and PPT
test, but nevertheless is far from separable, with A2,2 serving as the entanglement
witness demonstrating this. While such states are already known [DPS04, BS10],
it would be of interest to find new such families of states, possibly with different
scaling of r and n.

Our results, though, can be used to give an asymptotic separation of the DPS
hierarchy from the r-extendability hierarchy. (As a reminder, the DPS hierarchy
demands that a state not only have an extension to r + 1 parties, but also that
the extension be PPT across any cut.) To state this more precisely, we introduce
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some notation. Define DPSr to be the set of states ρAB for which there exists an
extension ρ̃AB1···Br with support in �n ⊗ ∨r�n (i.e. a symmetric extension) such that
ρ̃ is invariant under taking the partial transpose of any system. Define Extr to be
the set of states on AB with symmetric extensions to AB1 . . . Br but without any
requirement about the partial transpose. Both hDPSr and hExtr can be computed in
time nO(r), although in practice hExtr (M) is easier to work with, since it only requires
computing the top eigenvalue of M ⊗ I⊗r−1

n restricted to �n ⊗ ∨r�n and does not
require solving an SDP.

Many of the results about the convergence of DPSr to Sep (such as [DPS04,
CKMR07, KM09, BaCY11]) use only the fact that DPSr ⊂ Extr. A rare exception
is [NOP09], which shows that DPSr is at least quadratically closer to Sep than Extr
is, in the regime where r � n. Another simple example comes from M = ΦΦ∗,
where Φ is the maximally entangled state n−1/2 ∑n

i=1 ei ⊗ ei. Then one can readily
compute that hSep(M) = hDPS1(M) = 1/n, while the r-extendible state

ρ̃AB1...Br =
1
r

r∑
i=1

(ΦΦ∗)ABi ⊗
⊗

j∈[r]\{i}

( I
n

)B j

(9.43)

achieves hExtr (M) > 1/r. (In words, (9.43) describes a state where A and a ran-
domly chosen Bi share the state ΦΦ∗, while the other B j systems are described by
maximally mixed states.) This proves that the r-extendable hierarchy cannot achieve
a good multiplicative approximation of hSep(M) for all M without taking r > Ω(n).

Can we improve this when M is in a restricted class, such as 1-LOCC? Here
[BRSdW11] show that the Khot-Vishnoi integrality construction can yield an n2-
dimensional M for which hSep(M) 6 O(1/n), but Tr MΦ > Ω(1/ log2(n)). Com-
bined with (9.43) this implies that hExtr (M) > Ω(1/r log2(n)). On the other hand,
Theorem 6.12 and Lemma 9.10 implies that hDPS3(M) 6 O(1/n). Additionally, the
M from Ref. [BRSdW11] belongs to the class BELL, a subset of 1-LOCC, given by
measurements of the form

∑
i, j pi, jAi ⊗ B j, with 0 6 pi, j 6 1 and

∑
i Ai =

∑
j B j = I.

As a result, we obtain the following corollary.

Corollary 9.11. There exists an n2 dimensional M ∈ BELL such that

hExtr (M)
hDPS3(M)

6 O
(
r log2(n)

n

)

10 Subexponential algorithm for the 2-to-q norm

In this section we prove Theorem 2.1:
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Theorem (Restatement of Theorem 2.1). For every 1 < c < C, there is a
poly(n) exp(n2/q)-time algorithm that computes a (c,C)-approximation for the
2→ q norm of any linear operator whose range is �n.

and obtain as a corollary a subexponential algorithm for Small-Set Expansion.
The algorithm roughly matches the performance of [ABS10]’s for the same problem,
and in fact is a very close variant of it. The proof is obtained by simply noticing that
a subspace V cannot have too large of a dimension without containing a vector v
(that can be easily found) such that ‖v‖q � ‖v‖2, while of course it is always possible
to find such a vector (if it exists) in time exponential in dim(V). The key observation
is the following basic fact (whose proof we include here for completeness):

Lemma 10.1. For every subspace V ⊆ �n, ‖V‖2→∞ >
√

dim(V).

Proof. Let f 1, . . . , f d be an orthonormal basis for V , where d = dim(V). For every
i ∈ [n], let gi be the function

∑d
j=1 f j

i f i. Note that the ith coordinate of gi is equal to∑d
j=1( f j

i )2 (*) which also equals ‖gi‖22 since the f j’s are an orthonormal basis. Also

the expectation of (*) over i is
∑d

j=1�i∈[n]( f j
i )2 =

∑d
j=1‖ f

j‖22 = d since these are
unit vectors. Thus we get that �i‖g

i‖∞ > �i g
i
i = d = �i‖g‖

2
2. We claim that one of

the gi’s must satisfy ‖gi‖∞ >
√

d‖gi‖2. Indeed, suppose otherwise, then we’d get
that

d = �
i
‖gi‖22 > Ei‖g

i‖2∞/d

meaning Ei‖g
i‖2∞ < d2, but Ei‖g

i‖2∞ >
(
�i‖g

i‖∞
)2

= d2— a contradiction. �

Corollary 10.2. For every subspace V ⊆ �n, ‖V‖2→q >
√

dim(V)/n1/q

Proof. By looking at the contribution to the qth-norm of just one coordinate one
can see that for every function f , ‖ f ‖q > (‖ f ‖q∞/n)1/q = ‖ f ‖∞/n1/q. �

Proof of Theorem 2.1 from Corollary 10.2. Let A : �m → �n be an operator,
and let 1 < c < C be some constants and σ = σmin(A) be such that ‖A f ‖2 > σ‖ f ‖2
for every f orthogonal to the kernel of A. We want to distinguish between the case
that ‖A‖2→q 6 c and the case that ‖A‖2→q > C. If σ > c then clearly we are not in
the first case, and so we are done. Let V be the image of A. If dim(V) 6 C2n2/q

then we can use brute force enumeration to find out if such v exists in the space.
Otherwise, by Corollary 10.2 we must be in the second case. �

Note that by applying Theorem 2.3 we can replace the brute force enumeration
step by the SoS hierarchy, since ‖V‖2→2 6 1 automatically, and unless ‖V‖2→∞ 6
Cn1/q we will be in the second case.
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A corollary of Theorem 2.1 is a subexponential algorithm for Small-Set Expan-
sion

Corollary 10.3. For every 0.4 > ν > 0 there is an exp(n1/O(log(1/ν))) time algorithm
that given a graph with the promise that either (i) ΦG(δ) > 1−ν or (ii) ΦG(δ2) 6 0.5
decides which is the case.

Proof. For q = O(log(1/ν)) we find from Theorem 2.4 that in case (i), ‖V>0.4‖2→q 6
2/
√
δ, while in case (ii) ‖V>0.4‖2→q > 0.1/δ1−2/q. Thus it sufficies to obtain a

(2/
√
δ, 0.1/δ1−2/q)-approximation for the 2 → q norm to solve the problem, and

by Theorem 2.1 this can be achieved in time exp(nO(log(1/ν))) for sufficiently small
δ. �

Conclusions

This work motivates further study of the complexity of approximating hypercon-
tractive norms such as the 2→ 4 norm. A particulary interesting question is what is
the complexity of obtaining a good approximation for the 2→ 4 norm and what’s
the relation of this problem to the Small-Set Expansion problem. Our work leaves
possible at least the following three scenarios: (i) both these problems can be solved
in quasipolynomial time, but not faster, which would mean that the UGC as stated
is essentially false but a weaker variant of it is true, (ii) both these problems are
NP-hard to solve (via a reduction with polynomial blowup) meaning that the UGC is
true, and (iii) the Small-Set Expansion and Unique Games problems are significantly
easier than the 2 → 4 problem with the most extreme case being that the former
two problems can be solved in polynomial time and the latter is NP-hard and hence
cannot be done faster than subexponential time. This last scenario would mean that
one can improve on the subexponential algorithm for the 2→ 4 norm for general
instances by using the structure of instances arising from the Small-Set Expansion
reduction of Theorem 2.4 (which indeed seem quite different from the instances
arising from the hardness reduction of Theorem 2.5). In any case we hope that
further study of the complexity of computing hypercontractive norms can lead to
a better understanding of the boundary between hardness and easiness for Unique
Games and related problems.
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A More facts about pseudo-expectation

In this section we note some additional facts about pseudo-expectation functionals
that are useful in this paper.

Lemma A.1. The relation P2 � P holds if and only if 0 � P � 1. Furthermore, if
P2 � P and 0 � Q � P, then Q2 � Q.

Proof. If P � 0, then P � 1 implies P2 � P. (Multiplying both sides with a sum of
squares preserves the order.) On the other hand, suppose P2 � P. Since P2 � 0, we
also have P � 0. Since 1 − P = P − P2 + (1 − P)2, the relation P2 � P also implies
P � 1.

For the second part of the lemma, suppose P2 � P and 0 � Q � P. Using the
first part of the lemma, we have P � 1. It follows that 0 � Q � 1, which in turn
implies Q2 � Q (using the other direction of the first part of the lemma). �
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Fact A.2. If f is a d-f.r.v. over �U and {Pv}v∈U are polynomials of degree at most
k, then g with g(v) = Pv( f ) is a level-(d/k) fictitious random variable over �U.
(For a polynomial Q of degree at most d/k, the pseudo-expectation is defined as
�̃g Q({g(v)}v∈U) := �̃ f Q({Pv( f )}v∈U) .)

Lemma A.3. For f , g ∈ L2(U),

〈 f , g〉 � 1
2‖ f ‖

2 + 1
2‖g‖

2 .

Proof. The right-hand side minus the LHS equals the square polynomial 1
2 〈 f −

g, f − g〉 �

Lemma A.4 (Cauchy-Schwarz inequality). If ( f , g) is a level-2 fictitious random
variable over �U ×�U , then

�̃
f ,g
〈 f , g〉 6

√
�̃
f
‖ f ‖2 ·

√
�̃
g
‖g‖2 .

Proof. Let f̄ = f /
√
�̃ f ‖ f ‖2 and ḡ = g/

√
�̃g‖g‖2. Note �̃ f̄ ‖ f̄ ‖

2 = �̃ḡ‖ḡ‖
2 = 1.

Since by Lemma A.3, 〈 f̄ , ḡ〉 � 1/2‖ f̄ ‖2 + 1/2‖ḡ‖2, we can conclude the desired
inequality,

�̃
f ,g
〈 f , g〉 =

√
�̃
f
‖ f ‖2·

√
�̃
g
‖g‖2 �̃

f̄ ,ḡ
〈 f̄ , ḡ〉 6

√
�̃
f
‖ f ‖2·

√
�̃
g
‖g‖2·

(
1
2 �̃f̄
‖ f̄ ‖2 + 1

2 �ḡ
‖ḡ‖2

)
︸                    ︷︷                    ︸

=1

.

�

Corollary A.5 (Hölder’s inequality). If ( f , g) is a 4-f.r.v. over �U ×�U , then

�̃
f ,g
�

u∈U
f (u)g(u)3 6

(
�̃
f
‖ f ‖44

)1/4 (
�̃
g
‖g‖44

)3/4

.

Proof. Using Lemma A.4 twice, we have

�̃
f ,g
�

u∈U
f (u)g(u)3 6

(
�̃
f ,g
�

u∈U
f (u)2g(u)2

)1/2 (
�̃
g
‖g‖44

)1/2

6

(
�̃
f
‖ f ‖44

)1/4 (
�̃
g
‖g‖44

)3/4

.

�
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B Norm bound implies small-set expansion

In this section, we show that an upper bound on 2 → q norm of the projector to
the top eigenspace of a graph implies that the graph is a small-set expander. This
proof appeared elsewhere implicitly [KV05, O’D07] or explicitly [BGH+11] and is
presented here only for completeness. We use the same notation from Section 8. Fix
a graph G (identified with its normalized adjacency matrix), and λ ∈ (0, 1), letting
V>λ denote the subspace spanned by eigenfunctions with eigenvalue at least λ.

If p, q satisfy 1/p + 1/q = 1 then ‖x‖p = maxy:‖y‖q61 |〈x, y〉|. Indeed,
|〈x, y〉| 6 ‖x‖p‖y‖q by Hölder’s inequality, and by choosing yi = sign(xi)|xi|

p−1

and normalizing one can see this equality is tight. In particular, for every x ∈ L(U),
‖x‖q = maxy:‖y‖q/(q−1)61 |〈x, y〉| and ‖y‖q/(q−1) = max‖x‖q61 |〈x, y〉|. As a consequence

‖A‖2→q = max
‖x‖261

‖Ax‖q = max
‖x‖261,‖y‖q/(q−1)61

|〈Ax, y〉| = max
‖y‖q/(q−1)61

|〈ATy, x〉| = ‖AT ‖q/(q−1)→2

Note that if A is a projection operator, A = AT . Thus, part 1 of Theorem 2.4
follows from the following lemma:

Lemma B.1. Let G = (V, E) be regular graph and λ ∈ (0, 1). Then, for every
S ⊆ V,

Φ(S ) > 1 − λ − ‖Vλ‖2q/(q−1)→2µ(S )(q−2)/q

Proof. Let f be the characteristic function of S , and write f = f ′ + f ′′ where
f ′ ∈ Vλ and f ′′ = f − f ′ is the projection to the eigenvectors with value less than λ.
Let µ = µ(S ). We know that

Φ(S ) = 1 − 〈 f ,G f 〉/‖ f ‖22 = 1 − 〈 f ,G f 〉/µ , (B.1)

And ‖ f ‖q/(q−1) =
(
� f (x)q/(q−1)

)(q−1)/q
= µ(q−1)/q, meaning that ‖ f ′‖ 6

‖Vλ‖q/(q−1)→2µ
(q−1)/q. We now write

〈 f ,G f 〉 = 〈 f ′,G f ′〉 + 〈 f ′′,G f ′′〉 6 ‖ f ′‖22 + λ‖ f ′′‖22 6 ‖V‖2q/(q−1)→2‖ f ‖
2
q/(q−1) + λµ

6 ‖V‖22→qµ
2(q−1)/q + λµ .(B.2)

Plugging this into (B.1) yields the result. �

C Semidefinite Programming Hierarchies

In this section, we compare different SDP hierarchies and discuss some of their
properties.

64



C.1 Example of Max Cut

In this section, we compare the SoS hierarchy and Lasserre hierarchy at the example
of Max Cut. (We use a formulation of Lasserre’s hierarchy similar to the one in
[Sch08].) It will turn out that these different formulations are equivalent up to
(small) constant factors in the number of levels. We remark that the same proof
with syntactic modifications shows that our SoS relaxation of Unique Games is
equivalent to the corresponding Lasserre relaxation.

Let G be a graph (an instance of Max Cut) with vertex set V = {1, . . . , n}. The
level-d Lasserre relaxation for G, denoted lassd(G), is the following semidefinite
program over vectors {vS }S⊆[n], |S |6d,

lassd(G) : maximize
∑

(i, j)∈G

‖‖‖vi − v j‖‖‖
2

subject to 〈〈〈vS , vT〉〉〉 = 〈〈〈vS ′ , vT ′〉〉〉 for all sets with S ∆T = S ′∆T ′ ,

‖‖‖v∅‖‖‖
2 = 1 .

The level-d SoS relaxation for G, denoted sosd(G), is the following semidefinite
program over d-p.e.f. �̃ (and d-f.r.v. x over �V ),

sosd(G) : maximize �̃
x

∑
(i, j)∈G

(xi − x j)2

subject to �̃
x

(x2
i − 1)2 = 0 for all i ∈ V .

From Lasserre to SoS. Suppose {vS } is a solution to lassd(G). For a polynomial
P over �V , we obtain a multilinear polynomial P′ by successively replacing squares
x2

i by 1. (In other words, we reduce P modulo the ideal generated by the polynomials
x2

i − 1 with i ∈ V .) We define a d-p.e.f. �̃ by setting �̃ P =
∑
|S |6d cS 〈v∅, vS 〉, where

{cS }|S |6d are the coefficients of the polynomial P′ =
∑
|S |6d cS

∏
i∈S xi obtained by

making P multilinear. The functional �̃ is linear (using (P + Q)′ = P′ + Q′) and
satisfies the normalization condition. We also have �̃(x2

i −1)2 = 0 since (x2
i −1)2 = 0

modulo x2
i − 1. Since �̃x(xi − x j)2 = ‖‖‖vi − v j‖‖‖

2 for all i, j ∈ V (using 〈v∅, vi j〉 =

〈vi, v j〉), our solution for sosd(G) has the same objective value as our solution for
lassd(G). It remains to verify positivity. Let P2 be a polynomial of degree at most
d. We may assume that P is multilinear, so that P =

∑
|S |6d cS xS Therefore P2 =∑

S ,T cS cT xS xT and �̃ P2 =
∑

S ,T cS cT 〈v∅, vS ∆T 〉. Using the property 〈〈〈v∅, vS ∆T〉〉〉 =

〈〈〈vS , vT〉〉〉, we conclude �̃ P2 =
∑

S ,T cS cT 〈vS , vT 〉 = ‖‖‖
∑

S cS vS‖‖‖
2 > 0.

From SoS to Lasserre. Let �̃ be a solution to sosd(G). We will construct a
solution for lassd/2(G) (assuming d is even). Let d′ = d/2. For α ∈ �n, let xα be
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the monomial
∏

i∈[n] xαi
i . The polynomials {xα}|α|6d′ form a basis of the space of

degree-d′ polynomials over �n. Since �̃ P2 > 0 for all polynomials P of degree
at most d′, the matrix (�̃ xαxβ)|α|,|β|6d′ is positive semidefinite. Hence, there exists
vectors vα for α with |α| 6 d′ such that �̃ xαxβ = 〈vα, vβ〉. We claim that the vectors
vα with α ∈ {0, 1}n and |α| 6 d form a solution for lassd(G). The main step is
to show that 〈vα, vβ〉 depends only on α + β mod 2. Since 〈vα, vβ〉 = �̃ xα+β, it
is enough to show that �̃ satisfies �̃ xγ = �̃ xγ mod 2. Hence, we want to show
�̃ x2P = �̃ P for all polynomials (with appropriate degree). Indeed, by Lemma 3.5,
�̃(x2 − 1) · P 6

√
�̃(x2 − 1)2

√
�̃ P2 = 0.
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