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Abstract

We consider two problems that arise in machine learning applications: the problem of
recovering a planted sparse vector in a random linear subspace and the problem of decomposing
a random low-rank overcomplete 3-tensor. For both problems, the best known guarantees
are based on the sum-of-squares method. We develop new algorithms inspired by analyses
of the sum-of-squares method. Our algorithms achieve the same or similar guarantees as
sum-of-squares for these problems but the running time is significantly faster.

For the planted sparse vector problem, we give an algorithm with running time nearly linear
in the input size that approximately recovers a planted sparse vector with up to constant relative
sparsity in a random subspace of �n of dimension up to Ω̃(√n). These recovery guarantees
match the best known ones of Barak, Kelner, and Steurer (STOC 2014) up to logarithmic factors.

For tensor decomposition, we give an algorithmwith running time close to linear in the input
size (with exponent ≈ 1.125) that approximately recovers a component of a random 3-tensor
over �n of rank up to Ω̃(n4/3). The best previous algorithm for this problem due to Ge and Ma
(RANDOM 2015) works up to rank Ω̃(n3/2) but requires quasipolynomial time.
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1 Introduction

The sum-of-squares (SoS) method (also known as the Lasserre hierarchy) [Sho87, Par00, Nes00,
Las01] is a powerful, semidefinite-programming based meta-algorithm that applies to a wide-range
of optimization problems. The method has been studied extensively for moderate-size polynomial
optimization problems that arise for example in control theory and in the context of approximation
algorithms for combinatorial optimization problems, especially constraint satisfaction and graph
partitioning (see e.g. the survey [BS14]). For the latter, the SoS method captures and generalizes the
best known approximation algorithms based on linear programming (LP), semidefinite program-
ming (SDP), or spectral methods, and it is in many cases the most promising approach to obtain
algorithms with better guarantees—especially in the context of Khot’s Unique Games Conjecture
[BBH+12].

A sequence of recent works applies the sum-of-squares method to basic problems that arise in
unsupervised machine learning: in particular, recovering sparse vectors in linear subspaces and
decomposing tensors in a robust way [BKS14, BKS15, HSS15, BM15, GM15]. For a wide range of
parameters of these problems, SoS achieves significantly stronger guarantees than other methods,
in polynomial or quasi-polynomial time.

Like other LP and SDP hierarchies, the sum-of-squares method comes with a degree parameter
d ∈ � that allows for trading off running time and solution quality. This trade-off is appealing
because for applications the additional utility of better solutions could vastly outweigh additional
computational costs. Unfortunately, the computational cost grows rather steeply in terms of the
parameter d: the running time is nO(d) where n is the number of variables (usually comparable to
the instance size). Further, even when the SDP has size polynomial in the input (when d � O(1)),
solving the underlying semidefinite programs is prohibitively slow for large instances.

In this work, we introduce spectral algorithms for planted sparse vector, tensor decomposition,
and tensor principal components analysis (PCA) that exploit the same high-degree information as
the corresponding sum-of-squares algorithms without relying on semidefinite programming, and
achieve the same (or close to the same) guarantees. The resulting algorithms are quite simple (a
couple of lines of matlab code) and have considerably faster running times—quasi-linear or close to
linear in the input size.

A surprising implication of our work is that for some problems, spectral algorithms can exploit
information from larger values of the parameter d without spending time nO(d). For example, our
algorithm for the planted sparse vector problem runs in nearly-linear time in the input size, even
though it uses properties that the sum-of-squares method can only use for degree parameter d > 4.
(In particular, the guarantees that the algorithm achieves are strictly stronger than the guarantees
that SoS achieves for values of d < 4.)

The initial successes of SoS in the machine learning setting gave hope that techniques developed
in the theory of approximation algorithms, specifically the techniques of hierarchies of convex
relaxations and rounding convex relaxations, could broadly impact the practice of machine learning.
This hopewas dampened by the fact that in general, algorithms that rely on solving large semidefinite
programs are too slow to be practical for the large-scale problems that arise in machine learning.
Our work brings this hope back into focus by demonstrating for the first time that with some care
SoS algorithms can be made practical for large-scale problems.
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In the following subsections we describe each of the problems that we consider, the prior
best-known guarantee via the SoS hierarchy, and our results.

1.1 Planted sparse vector in random linear subspace

The problem of finding a sparse vector planted in a random linear subspace was introduced by
Spielman, Wang, and Wright as a way of learning sparse dictionaries [SWW12]. Subsequent works
have found further applications and begun studying the problem in its own right [DH14, BKS14,
QSW14]. In this problem, we are given a basis for a d-dimensional linear subspace of �n that is
random except for one planted sparse direction, and the goal is to recover this sparse direction.
The computational challenge is to solve this problem even when the planted vector is only mildly
sparse (a constant fraction of non-zero coordinates) and the subspace dimension is large compared
to the ambient dimension (d > nΩ(1)).

Several kinds of algorithms have been proposed for this problem based on linear programming
(LP), basic semidefinite programming (SDP), sum-of-squares, and non-convex gradient descent
(alternating directions method).

An inherent limitation of simpler convex methods (LP and basic SDP) [SWW12, dGJL04] is that
they require the relative sparsity of the planted vector to be polynomial in the subspace dimension
(less than n/

√
d non-zero coordinates).

Sum-of-squares and non-convex methods do not share this limitation. They can recover
planted vectors with constant relative sparsity even if the subspace has polynomial dimension
(up to dimension O(n1/2) for sum-of-squares [BKS14] and up to O(n1/4) for non-convex methods
[QSW14]).

We state the problem formally:

Problem 1.1 (Planted sparse vector problem with ambient dimension n ∈ �, subspace dimension
d 6 n, sparsity ε > 0, and accuracy η > 0). Given an arbitrary orthogonal basis of a subspace
spanned by vectors v0 , v1 , . . . , vd−1 ∈ �

n , where v0 is a vector with at most εn non-zero entries and
v1 , . . . , vd−1 are vectors sampled independently at random from the standard Gaussian distribution
on �n , output a unit vector v ∈ �n that has correlation 〈v , v0〉2 > 1 − η with the sparse vector v0.

Our Results. Our algorithm runs in nearly linear time in the input size, and matches the best-
known guarantees up to a polylogarithmic factor in the subspace dimension [BKS14].

Theorem 1.2 (Planted sparse vector in nearly-linear time). There exists an algorithm that, for every
sparsity ε > 0, ambient dimension n, and subspace dimension d with d 6

√
n/(log n)O(1), solves the planted

sparse vector problem with high probability for some accuracy η 6 O(ε1/4) + on→∞(1). The running time of
the algorithm is Õ(nd).

We give a technical overview of the proof in Section 2, and a full proof in Section 4.
Previous work also showed how to recover the planted sparse vector exactly. The task of going

from an approximate solution to an exact one is a special case of standard compressed sensing (see
e.g. [BKS14]).
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Table 1: Comparison of algorithms for the planted sparse vector problem with ambient dimension n, subspace dimension
d, and relative sparsity ε.

Reference Technique Runtime Largest d Largest ε

Demanet, Hand [DH14] linear programming poly any Ω(1/√d)
Barak, Kelner, Steurer [BKS14] SoS, general SDP poly Ω(√n) Ω(1)
Qu, Sun, Wright [QSW14] alternating minimization Õ(n2d5) Ω(n1/4) Ω(1)

this work SoS, partial traces Õ(nd) Ω̃(√n) Ω(1)

1.2 Overcomplete tensor decomposition

Tensors naturally represent multilinear relationships in data. Algorithms for tensor decompositions
have long been studied as a tool for data analysis across a wide-range of disciplines (see the
early work of Harshman [Har70] and the survey [KB09]). While the problem is NP-hard in the
worst-case [Hås90, HL13], algorithms for special cases of tensor decomposition have recently
led to new provable algorithmic results for several unsupervised learning problems [AGH+14,
BCMV14, GVX14, AGHK14] including independent component analysis, learning mixtures of
Gaussians [GHK15], Latent Dirichlet topic modeling [AFH+15] and dictionary learning [BKS15].
Some previous learning algorithms can also be reinterpreted in terms of tensor decomposition
[Cha96, MR06, NR09].

A key algorithmic challenge for tensor decompositions is overcompleteness, when the number
of components is larger than their dimension (i.e., the components are linearly dependent). Most
algorithms that work in this regime require tensors of order 4 or higher [LCC07, BCMV14]. For
example, the FOOBI algorithm of [LCC07] can recover up to Ω(d2) components given an order-4
tensor in dimension d under mild algebraic independence assumptions for the components—
satisfied with high probability by random components. For overcomplete 3-tensors, which arise in
many applications of tensor decompositions, such a result remains elusive.

Researchers have therefore turned to investigate average-case versions of the problem, when the
components of the overcomplete 3-tensor are random: Given a 3-tensor T ∈ �d3 of the form

T �

n∑
i�1

ai ⊗ ai ⊗ ai ,

where a1 , . . . , an are random unit or Gaussian vectors, the goal is to approximately recover the
components a1 , . . . , an .

Algorithms based on tensor power iteration—a gradient-descent approach for tensor
decomposition—solve this problem in polynomial time when n 6 C · d for any constant C > 1 (the
running time is exponential in C) [AGJ15]. Tensor power iteration also admits local convergence
analyses for up to n 6 Ω̃(d1.5) components [AGJ15, AGJ14]. Unfortunately, these analyses do not
give polynomial-time algorithms because it is not known how to efficiently obtain the kind of
initializations assumed by the analyses.

Recently, Ge and Ma [GM15] were able to show that a tensor-decomposition algorithm [BKS15]
based on sum-of-squares solves the above problem for n 6 Ω̃(d1.5) in quasi-polynomial time nO(log n).
The key ingredient of their elegant analysis is a subtle spectral concentration bound for a partic-
ular degree-4 matrix-valued polynomial associated with the decomposition problem of random

3



Table 2: Comparison of decomposition algorithms for overcomplete 3-tensors with n components in dimension d.

Reference Technique Runtime Largest n Components

Anandkumar et al. [AGJ15]a tensor power iteration poly C · d incoherent
Ge, Ma [GM15] SoS, general SDP nO(log n) Ω̃(d3/2) N(0, 1

d Idd)
this workb SoS, partial traces Õ(nd1+ω) Ω̃(d4/3) N(0, 1

d Idd)
a The analysis shows that for every constant C > 1, the running time is polynomial for n 6 C · d components,
assuming that the components also satisfy other random-like properties besides incoherence.
bHere, ω 6 2.3729 is the constant so that d × d matrices can be multiplied in O(dω) arithmetic operations.

overcomplete 3-tensors.

We state the problem formally:

Problem 1.3 (Random tensor decomposition with dimension d, rank n, and accuracy η). Let
a1 , . . . , an ∈ �

d be independently sampled vectors from the Gaussian distributionN(0, 1
d Idd), and

let T ∈ (�d)⊗3 be the 3-tensor T �
∑n

i�1 a⊗3
i .

Single component: Given T sampled as above, find a unit vector b that has correlation
maxi〈ai , b〉 > 1 − η with one of the vectors ai .

All components: Given T sampled as above, find a set of unit vectors {b1 , . . . , bn} such
that 〈ai , bi〉 > 1 − η for every i ∈ [n].

Our Results. We give the first polynomial-time algorithm for decomposing random overcomplete
3-tensors with up to ω(d) components. Our algorithms works as long as the number of components
satisfies n 6 Ω̃(d4/3), which comes close to the bound Ω̃(d1.5) achieved by the aforementioned
quasi-polynomial algorithm of Ge and Ma. For the single-component version of the problem, our
algorithm runs in time close to linear in the input size.

Theorem 1.4 (Fast random tensor decomposition). There exist randomized algorithms that, for every
dimension d and rank n with d 6 n 6 d4/3/(log n)O(1), solve the random tensor decomposition problem
with probability 1 − o(1) for some accuracy η 6 Õ(n3/d4)1/2. The running time for the single-component
version of the problem is Õ(d1+ω), where dω 6 d2.3279 is the time to multiply two d-by-d matrices. The
running time for the all-components version of the problem is Õ(n · d1+ω).

We give a technical overview of the proof in Section 2, and a full proof in Section 5.
We remark that the above algorithm only requires access to the input tensor with some fixed

inverse polynomial accuracy because each of its four steps amplifies errors by at most a polynomial
factor (see Algorithm 5.17). In this sense, the algorithm is robust.

1.3 Tensor principal component analysis

The problem of tensor principal component analysis is similar to the tensor decomposition problem.
However, here the focus is not on the number of components in the tensor, but about recovery
in the presence of a large amount of random noise. We are given as input a tensor τ · v⊗3 + A,
where v ∈ �n is a unit vector and the entries of A are chosen iid from N(0, 1). This spiked tensor
model was introduced by Montanari and Richard [RM14], who also obtained the first algorithms to
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Table 3: Comparison of algorithms for principal component analysis of 3-tensors in dimension d and with signal-to-noise
ratio τ.

Reference Technique Runtime Smallest τ

Montanari, Richard [RM14] spectral Õ(d3) n

Hopkins, Shi, Steurer [HSS15] SoS, spectral Õ(d3) O(n3/4)
this work SoS, partial traces O(d3) Õ(n3/4)

solve the model with provable statistical guarantees. The spiked tensor model was subsequently
addressed by a subset of the present authors [HSS15], who applied the SoS approach to improve
the signal-to-noise ratio required for recovery from odd-order tensors.

We state the problem formally:

Problem 1.5 (Tensor principal components analysis with signal-to-noise ratio τ and accuracy η).
Let T ∈ (�d)⊗3 be a tensor so that T � τ · v⊗3 + A, where A is a tensor with independent standard
gaussian entries and v ∈ �d is a unit vector. Given T, recover a unit vector v′ ∈ �d such that
〈v′, v〉 > 1 − η.

Our results. For this problem, our improvements over the previous results are more modest—we
achieve signal-to-noise guarantees matching [HSS15], but with an algorithm that runs in linear time
rather than near-linear time (time O(d3) rather than O(d3 polylog d), for an input of size d3).

Theorem 1.6 (Tensor principal component analysis in linear time). There is an algorithm which solves
the tensor principal component analysis problem with accuracy η > 0 whenever the signal-to-noise ratio
satisfies τ > O(n3/4

· η−1
· log1/2 n). Furthermore, the algorithm runs in time O(d3).

Though for tensor PCA our improvement over previous work is modest, we include the results
here as this problem is a pedagogically poignant illustration of our techniques. We give a technical
overview of the proof in Section 2, and a full proof in Section 6.

1.4 Related work

Foremost, this work builds upon the SoS algorithms of [BKS14, BKS15, GM15, HSS15]. In each of
these previous works, a machine learning decision problem is solved using an SDP relaxation for
SoS. In these works, the SDP value is large in the yes case and small in the no case, and the SDP
value can be bounded using the spectrum of a specific matrix. This was implicit in [BKS14, BKS15],
and in [HSS15] it was used to obtain a fast algorithm as well. In our work, we design spectral
algorithms which use smaller matrices, inspired by the SoS certificates in previous works, to solve
these machine-learning problems much faster, with almost matching guarantees.

A key idea in our work is that given a large matrix with information encoded in the matrix’s
spectral gap, one can often efficiently “compress” the matrix to a much smaller one without losing
that information. This is particularly true for problems with planted solutions. In this way, we are
able to improve running time by replacing an nO(d)-sized SDP with an eigenvector computation for
an nk

× nk matrix, for some k < d.
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The idea of speeding up LP and SDP hierarchies for specific problems has been investigated in a
series of previous works [dlVK07, BRS11, GS12], which shows that with respect to local analyses of
the sum-of-squares algorithm it is sometimes possible to improve the running time from nO(d) to
2O(d)

· nO(1). However, the scopes and strategies of these works are completely different from ours.
First, the notion of local analysis from these works does not apply to the problems considered here.
Second, these works employ the ellipsoid method with a separation oracle inspired by rounding
algorithms, whereas we reduce the problem to an ordinary eigenvector computation.

It would also be interesting to see if our methods can be used to speed up some of the other
recent successful applications of SoS to machine-learning type problems, such as [BM15], or the
application of [BKS14] to tensor decomposition with components that are well-separated (rather
than random). Finally, we would be remiss not to mention that SoS lower bounds exist for several of
these problems, specifically for tensor principal components analysis, tensor prediction, and sparse
PCA [HSS15, BM15, MW15]. The lower bounds in the SoS framework are a good indication that we
cannot expect spectral algorithms achieving better guarantees.

2 Techniques

Sum-of-squares method (for polynomial optimization over the sphere). The problems we
consider are connected to optimization problems of the following form: Given a homogeneous
n-variate real polynomial f of constant degree, find a unit vector x ∈ �n so as to maximize f (x).
The sum-of-squares method allows us to efficiently compute upper bounds on the maximum value
of such a polynomial f over the unit sphere.

For the case that k � deg( f ) is even, the most basic upper bound of this kind is the largest
eigenvalue of a matrix representation of f . A matrix representation of a polynomial f is a symmetric
matrix M with rows and columns indexed by monomials of degree k/2 so that f (x) can be written
as the quadratic form f (x) � 〈x⊗k/2 ,Mx⊗k/2〉, where x⊗k/2 is the k/2-fold tensor power of x. The
largest eigenvalue of a matrix representation M is an upper bound on the value of f (x) over all unit
vectors x ∈ �n because

f (x) � 〈x⊗k/2 ,Mx⊗k/2〉 6 λmax(M) · ‖x⊗k/2
‖

2
2 � λmax(M) .

The sum-of-squaresmethods improves on this basic spectral bound systematically by associating
a large family of polynomials (potentially of degree higher than deg( f )) with the input polynomial
f and computing the best possible spectral bound within this family of polynomials. Concretely,
the sum-of-squares method with degree parameter d applied to a polynomial f with deg( f ) 6 d
considers the affine subspace of polynomials { f + (1 − ‖x‖22) · 1 | deg(1) 6 d − 2} ⊆ �[x] and
minimizes λmax(M) among all matrix representations 1 M of polynomials in this space.2 The

1 Earlier we defined matrix representations only for homogeneous polynomials of even degree. In general, a matrix
representation of a polynomial 1 is a symmetric matrix M with rows and columns indexed by monomials of degree at
most ` � deg(1)/2 such that 1(x) � 〈x⊗6` ,Mx⊗6`〉 (as a polynomial identity), where x⊗6` � (x⊗0 , x⊗1 , . . . , x⊗`)/√` + 1
is the vector of all monomials of degree at most `. Note that ‖x⊗6` ‖ � 1 for all x with ‖x‖ � 1.

2 The name of the method stems from the fact that this last step is equivalent to finding the minimum number λ such
that the space contains a polynomial of the form λ − (12

1 + · · · + 12
t ), where 11 , . . . , 1t are polynomials of degree at most

d/2.
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problemof searching through this affine linear space of polynomials and theirmatrix representations
and finding the one of smallest maximum eigenvalue can be solved using semidefinite programming.

Our approach for faster algorithms based on SoS algorithms is to construct specific matrices
(polynomials) in this affine linear space, then compute their top eigenvectors. By designing our
matrices carefully, we ensure that our algorithms have access to the same higher degree information
that the sum-of-squares algorithm can access, and this information affords an advantage over the
basic spectral methods for these problems. At the same time, our algorithms avoid searching
for the best polynomial and matrix representation, which gives us faster running times since we
avoid semidefinite programming. This approach is well suited to average-case problems where we
avoid the problem of adversarial choice of input; in particular it is applicable to machine learning
problems where noise and inputs are assumed to be random.

Compressing matrices with partial traces. A serious limitation of the above approach is that the
representation of a degree-d, n-variate polynomial requires size roughly nd . Hence, even avoiding
the use of semidefinite programming, improving upon running time O(nd) requires additional
ideas.

In each of the problems that we consider, we have a large matrix (suggested by a SoS algorithm)
with a “signal” planted in some amount of “noise”. We show that in some situations, this large
matrix can be compressed significantly without loss in the signal by applying partial trace operations.
In these situations, the partial trace yields a smaller matrix with the same signal-to-noise ratio as the
large matrix suggested by the SoS algorithm, even in situations when lower degree sum-of-squares
approaches are known to fail (as for the planted sparse vector and tensor PCA problems).3

The partial trace Tr�d : �d2
×d2
→ �d×d is the linear operator that satisfies Tr�d A ⊗ B � (Tr A) · B

for all A, B ∈ �d×d . To see how the partial trace can be used to compress large matrices to smaller
ones with little loss, consider the following problem: Given a matrix M ∈ �d2

×d2 of the form
M � τ · (v ⊗ v)(v ⊗ v)> + A ⊗ B for some unit vector v ∈ �d and matrices A, B ∈ �d×d , we wish to
recover the vector v. (This is a simplified version of the planted problems that we consider in this
paper, where τ · (v ⊗ v)(v ⊗ v)> is the signal and A ⊗ B plays the role of noise.)

It is straightforward to see that the matrix A ⊗ B has spectral norm ‖A ⊗ B‖ � ‖A‖ · ‖B‖, and so
when τ � ‖A‖‖B‖, the matrix M has a noticeable spectral gap, and the top eigenvector of M will
be close to v ⊗ v. If | Tr A| ≈ ‖A‖, the matrix Tr�d M � τ · vv> + Tr(A) · B has a matching spectral
gap, and we can still recover v, but now we only need to compute the top eigenvector of a d × d (as
opposed to d2

× d2) matrix.4
If A is a Wigner matrix (e.g. a symmetric matrix with iid ±1 entries), then both Tr(A), ‖A‖ ≈ √n,

and the above condition is indeed met. In our average case/machine learning settings the “noise”
component is not as simple as A ⊗ B with A a Wigner matrix. Nonetheless, we are able to ensure
that the noise displays a similar behavior under partial trace operations. In some cases, this requires
additional algorithmic steps, such as random projection in the case of tensor decomposition, or

3 For both problems we use matrices with dimensions corresponding to degree-2 SoS programs. An argument of
Spielman et al. ([SWW12], Theorem 9) shows that degree-2 sum-of-squares can only find sparse vectors with sparsity
k 6 Õ(√n), wherease we achieve sparsity as large as k � Θ(n). For tensor PCA, the degree-2 SoS program cannot even
express the objective function.

4In some of our applications, the matrix M is only represented implicitly and has size super-linear in the size of the
input, but nevertheless we can compute the top eigenvector of the partial trace Tr�d M in nearly-linear time.
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centering the matrix eigenvalue distribution in the case of the planted sparse vector.
It is an interesting question if there are general theorems describing the behavior of spectral

norms under partial trace operations. In the current work, we compute the partial traces explicitly
and estimate their norms directly. Indeed, our analyses boil down to concentrations bounds for
special matrix polynomials. A general theory for the concentration of matrix polynomials is a
notorious open problem (see [MW13]).

Partial trace operations have previously been applied for rounding SoS relaxations. Specifically,
the operation of reweighing and conditioning, used in rounding algorithms for sum-of-squares such
as [BRS11, RT12, BKS14, BKS15, LR15], corresponds to applying a partial trace operation to the
moments matrix returned by the sum-of-squares relaxation.

We now give a technical overview of our algorithmic approach for each problem, and some
broad strokes of the analysis for each case. Our most substantial improvements in runtime are
for the planted sparse vector and overcomplete tensor decomposition problems (Section 2.1 and
Section 2.2 respectively). Our algorithm for tensor PCA is the simplest application of our techniques,
and it may be instructive to skip ahead and read about tensor PCA first (Section 2.3).

2.1 Planted sparse vector in random linear subspace

Recall that in this problem we are given a linear subspace U (represented by some basis) that is
spanned by a k-sparse unit vector v0 ∈ �

d and random unit vectors v1 , . . . , vd−1 ∈ �
d . The goal is

to recover the vector v0 approximately.

Background and SoS analysis. Let A ∈ �n×d be a matrix whose columns form an orthonormal
basis for U. Our starting point is the polynomial f (x) � ‖Ax‖44 �

∑n
i�1(Ax)4i . Previous work showed

that for d �
√

n the maximizer of this polynomial over the sphere corresponds to a vector close to
v0 and that degree-4 sum-of-squares is able to capture this fact [BBH+12, BKS14]. Indeed, typical
random vectors v in �n satisfy ‖v‖44 ≈ 1/n whereas our planted vector satisfies ‖v0‖

4
4 > 1/k � 1/n,

and this degree-4 information is leveraged by the SoS algorithms.
The polynomial f has a convenient matrix representation M �

∑n
i�1(ai a>i )⊗2, where a1 , . . . , an

are the rows of the generator matrix A. It turns out that the eigenvalues of this matrix indeed give
information about the planted sparse vector v0. In particular, the vector x0 ∈ �

d with Ax0 � v0
witnesses that M has an eigenvalue of at least 1/k because M’s quadratic form with the vector x⊗2

0
satisfies 〈x⊗2

0 ,Mx⊗2
0 〉 � ‖v0‖

4
4 > 1/k. If we let M′ be the corresponding matrix for the subspace U

without the planted sparse vector, M′ turns out to have only eigenvalues of at most O(1/n) up to a
single spurious eigenvalue with eigenvector far from any vector of the form x ⊗ x [BBH+12].

It follows that in order to distinguish between a random subspace with a planted sparse vector
(yes case) and a completely random subspace (no case), it is enough to compute the second-largest
eigenvalue of a d2-by-d2 matrix (representing the 4-norm polynomial over the subspace as above).
This decision version of the problem, while strictly speaking easier than the search version above, is
at the heart of the matter: one can show that the large eigenvalue for the yes case corresponds to an
eigenvector which encodes the coefficients of the sparse planted vector in the basis.
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Improvements. The best running time we can hope for with this basic approach is O(d4) (the size
of the matrix). Since we are interested in d 6 O(√n), the resulting running time O(nd2)would be
subquadratic but still super-linear in the input size n · d (for representing a d-dimensional subspace
of �n). To speed things up, we use the partial trace approach outlined above. We will begin by
applying the partial trace approach naively, obtaining reasonable bounds, and then show that a
small modification to the matrix before the partial trace operation allows us to achieve even smaller
signal-to-noise ratios.

In the planted case, we may approximate M ≈
1
k (x0x>0 )⊗2 + Z, where x0 is the vector of

coefficients of v0 in the basis representation given by A (so that Ax0 � v0), and Z is the noise
matrix. Since ‖x0‖ � 1, the partial trace operation preserves the projector (x0x>0 )⊗2 in the sense that
Tr�d (x0x>0 )⊗2 � x0x>0 . Hence, with our heuristic approximation for M above, we could show that the
top eigenvector of Tr�d M is close to x0 by showing that the spectral norm bound ‖Tr�d Z‖ 6 o(1/k).

The partial trace of our matrix M �
∑n

i�1(ai a>i ) ⊗ (ai a>i ) is easy to compute directly,

N � Tr�d M �

n∑
i�1
‖ai ‖

2
2 · ai a>i .

In the yes case (random subspace with planted sparse vector), a direct computation shows that

λyes > 〈x0 ,Nx0〉 ≈ d
n ·

�
1 +

n
d ‖v0‖

4
4

�
> d

n

�
1 +

n
dk

�
.

Hence, a natural approach to distinguish between the yes case and no case (completely random
subspace) is to upper bound the spectral norm of N in the no case.

In order to simplify the bound on the spectral norm of N in the no case, suppose that the
columns of A are iid samples from the Gaussian distributionN(0, 1

d Id) (rather than an orthogonal
basis for the random subspace)–Lemma 4.6 establishes that this simplification is legitimate. In this
simplified setup, the matrix N in the no case is the sum of n iid matrices {‖ai ‖

2
· ai a>i }, and we can

upper bound its spectral norm λno by d/n · (1 + O(√d/n)) using standard matrix concentration
bounds. Hence, using the spectral norm of N , we will be able to distinguish between the yes case
and the no case as long as √

d/n � n/(dk) �⇒ λno � λyes .

For linear sparsity k � ε · n, this inequality is true so long as d � (n/ε2)1/3, which is somewhat
worse than the bound

√
n bound on the dimension that we are aiming for.

Recall that Tr B �
∑

i λi(B) for a symmetric matrix B. As discussed above, the partial trace
approach works best when the noise behaves as the tensor of two Wigner matrices, in that there
are cancellations when the eigenvalues of the noise are summed. In our case, the noise terms
(ai a>i ) ⊗ (ai a>i ) do not have this property, as in fact Tr ai a>i � ‖ai‖2

≈ d/n. Thus, in order to improve
the dimension bound, we will center the eigenvalue distribution of the noise part of the matrix.
This will cause it to behave more like a Wigner matrix, in that the spectral norm of the noise will
not increase after a partial trace. Consider the partial trace of a matrix of the form

M − α · Id⊗
∑

i

ai a>i ,

for some constant α > 0. The partial trace of this matrix is

N′ �
n∑

i�1
(‖ai ‖

2
2 − α) · ai a>i .

9



We choose the constant α ≈ d/n such that our matrix N′ has expectation 0 in the no case, when
the subspace is completely random. In the yes case, the Rayleigh quotient of N′ at x0 simply shifts
as compared to N , and we have λyes > 〈x0 ,N′x0〉 ≈ ‖v0‖

4
4 > 1/k (see Lemma 4.5 and sublemmas).

On the other hand, in the no case, this centering operation causes significant cancellations in the
eigenvalues of the partial trace matrix (instead of just shifting the eigenvalues). In the no case,
N′ has spectral norm λno 6 O(d/n3/2) for d �

√
n (using standard matrix concentration bounds;

again see Lemma 4.5 and sublemmas). Therefore, the spectral norm of the matrix N′ allows us
to distinguish between the yes and no case as long as d/n3/2

� 1/k, which is satisfied as long as
k � n and d �

√
n. We give the full formal argument in Section 4.

2.2 Overcomplete tensor decomposition

Recall that in this problem we are given a 3-tensor T of the form T �
∑n

i�1 a⊗3
i ∈ �d3 , where

a1 , . . . , an ∈ �
d are independent random vectors fromN(0, 1

d Id). The goal is to find a unit vector
a ∈ �d that is highly correlated with one5 of the vectors a1 , . . . , an .

Background. The starting point of our algorithm is the polynomial f (x) � ∑n
i�1〈ai , x〉3. It turns

out that for n � d1.5 the (approximate) maximizers of this polynomial are close to the components
a1 , . . . , an , in the sense that f (x) ≈ 1 if and only if maxi∈[n]〈ai , x〉2

≈ 1. Indeed, Ge and Ma [GM15]
show that the sum-of-squares method already captures this fact at degree 12, which implies a
quasipolynomial time algorithm for this tensor decomposition problem via a general rounding
result of Barak, Kelner, and Steurer [BKS15].

The simplest approach to this problem is to consider the tensor representation of the polynomial
T �

∑
i∈[n] a⊗3

i , and flatten it, hoping the singular vectors of the flattening are correlated with the ai .
However, this approach is doomed to failure for two reasons: firstly, the simple flattenings of T
are d2

× d matrices, and since n � d the a⊗2
i collide in the column space, so that it is impossible to

determine Span{a⊗2
i }. Secondly, even for n 6 d, because the ai are random vectors, their norms

concentrate very closely about 1. This makes it difficult to distinguish any one particular ai even
when the span is computable.

Improvements. We will try to circumvent both of these issues by going to higher dimensions.
Suppose, for example, that we had access to

∑
i∈[n] a⊗4

i .6 The eigenvectors of the flattenings of this
matrix are all within Spani∈[n]{a⊗2

i }, addressing our first issue, leaving us only with the trouble
of extracting individual a⊗2

i from their span. If furthermore we had access to
∑

i∈[n] a⊗6
i , we could

perform a partial random projection (Φ ⊗ Id⊗ Id)∑i∈[n] a⊗6
i where Φ ∈ �d×d is a matrix with

independent Gaussian entires, and then taking a partial trace, we end up with

Tr�d
*.
,
(Φ ⊗ Id⊗ Id)

∑
i∈[n]

a⊗6
i

+/
-
�

∑
i∈[n]

〈Φ, a⊗2
i 〉a⊗4

i .

5 We can then approximately recover all the components a1 , . . . , an by running independent trials of our randomized
algorithm repeatedly on the same input.

6 As the problem is defined, we assume that we do not have access to this input, and in many machine learning
applications this is a valid assumption, as gathering the data necessary to generate the 4th order input tensor requires a
prohibitively large number of samples.
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With reasonable probability (for exposition’s sake, say with probability 1/n10), Φ is closer to
some a⊗2

i than to all of the others so that 〈Φ, a⊗2
i 〉 > 100〈Φ, a⊗2

j 〉 for all j ∈ [n], and then a⊗2
i is

distinguishable from the other vectors in the span of our matrix, taking care of the second issue .
As we show, a much smaller gap is sufficient to distinguish the top ai from the other a j , and so
the higher-probability event that Φ is only slightly closer to ai suffices (allowing us to recover all
vectors at an additional runtime cost of a factor of Õ(n)). This discussion ignores the presence of a
single spurious large eigenvector, which we address in the technical sections.

Of course, we do not have access to the higher-order tensor
∑

i∈[n] a⊗6
i . Instead, we can obtain a

noisy version of this tensor. Our approach considers the following matrix representation of the
polynomial f 2,

M �

∑
i , j

ai a>j ⊗ (ai a>i ) ⊗ (a j a>j ) ∈ �d3
×d3

.

Alternatively, we can view this matrix as a particular flattening of the Kronecker-squared tensor T⊗2.
It is instructive to decompose M � Mdiag + Mcross into its diagonal terms Mdiag �

∑
i(ai a>i )⊗3 and its

cross terms Mcross �
∑

i, j ai a>j ⊗ (ai a>i )⊗ (a j a>j ). The algorithm described above is already successful
for Mdiag; we need only control the eigenvalues of the partial trace of the “noise” component,
Mcross. The main technical work will be to show that ‖ Tr�d Mdiag‖ is small. In fact, we will
have to choose Φ from a somewhat different distribution—observing that Tr�d (Φ ⊗ Id⊗ Id) �∑

i , j〈ai ,Φa j〉 · (ai ⊗ a j)(ai ⊗ a j)>, we will sample Φ so that 〈ai ,Φai〉 � 〈ai ,Φa j〉. We give a more
detailed overview of this algorithm in the beginning of Section 5, explaining in more detail our
choice of Φ and justifying heuristically the boundedness of the spectral norm of the noise.

Connection to SoS analysis. To explain how the above algorithm is a speedup of SoS, we give an
overview of the SoS algorithm of [GM15, BKS15]. There, the degree-t SoS SDP program is used to
obtain an order-t tensor χt (or a pseudodistribution). Informally speaking, we can understand χt as a
proxy for

∑
i∈[n] a⊗t

i , so that χt �
∑

i∈[n] a⊗t
i + N , where N is a noise tensor. While the precise form

of N is unclear, we know that N must obey a set of constraints imposed by the SoS hierarchy at
degree t. For a formal discussion of pseudodistributions, see [BKS15].

To extract a single component ai from the tensor
∑

i∈[n] a⊗t
i , there are many algorithms which

would work (for example, the algorithm we described for Mdiag above). However, any algorithm
extracting an ai from χt must be robust to the noise tensor N . For this it turns out the following algo-
rithm will do: suppose we have the tensor

∑
i∈[n] a⊗t

i , taking t � O(log n). Sample 11 , . . . , 1log(n)−2
random unit vectors, and compute the matrix M �

∑
i(∏16 j6log(n)−2〈1 j , ai〉) · ai a>i . If we are lucky

enough, there is some ai so that every 1 j is a bit closer to ai than any other ai′, and M � ai a>i + E
for some ‖E‖ � 1. The proof that ‖E‖ is small can be made so simple that it applies also to the
SDP-produced proxy tensor χlog n , and so this algorithm is robust to the noise N . This last step is
very general and can handle tensors whose components ai are less well-behaved than the random
vectors we consider, and also more overcomplete, handling tensors of rank up to n � Ω̃(d1.5).7

Our subquadratic-time algorithm can be viewed as a low-degree, spectral analogue of the
[BKS15] SoS algorithm. However, rather than relying on an SDP to produce an object close to∑

i∈[n] a⊗t
i , we manufacture one ourselves by taking the Kronecker square of our input tensor. We

7 It is an interesting open questionwhether taking t � O(log n) is really necessary, or whether this heavy computational
requirement is simply an artifact of the SoS proof.
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explicitly know the form of the deviation of T⊗2 from
∑

i∈[n] a⊗6
i , unlike in [BKS15], where the

deviation of the SDP certificate χt from
∑

i∈[n] a⊗t
i is poorly understood. We are thus able to control

this deviation (or “noise”) in a less computationally intensive way, by cleverly designing a partial
trace operation which decreases the spectral norm of the deviation. Since the tensor handled by the
algorithm is much smaller—order 6 rather than order log n—this provides the desired speedup.

2.3 Tensor principal component analysis

Recall that in this problem we are given a tensor T � τ · v⊗3 +A, where v ∈ �d is a unit vector, A has
iid entries fromN(0, 1), and τ > 0 is the signal-to-noise ratio. The aim is to recover v approximately.

Background and SoS analysis. Aprevious application of SoS techniques to this problemdiscussed
several SoS or spectral algorithms, including one that runs in quasi-linear time [HSS15]. Here we
apply the partial trace method to a subquadratic spectral SoS algorithm discussed in [HSS15] to
achieve nearly the same signal-to-noise guarantee in only linear time.

Our starting point is the polynomial T(x) � τ · 〈v , x〉3 + 〈x⊗3 ,A〉. The maximizer of T(x) over the
sphere is close to the vector v so long as τ �

√
n [RM14]. In [HSS15], it was shown that degree-4

SoS maximizing this polynomial can recover v with a signal-to-noise ratio of at least Ω̃(n3/4), since
there exists a suitable SoS bound on the noise term 〈x⊗3 ,A〉.

Specifically, let Ai be the ith slice of A, so that 〈x ,Ai x〉 is the quadratic form ∑
j,k Ai jk x j xk . Then

there is a SoS proof that T(x) is bounded by |T(x) − τ · 〈v , x〉3 | 6 f (x)1/2 · ‖x‖, where f (x) is the
degree-4 polynomial f (x) � ∑

i〈x ,Ai x〉2. The polynomial f has a convenient matrix representation:
f (x) � 〈x⊗2 , (∑i Ai ⊗ Ai)x⊗2〉: since this matrix is a sum of iid random matrices Ai ⊗ Ai , a matrix
Chernoff bound shows that this matrix spectrally concentrates to its expectation. So with high
probability one can show that the eigenvalues of

∑
i Ai ⊗ Ai are at most ≈ d3/2 log(d)1/2 (except

for a single spurious eigenvector), and it follows that degree-4 SoS solves tensor PCA so long as
τ � d3/4 log(d)1/4.

This leads the authors to consider a slight modification of f (x), given by 1(x) � ∑
i〈x , Ti x〉2,

where Ti is the ith slice of T. Like T, the function 1 also contains information about v, and the SoS
bound on the noise term in T carries over as an analogous bound on the noise in 1. In particular,
expanding Ti ⊗ Ti and ignoring some negligible cross-terms yields∑

i

Ti ⊗ Ti ≈ τ
2
· (v ⊗ v)(v ⊗ v)> +

∑
i

Ai ⊗ Ai .

Using v ⊗ v as a test vector, the quadratic form of the latter matrix can be made at least τ2
−

O(d3/2 log(d)1/2). Together with the boundedness of the eigenvalues of
∑

i Ai ⊗ Ai this shows that
when τ � d3/4 log(d)1/4 there is a spectral algorithm to recover v. Since the matrix

∑
i Ti ⊗ Ti is

d2
× d2, computing the top eigenvector requires Õ(d4 log n) time, and by comparison to the input

size d3 the algorithm runs in subquadratic time.

Improvements. In this work we speed this up to a linear time algorithm via the partial trace
approach. As we have seen, the heart of the matter is to show that taking the partial trace of
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τ2
· (v ⊗ v)(v ⊗ v)> +

∑
i Ai ⊗ Ai does not increase the spectral noise. That is, we require that


Tr�d

∑
i

Ai ⊗ Ai


�



∑
i

Tr(Ai) · Ai


6 O(d3/2 log(d)1/2) .

The Ai have iid Guassian entries, and so as in the case of Wigner matrices, it is roughly true that
| Tr(Ai)| ≈ ‖Ai‖. Thus the situation is very similar to our toy example of the application of partial
traces in Section 2.

Heuristically, because
∑

i∈[n] Ai ⊗ Ai and
∑

i∈[n] Tr(Ai) · Ai are random matrices, we expect that
their eigenvalues are all of roughly the same magnitude. This means that their spectral norm
should be close to their Frobenius norm divided by the square root of the dimension, since for a

matrix M with eigenvalues λ1 , . . . , λn , ‖M‖F �

√∑
i∈[n] λ2

i . By estimating the sum of the squared
entries, we expect that the Frobenious norm of

∑
i Tr(Ai) · Ai is less than that of

∑
i Ai ⊗ Ai by a

factor of
√

d after the partial trace, while the dimension decreases by a factor of d, and so assuming
that the eigenvalues are all of the same order, a typical eigenvalue should remain unchanged. We
formalize these heuristic calculations using standard matrix concentration arguments in Section 6.

3 Preliminaries

Linear algebra. We will work in the real vector spaces given by �n . A vector of indeterminates
may be denoted x � (x1 , . . . , xn), although we may sometimes switch to parenthetical notation for
indexing, i.e. x � (x(1), . . . , x(n))when subscripts are already in use. We denote by [n] the set of all
valid indices for a vector in �n . Let ei be the ith canonical basis vector so that ei(i) � 1 and ei( j) � 0
for j , i.

For a vectors space V , we may denote by L(V) the space of linear operators from V to V . The
space orthogonal to a vector v is denoted v⊥.

For a matrix M, we use M−1 to denote its inverse or its Moore-Penrose pseudoinverse; which
one it is will be clear from context. For M PSD, we write M−1/2 for the unique PSD matrix with
(M−1/2)2 � M−1.

Norms and inner products. We denote the usual entrywise inner product by 〈·, ·〉, so that
〈u , v〉 � ∑

i∈[n] ui vi for u , v ∈ �n . The `p-norm of a vector v ∈ �n is given by ‖v‖p � (∑i∈[n] vi
p)1/p ,

with ‖v‖ denoting the `2-norm by default. The matrix norm used throughout the paper will be the
operator / spectral norm, denoted by ‖M‖ � ‖M‖op :� maxx,0‖Mx‖/‖x‖.

Tensor manipulation. Boldface variables will reserved for tensors T ∈ �n×n×n , of which we
consider only order-3 tensors. We denote by T(x , y , z) the multilinear function in x , y , z ∈ �n such
that T(x , y , z) � ∑

i , j,k∈[n] Ti , j,k xi y j zk , applying x, y, and z to the first, second, and third modes of
the tensor T respectively. If the arguments are matrices P, Q, and R instead, this lifts T(P,Q , R) to
the unique multilinear tensor-valued function such that [T(P,Q , R)](x , y , z) � T(Px ,Q y , Rz) for
all vectors x , y , z.

Tensors may be flattened to matrices in the multilinear way such that for every u ∈ �n×n

and v ∈ �n , the tensor u ⊗ v flattens to the matrix uv> ∈ �n2
×n with u considered as a vector.
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There are 3 different ways to flatten a 3-tensor T, corresponding to the 3 modes of T. Flattening
may be understood as reinterpreting the indices of a tensor when the tensor is expressed as an
3-dimensional array of numbers. The expression v⊗3 refers to v ⊗ v ⊗ v for a vector v.

Probability and asymptotic bounds. We will often refer to collections of independent and
identically distributed (or iid) random variables. The Gaussian distribution with mean µ and
variance σ2 is denotedN(µ, σ2). Sometimes we state that an event happens with overwhelming
probability. This means that its probability is at least 1− n−ω(1). A function is Õ(1(n)) if it is O(1(n))
up to polylogarithmic factors.

4 Planted sparse vector in random linear subspace

In this section we give a nearly-linear-time algorithm to recover a sparse vector planted in a random
subspace.

Problem 4.1. Let v0 ∈ �
n be a unit vector such that ‖v0‖4

4 >
1
εn . Let v1 , . . . , vd−1 ∈ �

n be iid from
N(0, 1

n Idn). Let w0 , . . . ,wd−1 be an orthogonal basis for Span{v0 , . . . , vd−1}. Given: w0 , . . . ,wd−1
Find: a vector v such that 〈v , v0〉2 > 1 − o(1).

Sparse Vector Recovery in Nearly-Linear Time

Algorithm 4.2. Input: w0 , . . . ,wd−1 as in Problem 4.1. Goal: Find v with 〈v̂ , v0〉2 > 1 − o(1).
• Compute leverage scores ‖a1‖2 , . . . , ‖an‖2, where ai is the ith row of the n × d matrix

S :�
(

w0 · · · wd−1
)
.

• Compute the top eigenvector u of the matrix

A def
�

∑
i∈[n]

(‖ai‖2
2 −

d
n ) · ai a>i .

• Output Su.

Remark 4.3 (Implementation of Algorithm 4.2 in nearly-linear time). The leverage scores
‖a1‖2 , . . . , ‖an‖2 are clearly computable in time O(nd). In the course of proving correctness
of the algorithm we will show that A has constant spectral gap, so by a standard analysis O(log d)
matrix-vector multiplies suffice to recover its top eigenvector. A single matrix-vector multiply Ax
requires computing ci :� (‖ai‖2

−
d
n )〈ai , x〉 for each i (in time O(nd)) and summing

∑
i∈[n] ci xi (in

time O(nd)). Finally, computing Su requires summing d vectors of dimension n, again taking time
O(nd).

The following theorem expresses correctness of the algorithm.

Theorem 4.4. Let v0 ∈ �
n be a unit vector with ‖v0‖4

4 >
1
εn . Let v1 , . . . , vd−1 ∈ �

n be iid fromN(0, 1
n Idn).

Let w0 , . . . ,wd−1 be an orthogonal basis for Span{v0 , . . . , vd−1}. Let ai be the i-th row of the n × d matrix
S :�

(
w0 · · · wd−1

)
.
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When d 6 n1/2/polylog(n), for any sparsity ε > 0, w.ov.p. the top eigenvector u of
∑n

i�1(‖ai‖2
−

d
n )·ai a>i

has 〈Su , v0〉2 > 1 − O(ε1/4) − o(1).
Wehave little control over the basis vectors the algorithm is given. However, there is a particularly

nice (albeit non-orthogonal) basis for the subspace which exposes the underlying randomness.
Suppose that we are given the basis vectors v0 , . . . , vd , where v0 is the sparse vector normalized so
that ‖v0‖ � 1, and v1 , . . . , vd−1 are iid samples fromN(0, 1

n Idn). The following lemma shows that
if the algorithm had been handed this good representation of the basis rather than an arbitrary
orthogonal one, its output would be the correlated to the vector of coefficients giving of the planted
sparse vector (in this case the standard basis vector e1).

Lemma 4.5. Let v0 ∈ �
n be a unit vector. Let v1 , . . . , vd−1 ∈ �

n be iid fromN(0, 1
n Id). Let ai be the ith

row of the n × d matrix S :�
(

v0 · · · vd−1
)
. Then there is a universal constant ε∗ > 0 so that for any

ε 6 ε∗, so long as d 6 n1/2/polylog(n), w.ov.p.
n∑

i�1
(‖ai‖2

−
d
n ) · ai a>i � ‖v0‖4

4 · e1e>1 + M ,

where e1 is the first standard basis vector and ‖M‖ 6 O(‖v0‖3
4 · n

−1/4 + ‖v0‖2
4 · n

−1/2 + ‖v0‖4 · n−3/4 + n−1).
The second ingredient we need is that the algorithm is robust to exchanging this good basis for

an arbitrary orthogonal basis.

Lemma 4.6. Let v0 ∈ �
n have ‖v0‖4

4 >
1
εn . Let v1 , . . . , vd−1 ∈ �

n be iid from N(0, 1
n Idn). Let

w0 , . . . ,wd−1 be an orthogonal basis for Span{v0 , . . . , vd−1}. Let ai be the ith row of the n × d matrix
S :�

(
v0 · · · vd−1

)
. Let a′i be the ith row of the n × d matrix S′ :�

(
w0 · · · wd−1

)
. Let

A :�
∑

i ai a>i . Let Q ∈ �d×d be the orthogonal matrix so that SA−1/2 � S′Q, which exists since SA−1/2 is
orthogonal, and which has the effect that a′i � QA−1/2ai . Then when d 6 n1/2/polylog(n), w.ov.p.



n∑
i�1

(‖a′i‖2
−

d
n ) · a′i a′>i −Q *

,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
Q>


6 O

( 1
n

)
+ o(‖v‖4

4)

Last, we will need the following fact, which follows from standard concentration. The proof is
in Section B.

Lemma 4.7. Let v ∈ �n be a unit vector. Let b1 , . . . , bn ∈ �
d−1 be iid fromN(0, 1

n Idd−1). Let ai ∈ �
d be

given by ai :� (v(i) bi). Then w.ov.p. ‖∑n
i�1 ai a>i − Idd ‖ 6 Õ(d/n)1/2. In particular, when d � o(n), this

implies that w.ov.p. ‖(∑n
i�1 ai a>i )−1

− Idd ‖ 6 Õ(d/n)1/2 and ‖(∑n
i�1 ai a>i )−1/2

− Idd ‖ 6 Õ(d/n)1/2.
We are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Let b1 , . . . , bn be the rows of the matrix S′ :�
(

v0 · · · vd−1
)
. Let B �∑

i bi b>i . Note that S′B−1/2 has columns which are an orthogonal basis for Span{w0 , . . . ,wd−1}. Let
Q ∈ �d×d be the rotation so that S′B−1/2 � SQ.

By Lemma 4.5 and Lemma 4.6, we can write the matrix A �
∑n

i�1(‖ai‖2
2 −

d
n ) · ai a>i as

A � ‖v0‖4
4 · Qe1e>1 Q> + M ,
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where w.ov.p.

‖M‖ 6 O(‖v0‖3
4 · n

−1/4
+ ‖v0‖2

4 · n
−1/2

+ ‖v0‖4 · n−3/4
+ n−1) + o(‖v‖4

4) .
We have assumed that ‖v0‖4

4 > (εn)−1, and so since A is an almost-rank-one matrix (Lemma A.3),
the top eigenvector u of A has 〈u ,Qe1〉2 > 1 − O(ε1/4), so that 〈Su , SQe1〉2 > 1 − O(ε1/4) by
column-orthogonality of S.

At the same time, SQe1 � S′B−1/2e1, and by Lemma 4.7, ‖B−1/2
− Id ‖ 6 Õ(d/n)1/2 w.ov.p., so that

〈Su , S′e1〉2 > 〈Su , SQe1〉2
−o(1). Finally, S′e1 � v0 by definition, so 〈Su , v0〉2 > 1−O(ε1/4)−o(1). �

4.1 Algorithm succeeds on good basis

We now prove Lemma 4.5. We decompose the matrix in question into a contribution from ‖v0‖4
4 and

the rest: explicitly, the decomposition is
∑(‖ai‖2

2 −
d
n ) · ai a>i �

∑
v(i)2 · ai a>i +

∑(‖bi‖2
2 −

d
n · ai a>i ).

This first lemma handles the contribution from ‖v0‖4
4 .

Lemma 4.8. Let v ∈ �n be a unit vector. Let b1 , . . . , bn ∈ �
d−1 be random vectors iid fromN(0, 1

n · Idd−1).
Let ai � (v(i) bi) ∈ �d . Suppose d 6 n1/2/polylog(n). Then

n∑
i�1

v(i)2 · ai a>i � ‖v‖4
4 · e1e>1 + M′ ,

where ‖M′‖ 6 O(‖v‖3
4 n−1/4 + ‖v‖2

4 n−1/2) w.ov.p..
Proof of Lemma 4.8. We first show an operator-norm bound on the principal submatrix

∑n
i�1 v(i)2 ·

bi b>i using the truncated matrix Bernstein inequality Proposition A.7. First, the expected operator
norm of each summand is bounded:

� v(i)2‖bi‖2
2 6 (max

j
v( j)2) · O

(
d
n

)
6 ‖v‖2

4 · O
(

d
n

)
.

The operator norms are bounded by constant-degree polynomials in Gaussian variables, so
Lemma A.8 applies to truncate their tails in preparation for application of a Bernstein bound. We
just have to calculate the variance of the sum, which is at most


�

n∑
i�1

v(i)4‖bi‖2
2 · bi b>i


� ‖v‖4

4 · O
(

d
n2

)
.

The expectation �
∑n

i�1 v(i)2 · bi b>i is ‖v‖2

n · Id. Applying a matrix Bernstein bound (Proposition A.7)
to the deviation from expectation, we get that w.ov.p.,


*
,

n∑
i�1

v(i)2 · bi b>i +
-
−

1
n
· Id


6 ‖v‖2

4 · Õ
(

d
n

)
6 O(‖v‖2

4 n−1/2)

for appropriate choice of d 6 n−1/2/polylog(n). Hence, by triangle inequality, ‖∑n
i�1 v(i)2 · bi b>i ‖ 6

‖v‖2
4 n−1/2 w.ov.p..

16



Using a Cauchy-Schwarz-style inequality (Lemma A.1) we now show that the bound on this
principal submatrix is essentially enough to obtain the lemma. Let pi , qi ∈ �

d be given by

pi
def
� v0(i) ·

*.......
,

v0(i)
0
...

0

+///////
-

qi
def
� v0(i) · *

,

0
bi

+
-
.

Then
n∑

i�1
v(i)2 · bi b>i � ‖v‖4

4 +

n∑
i�1

pi q>i + qi p>i + qi q>i .

We have already bounded
∑n

i�1 qi q>i �
∑n

i�1 v(i)2 · bi b>i . At the same time, ‖∑n
i�1 pi p>i ‖ � ‖v‖4

4 . By
Lemma A.1, then, 

n∑
i�1

pi q>i + qi p>i


6 O(‖v‖3

4 n−1/4)

w.ov.p.. A final application of triangle inquality gives the lemma. �

Our second lemma controls the contribution from the random part of the leverage scores.

Lemma 4.9. Let v ∈ �n be a unit vector. Let b1 , . . . , bn ∈ �
d−1 be random vectors iid fromN(0, 1

n · Idd−1).
Let ai � (v(i) bi) ∈ �d . Suppose d 6 n1/2/polylog(n). Then w.ov.p.



n∑
i�1

(‖bi‖2
2 −

d
n ) · ai a>i


6 ‖v‖2

4 · O(n−3/4) + ‖v‖4 · O(n−1) + O(n−1) .

Proof. Like in the proof of Lemma 4.8,
∑n

i�1(‖bi‖2
2 −

d
n ) · ai a>i decomposes into a convenient block

structure; we will bound each block separately.

n∑
i�1

(‖bi‖2
2 −

d
n ) · ai a>i �

n∑
i�1

(‖bi‖2
2 −

d
n ) · *

,

v(i)2 v(i) · b>i
v(i) · bi bi b>i

+
-
. (4.1)

In each blockwe can apply a (truncated) Bernstein inequality. For the large block
∑n

i�1(‖bi‖2
2−

d
n )bi b>i ,

the choice d
n ensures that �(‖bi‖2

2 −
d
n )bi b>i � O( 1

n2 ) · Id. The expected operator norm of each
summand is small:

� ‖(‖bi‖2
2 −

d
n )bi b>i ‖ � � |(‖bi‖2

2 −
d
n )|‖bi‖2

2

6 (�(‖bi‖2
2 −

d
n )2)1/2(� ‖bi‖4

2)1/2 by Cauchy-Schwarz

6 O
(

d1/2

n

)
· O

(
d
n

)
variance of χ2 with k degrees of freedom is O(k)

� O
(

d3/2

n2

)
.

The termwise operator norms are bounded by constant-degree polynomials in Gaussian variables,
so Lemma A.8 applies to truncate the tails of the summands in preparation for a Bernstein bound.

17



We just have to compute the variance of the sum, which is small because we have centered the
coefficients:



∑
i

�(‖bi‖2
2 −

d
n )2‖bi‖2

2 · bi b>i


6 O

(
d2

n3

)
by direct computation of �(‖bi‖2

2 −
d
n )2‖bi‖2

2 bi b>i using Fact A.6. These facts together are enough to
apply the matrix Bernstein inequality (Proposition A.7) and conclude that w.ov.p.



n∑
i�1

(‖bi‖2
2 −

d
n ) · bi b>i


6 Õ

(
d

n3/2

)
6 O

( 1
n

)
for appropriate choice of d 6 n/polylog(n).

We turn to the other blocks from (4.1). The upper-left block contains just the scalar
∑n

i�1(‖bi‖2
2 −

d
n )v(i)2. By standard concentration each term is bounded: w.ov.p.,

(‖bi‖2
2 −

d
n )v(i)2 6 (max

i
v(i)2) · Õ

(
d1/2

n

)
6 ‖v‖2

4 · Õ
(

d1/2

n

)
.

The sum has variance at most
∑n

i�1 v(i)4�(‖bi‖2
2 −

d
n )2 6 ‖v‖4

4 · O(d/n2). Again using Lemma A.8
and Proposition A.7, we get that w.ov.p.

������

n∑
i�1

(‖bi‖2
2 −

d
n )v(i)2

������
6 ‖v‖2

4 · Õ
(

d1/2

n

)
.

It remains just to address the block
∑n

i�1(‖bi‖2
2 −

d
n )v(i) · bi . Each term in the sum has expected

operator norm at most

(max
i

v(i)2)1/2 · O
(

d
n3/2

)
6 ‖v‖4 · O

(
d

n3/2

)
· ,

and once again the since the summands’ operator norms are bounded by constant-degree poly-
nomials of Gaussian variables Lemma A.8 applies to truncate their tails in preparation to apply a
Bernstein bound. The variance of the sum is at most ‖v‖2

2 · O(d2/n3), again by Fact A.6. Finally,
Lemma A.8 and Proposition A.7 apply to give that w.ov.p.



n∑
i�1

(‖bi‖2
2 −

d
n )v(i) · bi


6 ‖v‖4 · Õ

(
d

n3/2

)
+ Õ

(
d

n3/2

)
� ‖v‖4 · n−1

+ n−1

for appropriate choice of d 6 n1/2/polylog(n). Putting it all together gives the lemma. �

We are now ready to prove Lemma 4.5

Proof of Lemma 4.5. We decompose ‖ai‖2
2 � v0(i)2 + ‖bi‖2

2 and use Lemma 4.8 and Lemma 4.9.
n∑

i�1
(‖ai‖2

2 −
d
n ) · ai a>i � *

,

n∑
i�1

v0(i)2 · ai a>i +
-
+ *

,

n∑
i�1

(‖bi‖2
2 −

d
n ) · ai a>i +

-
� ‖v0‖4

4 · e1e>1 + M ,

where
‖M‖ 6 O(‖v0‖3

4 · n
−1/4

+ ‖v0‖2
4 · n

−1/2) + O(‖v0‖4 · n−1
+ n−1) .

Since ‖v0‖4
4 > (εn)−1, we get ‖v0‖4

4/‖M‖ > 1
ε1/4 , completing the proof. �

18



4.2 Closeness of input basis and good basis

We turn now to the proof of Lemma 4.6. We recall the setting. We have two matrices: M, which
the algorithm computes, and M′, which is induced by a basis for the subspace which reveals the
underlying randomness and which we prefer for the analysis. M′ differs from M by a rotation
and a basis orthogonalization step (the good basis is only almost orthogonal). The rotation is
easily handled. The following lemma gives the critical fact about the orthogonalization step:
orthogonalizing does not change the leverage scores too much. 8

Lemma 4.10 (Restatement of Lemma B.4). Let v ∈ �n be a unit vector and let b1 , . . . , bn ∈ �
d−1 be iid

from N(0, 1
n Idd−1). Let ai ∈ �

d be given by ai :� (v(i) bi). Let A :�
∑

i ai a>i . Let c ∈ �d−1 be given by
c :�

∑
i v(i)bi . Then for every index i ∈ [n], w.ov.p.,

�‖A−1/2ai‖2
− ‖ai‖2�

6 Õ
(

d +
√

n
n

)
· ‖ai‖2 .

The proof again uses standard concentration and matrix inversion formulas, and can be found
in Section B. We are ready to prove Lemma 4.6.

Proof of Lemma 4.6. The statement we want to show is


n∑
i�1

(‖a′i‖2
−

d
n ) · a′i a′>i −Q *

,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
Q>


6 O

( 1
n

)
+ o(‖v‖4

4) .

Conjugating by Q and multiplying by −1 does not change the operator norm, so that this is
equivalent to



n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i −Q> *

,

n∑
i�1

(‖a′i‖2
−

d
n ) · a′i a′>i +

-
Q


6 O

( 1
n

)
+ o(‖v‖4

4) .

Finally, substituting a′i � QA−1/2ai , and using the fact that Q is a rotation, it will be enough to
show


*
,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
− A−1/2 *

,

n∑
i�1

(‖A−1/2ai‖2
−

d
n ) · ai a>i +

-
A−1/2


6 O

( 1
n

)
+ o(‖v‖4

4) . (4.2)

We write the right-hand matrix as

A−1/2 *
,

n∑
i�1

(‖A−1/2ai‖2
−

d
n ) · ai a>i +

-
A−1/2

� A−1/2 *
,

n∑
i�1

(‖A−1/2ai‖2
− ‖ai‖2) · ai a>i +

-
A−1/2

+ A−1/2 *
,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
A−1/2 .

The first of these we observe has bounded operator norm w.ov.p.:

A−1/2 *

,

n∑
i�1

(‖A−1/2ai‖2
− ‖ai‖2) · ai a>i +

-
A−1/2


6


A−1/2 *

,

n∑
i�1

|‖A−1/2ai‖2
− ‖ai‖2 | · ai a>i +

-
A−1/2


8Strictly speaking the good basis does not have leverage scores since it is not orthogonal, but we can still talk about

the norms of the rows of the matrix whose columns are the basis vectors.
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6 Õ
(

d +
√

n
n

)
·



n∑
i�1

‖ai‖2
· ai a>i



where we have used Lemma 4.7 to find that A1/2 is close to identity, and Lemma 4.10 to simplify the
summands

� Õ
(

d +
√

n
n

)
· *

,



n∑
i�1

v0(i)2 · ai a>i


+



n∑
i�1

‖bi‖2
2 · ai a>i


+
-

6 Õ
(

d +
√

n
n

)
·

(
O(‖v‖4

4) + Õ
(

d
n

))
,

using in the last step Lemma 4.8 and standard concentration to bound
∑n

i�1 ‖bi‖2
2 · ai a>i (Lemma 4.7).

Thus, by triangle inequality applied to (4.2), we get


*
,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
− A−1/2 *

,

n∑
i�1

(‖A−1/2ai‖2
−

d
n ) · ai a>i +

-
A−1/2



6 Õ
(

d +
√

n
n

)
·

(
O(‖v‖4

4) + Õ
(

d
n

))
+


*
,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
− A−1/2 *

,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
A−1/2


.

Finally, since w.ov.p. ‖A−1/2
− Id ‖ � Õ(d/n)1/2, we get


*
,

n∑
i�1

(‖ai‖2
−

d
n ) · ai a>i +

-
− A−1/2 *

,

n∑
i�1

(‖A−1/2ai‖2
−

d
n ) · ai a>i +

-
A−1/2



6 Õ
(

d +
√

n
n

)
·

(
O(‖v‖4

4) + Õ
(

d
n

))
+ Õ

(
d
n

)1/2

·



n∑
i�1

(‖ai‖2
2 −

d
n ) · ai a>i



6 Õ
(

d +
√

n
n

)
·

(
O(‖v‖4

4) + Õ
(

d
n

))
+ Õ

(
d
n

)1/2

· O(‖v‖4
4) .

using Lemma 4.5 in the last step. For appropriate choice of d 6 n−1/2/polylog(n), this is at most
O(n−1) + o(‖v‖4

4). �

5 Overcomplete tensor decomposition

In this section, we give a polynomial-time algorithm for the following problem when n 6
d4/3/(polylog d):
Problem 5.1. Given an order-3 tensor T �

∑n
i�1 ai ⊗ ai ⊗ ai , where a1 , . . . , an ∈ �

d are iid vectors
sampled fromN(0, 1

d Id), find vectors b1 , . . . , bn ∈ �
n such that for all i ∈ [n],

〈ai , bi〉 > 1 − o(1) .
We give an algorithm that solves this problem, so long as the overcompleteness of the input

tensor is bounded such that n � d4/3/polylog d.
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Theorem 5.2. Given as input the tensor T �
∑n

i�1 ai ⊗ ai ⊗ ai where ai ∼ N(0, 1
d Idd) with d 6 n 6

d4/3/polylog d,9 there is an algorithm which may run in time Õ(nd1+ω) or Õ(nd3.257), where dω is the
time to multiply two d × d matrices, which with probability 1 − o(1) over the input T and the randomness of
the algorithm finds unit vectors b1 , . . . , bn ∈ �

d such that for all i ∈ [n],

〈ai , bi〉 > 1 − Õ
(

n3/2

d2

)
.

We remark that this accuracy can be improved from 1−Õ(n3/2/d2) to an arbitrarily good precision
using existing local search methods with local convergence guarantees—see Corollary 5.23.

As discussed in Section 2, to decompose the tensor
∑

i a⊗6
i (note we do not actually have access

to this input!) there is a very simple tensor decomposition algorithm: sample a random 1 ∈ �d2

and compute the matrix
∑

i〈1 , a⊗2
i 〉(ai a>i )⊗2. With probability roughly n−O(ε) this matrix has (up to

scaling) the form (ai a>i )⊗2 + E for some ‖E‖ 6 1 − ε, and this is enough to recover ai .
However, instead of

∑
i a⊗6

i , we have only
∑

i , j(ai ⊗ a j)⊗3. Unfortunately, running the same
algorithm on the latter input will not succeed. To see why, consider the extra terms E′ :�∑

i, j〈1 , ai ⊗ a j〉(ai ⊗ a j)⊗2. Since |〈1 , ai ⊗ a j〉| ≈ 1, it is straightforward to see that ‖E′‖F ≈ n. Since
the rank of E′ is clearly d2, even if we are lucky and all the eigenvalues have similar magnitudes,
still a typical eigenvalue will be ≈ n/d � 1, swallowing the

∑
i a⊗6

i term.
A convenient feature separating the signal terms

∑
i(ai ⊗ ai)⊗3 from the crossterms

∑
i, j(ai ⊗ a j)⊗3

is that the crossterms are not within the span of the ai ⊗ ai . Although we cannot algorithmically
access Span{ai ⊗ ai}, we have access to something almost as good: the unfolded input tensor,
T �

∑
i∈[n] ai(ai ⊗ ai)>. The rows of this matrix lie in Span{ai ⊗ ai}, and so for i , j, ‖T(ai ⊗ ai)‖ �

‖T(ai ⊗ a j)‖. In fact, careful computation reveals that ‖T(ai ⊗ ai)‖ > Ω̃(√n/d)‖T(ai ⊗ a j)‖.
The idea now is to replace

∑
i , j〈1 , ai ⊗ a j〉(ai ⊗ a j)⊗2 with

∑
i , j〈1 , T(ai ⊗ a j)〉(ai ⊗ a j)⊗2, now with

1 ∼ N(0, Idd). As before, we are hoping that there is i0 so that 〈1 , T(ai0⊗ai0)〉 � max j,i0〈1 , T(a j⊗a j)〉.
But now we also require ‖∑i, j〈1 , T(ai ⊗ a j)〉(ai ⊗ a j)(ai ⊗ a j)>‖ � 〈1 , T(ai0 ⊗ ai0)〉 ≈ ‖T(ai ⊗ ai)‖.
If we are lucky and all the eigenvalues of this cross-term matrix have roughly the same magnitude
(indeed, we will be lucky in this way), then we can estimate heuristically that



∑
i, j

〈1 , T(ai ⊗ a j)〉(ai ⊗ a j)(ai ⊗ a j)>

≈

1
d



∑
i, j

〈1 , T(ai ⊗ a j)〉(ai ⊗ a j)(ai ⊗ a j)>
F

6 1
d ·
√

n
d |〈1 , T(ai0 ⊗ ai0)〉|



∑
i, j

(ai ⊗ a j)(ai ⊗ a j)>
F

6 n3/2

d2 |〈1 , T(ai0 ⊗ ai0)〉| ,
suggesting our algorithm will succed when n3/2

� d2, which is to say n � d4/3.
The following theorem, which formalizes the intuition above, is at the heart of our tensor

decomposition algorithm.

9The lower bound d 6 n on n, is a matter of technical convenience, avoiding separate concentration analyses and
arithmetic in the undercomplete (n < d) and overcomplete (n > d) settings. Indeed, our algorithm still works in the
undercomplete setting (tensor decomposition is easier in the undercomplete setting than the overcomplete one), but here
other algorithms based on local search also work [AGJ15].
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Theorem 5.3. Let a1 , . . . , an be independent random vectors from N(0, 1
d Idd) with d 6 n 6

d4/3/(polylog d) and let 1 be a random vector from N(0, Idd). Let Σ :� �x∼N(0,Idd)(xx>)⊗2 and let
R :�

√
2 · (Σ+)1/2. Let T �

∑
i∈[n] ai(ai ⊗ ai)>. Define the matrix M ∈ �d2

×d2 ,

M �

∑
i , j∈[n]

〈1 , T(ai ⊗ a j)〉 · (ai ⊗ a j)(ai ⊗ a j)> .

With probability 1 − o(1) over the choice of a1 , . . . , an , for every polylog d/
√

d < ε < 1, the spectral gap
of RMR is at least λ2/λ1 6 1 − O(ε) and the top eigenvector u ∈ �d2 of RMR satisfies, with probability
Ω̃(1/nO(ε)) over the choice of 1,

max
i∈[n]

〈Ru , ai ⊗ ai〉2/
�
‖u‖2 · ‖ai ‖

4�
> 1 − Õ

(
n3/2

εd2

)
.

Moreover, with probability 1 − o(1) over the choice of a1 , . . . , an , for every polylog d/
√

d < ε < 1 there are
events E1 , . . . , En so that �1 Ei > Ω̃(1/n1+O(ε)) for all i ∈ [n] and when Ei occurs, 〈Ru , ai ⊗ ai〉2/‖u‖2

·

‖ai‖4 > 1 − Õ
(

n3/2

εd2

)
.

We will eventually set ε � 1/ log n, which gives us a spectral algorithm for recovering a vector
(1 − Õ(n/d3/2))-correlated to some a⊗2

i . Once we have a vector correlated with each a⊗2
i , obtaining

vectors close to the ai is straightforward. We will begin by proving this theorem, and defer the
algorithmic details to section Section 5.4.

The rest of this section is organized as follows. In Section 5.1 we prove Theorem 5.3 using two
core facts: the Gaussian vector 1 is closer to some ai than to any other with good probability, and
the noise term

∑
i, j〈1 , T(ai ⊗ a j)〉(ai ⊗ a j)(ai ⊗ a j)> is bounded in spectral norm. In Section 5.2 we

prove the first of these two facts, and in Section 5.3 we prove the second. In Section 5.4, we give
the full details of our tensor decomposition algorithm, then prove Theorem 5.2 using Theorem 5.3.
Finally, Section C contains proofs of elementary or long-winded lemmas we use along the way.

5.1 Proof of Theorem 5.3

The strategy to prove Theorem 5.3 is to decompose the matrix M into two parts M � Mdiag + Mcross,
one formed by diagonal terms Mdiag �

∑
i∈[n]〈1 , T(ai ⊗ ai)〉 · (ai ⊗ ai)(ai ⊗ ai)> and one formed

by cross terms Mcross �
∑

i, j〈1 , T(ai ⊗ a j)〉 · (ai ⊗ a j)(ai ⊗ a j)>. We will use the fact that the top
eigenvector Mdiag is likely to be correlated with one of the vectors a⊗2

j , and also the fact that the
spectral gap of Mdiag is noticeable.

The following two propositions capture the relevant facts about the spectra of Mdiag and Mcross,
and will be proven in Section 5.2 and Section 5.3.

Proposition 5.4 (Spectral gap of diagonal terms). Let R �
√

2 · ((�(xx>)⊗2)+)1/2 for x ∼ N(0, Idd). Let
a1 , . . . , an be independent random vectors fromN(0, 1

d Idd) with d 6 n 6 d2−Ω(1) and let 1 ∼ N(0, Idd) be
independent of all the others. Let T :�

∑
i∈[n] ai(ai ⊗ ai)>. Suppose Mdiag �

∑
i∈[n]〈1 , Ta⊗2

i 〉 · (ai a>i )⊗2.
Let also v j be such that v j v>j � 〈1 , Ta⊗2

j 〉 · (a j a>j )⊗2. Then, with probability 1 − o(1) over a1 , . . . , an , for
each ε > polylog d/

√
d and each j ∈ [n], the event

E j,ε
def
�

{RMdiagR − ε · Rv j v>j R 6
RMdiagR −

�
ε − Õ

�√
n/d

��
·

Rv j v>j R
}

has probability at least Ω̃(1/n1+O(ε)) over the choice of 1.
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Second, we show that when n � d4/3 the spectral norm of Mcross is negligible compared to this
spectral gap.

Proposition 5.5 (Bound on crossterms). Let a1 , . . . , an be independent random vectors fromN(0, 1
d Idd),

and let 1 be a random vector fromN(0, Idd). Let T :�
∑

i∈[n] ai(ai ⊗ ai)>. Let Mcross :�
∑

i, j∈[n]〈1 , T(ai ⊗

a j)〉ai a>i ⊗ a j a>j . Suppose n > d. Then with w.ov.p.,

‖Mcross‖ 6 Õ
(

n3

d4

)1/2

.

Using these two propositions we will conclude that the top eigenvector of RMR is likely to be
correlated with one of the vectors a⊗2

j . We also need two simple concentration bounds; we defer the
proof to the appendix.

Lemma 5.6. Let a1 , . . . , an be independently sampled vectors fromN(0, 1
d Idd), and let 1 be sampled from

N(0, Idd). Let T �
∑

i ai(ai ⊗ ai)>. Then with overwhelming probability, for every j ∈ [n],
�〈1 , T(a j ⊗ a j)〉 − 〈1 , a j〉‖a j‖4�

6 Õ
(√

n
d

)
.

Fact 5.7 (Simple version of Fact C.1). Let x , y ∼ N(0, 1
d Id). With overwhelming probability, ���1 − ‖x‖2��� 6

Õ(1/√d) and 〈x , y〉2 � Õ(1/d).
As a last technical tool we will need a simple claim about the fourth moment matrix of the

multivariate Gaussian:

Fact 5.8 (simple version of Fact C.4). LetΣ � �x∼N(0,Idd)(xx>)⊗2 and let R �
√

2 (Σ+)1/2. Then ‖R‖ � 1,
and for any v ∈ �d ,

‖R(v ⊗ v)‖2
2 �

�
1 − 1

d+2
�
· ‖v‖4.

We are prepared prove Theorem 5.3.

Proof of Theorem 5.3. Let d 6 n 6 d4/3/(polylog d) for some polylog d to be chosen later. Let
a1 , . . . , an be independent random vectors fromN(0, 1

d Idd) and let 1 ∼ N(0, Idd) be independent
of the others. Let

Mdiag :�
∑
i∈[n]

〈1 , T(ai ⊗ ai)〉 · (ai a>i )⊗2 and Mcross :�
∑

i, j∈[n]
〈1 , T(ai ⊗ a j)〉 · ai a>i ⊗ a j a>j .

Note that M :� Mdiag + Mcross.
Proposition 5.5 implies that

�
{
‖Mcross‖ 6 Õ(n3/2/d2)} > 1 − d−ω(1) . (5.1)

Recall that Σ � �x∼N(0,Idd)(xx>)⊗2 and R �
√

2 · (Σ+)1/2. By Proposition 5.4, with probability 1− o(1)
over the choice of a1 , . . . , an , each of the following events E j,ε for j ∈ [n] and ε > polylog(d)/√d
has probability at least Ω̃(1/n1+O(ε)) over the choice of 1:

E0
j,ε : R

(
Mdiag − ε〈1 , Ta⊗2

j 〉(a j a>j )⊗2
)

R
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6 ‖RMdiagR‖ −
�
ε − Õ

� n1/2

d

��
· |〈1 , Ta j⊗2〉| · Ra j⊗2

2
.

Together with (5.1), with probability 1 − o(1) over the choice of a1 , . . . , an , each of the following
events E∗ j,ε has probability at least Ω̃(1/n1+O(ε)) − d−ω(1) > Ω̃(1/n1+O(ε)) over the choice of 1,

E∗j,ε : R
(
M − ε〈1 , Ta⊗2

j 〉(a j a>j )⊗2
)

R
6 ‖R ·M · R‖ −

�
ε − Õ

� n1/2

d

��
· |〈1 , Ta j

⊗2〉| · Ra j⊗2
2
+ Õ(n3/2/d2)

Here, we used that M � Mdiag + Mcross and that ‖R ·Mcross · R‖ 6 ‖Mcross‖ as ‖R‖ 6 1 (Fact 5.8).
By standard reasoning about the top eigenvector of a matrix with a spectral gap (recorded in

Lemma A.3), the event E∗ j,ε implies that the top eigenvector u ∈ �d2 of R ·M · R satisfies

〈
u ,

Ra⊗2
j

‖Ra⊗2
j ‖

〉2

> 1 −
Õ(√n/d)
ε‖Ra⊗2

j ‖2
−

Õ(n3/2/d2)
ε‖Ra⊗2

j ‖2 |〈1 , Ta⊗2
j 〉| .

Since ‖Ra j⊗2‖2 > Ω(‖a j ‖
4) (by Fact 5.8), and since ‖a j‖ > 1 − Õ(1/√d) (by Fact 5.7),

> 1 − Õ
(√

n
εd

)
−

Õ(n3/2/d2)
ε · |〈1 , Ta⊗2

j 〉|

Now, by Lemma 5.6 we have that for all j ∈ [n], |〈1 , Ta⊗2
j 〉 − 〈1 , a j〉‖a j‖4 | 6 Õ(√n/d) with

probability 1−n−ω(1). By standard concentration (see Fact C.1 for a proof) |〈1 , a j〉‖a j‖4
−1| 6 Õ(1/√d)

for all j ∈ [n] with probability 1 − n−ω(1). Therefore with overwhelming probability, the final term
is bounded by Õ(n3/2/εd2). A union bound now gives the desired conclusion.

Finally, we give a bound on the spectral gap. We note that the second eigenvector w has
〈u , w〉 � 0, and therefore〈

w ,
Ra⊗2

j

‖Ra⊗2
j ‖

〉
�

〈
w ,

Ra⊗2
j

‖Ra⊗2
j ‖ − u

〉
6



Ra⊗2
j

‖Ra⊗2
j ‖ − u


6 Õ(n3/2/εd2).

Thus, using our above bound on ‖R(M − ε〈1 , Ta⊗2
j 〉(a j a>j )⊗2)R‖ and the concentration bounds we

have already applied for ‖a j‖, 〈1 , Ta⊗2
j 〉, and ‖Ra⊗2

j ‖, we have that

λ2(RMR) � w>RMRw

� w>R
(
M − ε〈1 , Ta⊗2

j 〉 · (a j a>j )⊗2
)

Rw + ε〈1 , Ta⊗2
j 〉〈w , Ra⊗2

j 〉2

6 R
(
M − ε〈1 , Ta⊗2

j 〉 · (a j a>j )⊗2
)

R + Õ(n3/2/εd2)
6 1 − Õ(ε) + Õ(n3/2/εd2) .

We conclude that the above events also imply that λ2(RMR)/λ1(RMR) 6 1 − O(ε). �

5.2 Spectral gap for diagonal terms: proof of Proposition 5.4

We now prove that the signal matrix, when preconditioned by R, has a noticeable spectral gap:
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Proposition (Restatement of Proposition 5.4). Let R �
√

2 · ((�(xx>)⊗2)+)1/2 for x ∼ N(0, Idd). Let
a1 , . . . , an be independent random vectors fromN(0, 1

d Idd) with d 6 n 6 d2−Ω(1) and let 1 ∼ N(0, Idd) be
independent of all the others. Let T :�

∑
i∈[n] ai(ai ⊗ ai)>. Suppose Mdiag �

∑
i∈[n]〈1 , Ta⊗2

i 〉 · (ai a>i )⊗2.
Let also v j be such that v j v>j � 〈1 , Ta⊗2

j 〉 · (a j a>j )⊗2. Then, with probability 1 − o(1) over a1 , . . . , an , for
each ε > polylog d/

√
d and each j ∈ [n], the event

E j,ε
def
�

{RMdiagR − ε · Rv j v>j R 6
RMdiagR −

�
ε − Õ

�√
n/d

��
·

Rv j v>j R
}

has probability at least Ω̃(1/n1+O(ε)) over the choice of 1.
The proof has two parts. First we show that for a1 , . . . , an ∼ N(0, Idd) the matrix P :�∑

i∈[n](ai a>i )⊗2 has tightly bounded spectral norm when preconditioned with R: more precisely,
that ‖RPR‖ 6 1 + Õ(n/d3/2).
Lemma 5.9. Let a1 , . . . , an ∼ N(0, 1

d Idd) be independent random vectors with d 6 n. Let R :�
√

2 · ((�(aa>)⊗2)+)1/2 for a ∼ N(0, Idd). For S ⊆ [n], let PS �
∑

i∈S(ai ai
>)⊗2 and let ΠS be the projector

into the subspace spanned by {Ra⊗2
i | i ∈ S}. Then, with probability 1 − o(1) over the choice of a1 , . . . , an ,

∀S ⊆ [n]. �
1 − Õ(n/d3/2)� ·ΠS � RPSR �

�
1 + Õ(n/d3/2)� ·ΠS .

Remark 5.10. In [GM15, Lemma 5] a similar lemma to this one is proved in the context of the SoS
proof system. However, since Ge and Ma leverage the full power of the SoS algorithm their proof
goes via a spectral bound on a different (but related) matrix. Since our algorithm avoids solving an
SDP we need a bound on this matrix in particular.

The proof of Lemma 5.9 proceeds by standard spectral concentration for tall matrices with
independent columns (here the columns are Ra⊗2

i ). The arc of the proof is straightforward but it
involves some bookkeeping; we have deferred it to Section C.0.2.

We also need the following lemma on the concentration of some scalar random variables
involving R; the proof is straightforward by finding the eigenbasis of R and applying standard
concentration, and it is deferred to the appendix.

Lemma 5.11. Let a1 , . . . , an ∼ N(0, 1
d Idd). LetΣ, R be as in Fact 5.8. Let ui � ai⊗ ai . With overwhelming

probability, every j ∈ [n] satisfies ∑
i, j〈u j , R2ui〉2 � Õ(n/d2) and |1 − ‖Ru j‖2 | 6 Õ(1/√d).

The next lemma is the linchpin of the proof of Proposition 5.4: one of the inner products
〈1 , Ta j

⊗2〉, is likely to be a ≈ (1 + 1/ log(n))-factor larger than the maximum of the inner products
〈1 , Tai

⊗2〉 over i , j. Together with standard linear algebra these imply that the matrix Mdiag �∑
i∈[n]〈1 , Ta⊗2

i 〉(ai a>i )⊗2 has top eigenvector highly correlated or anticorrelated with some ai .

Lemma 5.12. Let a1 , . . . , an ∈ �
d be independent random vectors fromN(0, 1

d Idd), and let 1 be a random
vector from N(0, Idd). Let T �

∑
i∈[n] ai(ai ⊗ ai)>. Let ε > 0 and j ∈ [n]. Then with overwhelming

probability over a1 , . . . , an , the following event Ê j,ε has probability 1/n1+O(ε)+Õ(1/√d) over the choice of 1,

Ê j,ε �

{
〈1 , Ta⊗2

j 〉 > (1 + ε)(1 − Õ(1/√d)) ·max
i, j

�〈1 , Ta⊗2
i 〉�

}
.

Now we can prove Proposition 5.4.
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Proof of Proposition 5.4. Let ui :� a⊗2
i . Fix j ∈ [n]. We begin by showing a lower bound on the

spectral norm ‖RMdiagR‖.
‖RMdiagR‖ � max

‖v‖�1

�〈v , RMdiagRv〉�

>
〈Ru j , (RMdiagR)Ru j〉

‖Ru j‖2

�
1

‖Ru j‖2
*.
,
〈1 , Tu j〉‖Ru j‖4

+ 〈Ru j ,
∑
i, j

〈1 , Ti〉Rui u>i R · Ru j〉+/
-

From Lemma 5.12, the random vector 1 is closer to Tu j than to all Tui for i , j, i ∈ [n] with
reasonable probability. More concretely there is some polylog d so that as long as ε > polylog d/

√
d

there is some α � Θ(ε)with 1− ε � 1/[(1+ α)(1− Õ(d−1/2))] so that with w.ov.p. over a1 , . . . , an the
following event (a direct consequence of Ê j,ε) has probability Ω̃(1/n1+O(α)+Õ(d−1/2)) � Ω̃(1/n1+O(ε))
over 1:

− (1− ε)|〈1 , Tu j〉| · *.
,

∑
i, j

Rui u>i R+/
-
�

∑
i, j

〈1 , Tui〉 · Rui u>i R � (1− ε)|〈1 , Tu j〉| · *.
,

∑
i, j

Rui u>i R+/
-
. (5.2)

When (5.2) occurs,

‖RMdiagR‖ > 1
‖Ru j‖2

*.
,
|〈1 , Tu j〉|‖Ru j‖4

− (1 − ε)|〈1 , Tu j〉|〈Ru j ,
∑
i, j

Rui u>i R · Ru j〉+/
-

�
|〈1 , Tu j〉|
‖Ru j‖2

*.
,
‖Ru j‖4

− (1 − ε)
∑
i, j

〈u j , R2ui〉2+/
-

>
|〈1 , Tu j〉|

(
1 − Õ(1/√d) − (1 − ε)Õ(n/d2))

1 + Õ(1/√d) w.ov.p. over a1 , . . . , an (Lemma 5.11)

> |〈1 , Tu j〉| · (1 − ηnorm) , (5.3)

where we have chosen some 0 6 ηnorm 6 Õ(1/√d)+ Õ(n/d2) (since for any x ∈ �, (1+ x)(1− x) 6 1).
Next we exhibit an upper bound on ‖RMdiagR − ε〈1 , Tu j〉Ru j u>j R‖. Again when (5.2) occurs,

‖RMdiagR − ε〈1 , Tu j〉Ru j u>j R‖ (5.4)

�


(1 − ε)〈1 , Tu j〉Ru j u>j R +

∑
i, j

〈1 , Tui〉Rui u>i R


6 (1 − ε)|〈1 , Tu j〉|


∑
i∈[n]

Rui u>i R


when (5.2) occurs

6 (1 − ε)|〈1 , Tu j〉|(1 + Õ(n/d1.5)) w.p. 1 − o(1) over a1 , . . . , an by Lemma 5.9
6 (1 − ε)|〈1 , Tu j〉|(1 + ηgap) (5.5)

where we have chosen some 0 6 ηgap 6 Õ(n/d1.5).
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Putting together (5.3) and (5.5) with our bounds on ηnorm and ηgap and recalling the conditions
on (5.2), we have shown that

�
a1 ,...,an

�
�
1
{‖RMdiagR−ε〈1 , Tu j〉Ru j u>j R‖ 6 ‖RMdiagR‖ − (ε − Õ(√n/d)) · |〈1 , Tu j〉| · ‖Ru j‖2}

> Ω̃(1/n1+O(ε))	 > 1 − o(1) .
This concludes the argument. �

We now turn to proving that with reasonable probability, 1 is closer to some Ta⊗2
j than all

others.

Proof of Lemma 5.12. To avoid proliferation of indices, without loss of generality fix j � 1. We begin
by expanding the expression 〈1 , Ta⊗2

i 〉,
〈1 , Ta⊗2

i 〉 �
∑
`∈[n]

〈1 , a`〉〈a` , ai〉2
� ‖ai‖4〈1 , ai〉 +

∑
`,i

〈1 , a`〉〈a` , ai〉2.

The latter sum is bounded by

������

∑
`,i

〈1 , a`〉〈a` , ai〉2
������
6 Õ

(√
n

d

)
,

with overwhelming probability for all i and choices of 1; this follows from a Bersntein bound, given
in Lemma 5.6.

For ease of notation, let âi
def
� ai/‖ai‖2. We conclude from Fact 5.7 that with overwhelming

probability, 1 − Õ(1/√d) 6 ‖ai‖2 6 1 + Õ(1/√d) for all i ∈ [n]. Thus ‖ai‖2 is roughly equal for all i,
and we may direct our attention to 〈1 , âi〉.

Let G1 be the event that
√

2α log1/2 n 6 |〈1 , â1〉| 6 d1/4 for some α 6 d1/2−Ω(1) to be chosen later.
We note that 〈1 , â1〉 is distributed as a standard gaussian, and that 1 is independent of a1 , . . . , an .
Thus, we can use standard tail estimates on univariate Gaussians (Lemma A.4) to conclude that

�
(|〈1 , â1〉| >

√

2α log1/2 n
)
� Θ̃(n−α) and �

�|〈1 , â1〉| > d1/4�
� Θ *

,

exp(−√d/2)
d1/4

+
-
.

So by a union bound, �(G1) > Ω̃(n−α) − O(e−d1/2/3) � Ω̃(n−α).
Now, we must obtain an estimate for the probability that all other inner products with 1 are

small. Let Gi>1 be the event that |〈1 , âi〉| 6
√(2 + ρ) log1/2 n for all i ∈ [n], i > 1 and for some ρ to

be chosen later. We will show that conditioned on G1, Gi>1 occurs with probability 1−O(n1−(2+ρ)/2).
Define 11 :� 〈1 , â1〉â1 to be the component of 1 parallel to a1, let 1⊥ :� 1 − 11 be the component of
1 orthogonal to â1, and similarly let â⊥2 , . . . , â

⊥
n be the components of â2 , . . . , ân orthogonal to a1.

Because 1⊥ is independent of 11, even conditioned on G1 we may apply the standard tail bound for
univariate Gaussians (Lemma A.4), concluding that for all i > 1,

�

(
|〈1⊥ , âi〉| >

√
(2 + ρ) log1/2 n

�
G1

)
� Θ̃(n−(2+ρ)/2).

Thus, a union bound over i , 1 allows us to conclude that conditioned on G1, with probability
1 − Õ(n−ρ/2) every i ∈ [n] with i > 1 has |〈1⊥ , â⊥i 〉| 6

√(2 + ρ) log1/2 n.
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On the other hand, let â‖2 , . . . , â
‖

n be the components of the âi parallel to â1. We compute the
projection of âi onto â1. With overwhelming probability,

〈â1 , âi〉 � 〈a1 , ai〉
‖a1‖2 · ‖ai‖2

� (1 ± Õ(1/√d)) · 〈a1 , ai〉 w.ov.p. by ‖ai‖, ‖a1‖ � 1 ± Õ(1/√d) (Fact 5.7)
� (1 ± Õ(1/√d)) · Õ(1/√d) w.ov.p. by 〈a1 , ai〉 � Õ(1/√d) (Fact 5.7),

Thus w.ov.p.,

〈11 , â
‖

i 〉 � 〈1 , â1〉 · 〈â1 , âi〉 6 〈1 , â1〉 · Õ(1/√d),
for all i ∈ [n]. Now we can analyze Gi>1. Taking a union bound over the overwhelmingly probable
events (including ‖ai‖ 6 1+ Õ(1/√d)) and the event that 〈1⊥ , ai〉 is small for all i, we have that with
probability 1 − Õ(n−ρ/2), for every i ∈ [n] with i > 1,

|〈1 , âi〉| 6 |〈1⊥ , âi〉| + |〈11 , âi〉|√
(2 + ρ) log1/2 n + Õ(1/√d) · 〈1 , â1〉
6

√
(2 + ρ) log1/2 n + Õ(1/d1/4).

We conclude that

� (G1 ,Gi>1) � � (Gi>1 |G1) · � (G1)
> (1 − O(n−ρ/2)) · Ω̃(n−α)

Setting ρ � 2 log log n
log n and α � (1 + ε)2(1 + log log n/ log n + Õ(1/√d)), the conclusion follows. �

5.3 Bound for cross terms: proof of Proposition 5.5

We proceed to the bound on the cross terms Mcross.

Proposition (Restatement of Proposition 5.5). Let a1 , . . . , an be independent random vectors from
N(0, 1

d Idd), and let 1 be a random vector from N(0, Idd). Let T :�
∑

i∈[n] ai(ai ⊗ ai)>. Let Mcross :�∑
i, j∈[n]〈1 , T(ai ⊗ a j)〉ai a>i ⊗ a j a>j . Suppose n > d. Then with w.ov.p.,

‖Mcross‖ 6 Õ
(

n3

d4

)1/2

.

The proof will use two iterations of Matrix Rademacher bounds. The first step will be to employ
a classical decoupling inequality that has previously been used in a tensor decomposition context
[GM15].

Theorem 5.13 (Special Case of Theorem 1 in [dlPMS95]). Let {si}, {ti} be independent iid sequences of
random signs. Let {Mi j} be a family of matrices. There is a universal constant C so that for every t > 0,

�
*..
,



∑
i, j

si s j Mi j

op
> t

+//
-
6 C · �

*..
,
C



∑
i, j

si t j Mi j

op
> t

+//
-
.
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Once the simplified cross terms are decoupled, we can use a matrix Rademacher bound on one
set of signs.

Theorem 5.14 (Adapted from Theorem 4.1.1 in [Tro12]10 ). Consider a finite sequence {Mi} of fixed
m × m Hermitian matrices. Let si be a sequence of independent sign variables. Let σ2 :� ‖∑i M2

i ‖. Then
for every t > 0,

�
*.
,



∑
i

si Mi

op
> t+/

-
6 2m · e−t2/2σ2

.

Also,

�



∑
i

si Mi


6

√
8σ2 log d .

Corollary 5.15. Let s1 , . . . , sn be independent signs in {−1, 1}. Let A1 , . . . ,An and B1 , . . . , Bn be
Hermetian matrices. Then w.ov.p.,



∑
i

si · Ai ⊗ Bi


6 Õ *.

,
max

i
‖Bi‖ ·



∑
i

A2
i



1/2
+/
-
.

Proof. We use a matrix Rademacher bound and standard manipulations:



∑
i

si · Ai ⊗ Bi



w.ov.p.
6 Õ *

,



∑
i

A2
i ⊗ B2

i


+
-

1/2

6 Õ *
,



∑
i

‖Bi‖2
· (A2

i ⊗ Id)


+
-

1/2

since A2
i is PSD for all i

6 Õ *
,
max

i
‖Bi‖2

·



∑
i

A2
i


+
-

1/2

since A2
i ⊗ Id is PSD for all i . �

We also need a few further concentration bounds on matrices which will come up as parts of
Mcross. These can be proved by standard inequalities for sums of independent matrices.

Lemma 5.16 (Restatement of Fact C.2 and Lemma C.3). Let a1 , . . . , an be independent fromN(0, 1
d Idd)

with n > d polylog(d). With overwhelming probability, Ω̃(n/d) · Id � ∑
i∈[n] ai a>i � Õ(n/d) · Id.

Additionally, if 1 ∼ N(0, Idd) is independent of the rest, for every j ∈ [n] w.ov.p.


∑
i∈[n]
i, j

〈1 , ai〉‖ai‖2〈ai , a j〉 · ai a>i



6 Õ(n/d2)1/2 .

Proof of Proposition 5.5. We expand Mcross:

Mcross �
∑
i, j

〈1 , T(ai ⊗ a j)〉 · ai a>i ⊗ a j a>j

10We remark that Tropp’s bound is phrased in terms of λmax
∑

i si Mi . Since λmax
∑

i si Mi � λmin
∑

i −si Mi , and the
distribution of si Mi is negation-invariant, the result we state here follows from an easy union bound.
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�

∑
i, j

*.
,

∑
`∈[n]

〈a` , ai〉〈a` , a j〉〈1 , a`〉+/
-
· ai a>i ⊗ a j a>j .

Since the joint distribution of (a1 , . . . , an) is identical to that of (s1a1 , . . . , sn an), this is distributed
identically to

M′cross �
∑
`∈[n]

∑
i, j

si s j s`〈1 , a`〉〈a` , ai〉〈a` , a j〉 · ai a>i ⊗ a j a>j ,

(where we have also swapped the sums over ` and i , j). We split M′cross into Mdiff, for which i , `
and j , `, and Msame, for which ` � i or ` � j, and bound the norm of each of these sums separately.
We begin with Msame.

Msame
def
�

∑
i, j

s2
i s j〈1 , ai〉〈ai , ai〉〈ai , a j〉 · ai a>i ⊗ a j a>j +

∑
i, j

s2
j si〈1 , a j〉〈a j , a j〉〈ai , a j〉 · ai a>i ⊗ a j a>j .

By a union bound and an application of the triangle inequality it will be enough to show that just
one of these two sums is Õ(n3/d4)1/2 w.ov.p.. We rewrite the left-hand one:

∑
i, j

s2
i s j〈1 , ai〉〈ai , ai〉〈ai , a j〉 · ai a>i ⊗ a j a>j �

∑
j∈[n]

s j a j a>j ⊗
*.
,

∑
i, j

〈1 , ai〉‖ai‖2〈ai , a j〉 · ai a>i
+/
-
.

Define
M j

def
�

∑
i, j

〈1 , ai〉‖ai‖2〈ai , a j〉 · ai a>i

so that now we need to bound
∑

j∈[n] s j a j a>j ⊗M j . By Corollary 5.15,



∑
j∈[n]

s j a j a>j ⊗M j



w.ov.p.
6 Õ(max

j
‖M j‖) · Õ *..

,



∑
j∈[n]

‖a j‖2a j a>j



1/2
+//
-

6 Õ(max
j

‖M j‖) ·max
j

‖a j‖ · Õ *..
,



∑
j∈[n]

a j a>j



1/2
+//
-

In Lemma 5.16, we bound max j ‖M j‖ 6 Õ(n/d2)1/2 w.ov.p. using a matrix Bernstein inequality.
Combining this bound with the concentration of ‖a j‖ around 1 (Fact 5.7), we obtain

w.ov.p.
6 Õ(n/d2)1/2 · Õ(n/d)1/2
� Õ(n/d1.5) .

Having finished with Msame, we turn to Mdiff.

‖Mdiff‖ �



∑
`,i, j

si s j s`〈1 , a`〉〈a` , ai〉〈a` , a j〉 · ai a>i ⊗ a j a>j
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�



∑
`

s`〈1 , a`〉 *.
,

∑
i,`

si〈a` , ai〉ai a>i ⊗
*.
,

∑
j,`,i

s j〈a` , a j〉a j a>j
+/
-

+/
-


.

Letting t1 , . . . , tn and r1 , . . . , rn be independent uniformly random signs, by Theorem 5.13, it will
be enough to bound the spectral norm after replacing the second and third occurrences of si for ti

and ri . To this end, we define

M′diff
def
�

∑
`

s`〈1 , a`〉 *.
,

∑
i,`

ti〈a` , ai〉ai a>i ⊗
*.
,

∑
j,`,i

r j〈a` , a j〉a j a>j
+/
-

+/
-
.

Let

N`
def
�

∑
i,`

ti〈a` , ai〉ai a>i ⊗
*.
,

∑
j,`,i

r j〈a` , a j〉a j a>j
+/
-

so that we are to bound 
∑
`∈[n] s`〈1 , a`〉 · N`

. By a matrix Rademacher bound and elementary
manipulations,



∑
`∈[n]

s`〈1 , a`〉 · N`



w.ov.p.
6 Õ *.

,



∑
`∈[n]

〈1 , a`〉2
· N2

`



+/
-

1/2

6 Õ(√n) ·max
`∈[n]

|〈1 , a`〉| ·max
`∈[n]

‖N`‖
w.ov.p.
6 Õ(√n) ·max

`∈[n]
‖N`‖ since |〈1 , ai〉| 6 Õ(1) (Fact 5.7) .

The rest of the proof is devoted to bounding ‖N`‖.
We start with Corollary 5.15 to get

‖N`‖
w.ov.p.
6 Õ *.

,

*.
,
max

i



∑
j,`,i

r j〈a` , a j〉 · a j a>j



+/
-
·



∑
i,`

〈a` , ai〉2‖ai‖2
· ai a>i



1/2
+/
-

We use a matrix Rademacher bound for the left-hand matrix,



∑
j,`,i

r j〈a` , a j〉 · a j a>j



w.ov.p.
6 Õ *.

,



∑
j,`,i

〈a` , a j〉2‖a j‖2
· a j a>j



+/
-

1/2

6 Õ *.
,
max

j,`
〈a` , a j〉2‖a j‖2



∑
j

a j a>j



+/
-

1/2

w.ov.p.
6 Õ

(√
n

d

)
,

where we have used that 〈a` , ai〉2 concentrates around 1
d (Fact 5.7), that ‖ai‖2 concentrates around 1

(Fact 5.7), and that 
∑

i ai a>i
 concentrates around n

d (Lemma 5.16) within logarithmic factors all
with overwhelming probability.
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For the right-hand matrix, we use the fact that the summands are PSD to conclude that



∑
i,`

〈a` , ai〉2‖ai‖2
· ai a>i


6 max

i,`
〈a` , ai〉2‖ai‖2

·



∑
i,`

ai a>i


w.ov.p.
6 Õ(1/d) · Õ(n/d) ,

using the same concentration facts as earlier.
Putting these together, w.ov.p.

‖N`‖ 6 Õ(√n/d) · Õ(√n/d) � Õ(n/d2) .
Now we are ready to make the final bound on M′diff. With overwhelming probability,

‖M′diff‖ 6 Õ(√n) ·max
`∈[n]

‖N`‖ 6 Õ(n3/d4)1/2

and hence by Theorem 5.13, ‖Mdiff‖ 6 Õ(√n) ·max`∈[n] ‖N`‖ 6 Õ(n3/d4)1/2 w.ov.p..
Finally, by triangle inequality and all our bounds thus far, w.ov.p.

‖Mcross‖ 6 ‖Msame‖ + ‖Mdiff‖ 6 Õ(n/d1.5) + Õ(n3/d4)1/2 6 Õ(n3/d4)1/2 . �

5.4 Full algorithm and proof of Theorem 5.2

In this subsectionwe give the full details of our tensor decomposition algorithm. As discussed above,
the algorithm proceeds by constructing a random matrix from the input tensor, then computing
and post-processing its top eigenvector.
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Spectral Tensor Decomposition (One Attempt)

This is the main subroutine of our algorithm—we will run it Õ(n) times to recover all of the
components a1 , . . . , an .

Algorithm 5.17. Input: T �
∑n

i�1 ai ⊗ ai ⊗ ai . Goal: Recover ai for some i ∈ [n].
• Compute the matrix unfolding T ∈ �d2

×d of T. Then compute a 3-tensor S ∈ �d2
×d2
×d2 by

starting with the 6-tensor T ⊗ T, permuting indices, and flattening to a 3-tensor. Apply T in
one mode of S to obtain M ∈ �d⊗d2

⊗d2 , so that:

T �

∑
i∈[n]

ai(ai ⊗ ai)> , S � T⊗2
�

n∑
i , j�1

(ai ⊗ a j)⊗3 ,

M � S(T, Idd2 , Idd2) �
∑

i , j∈[n]
T(ai ⊗ a j) ⊗ (ai ⊗ a j) ⊗ (ai ⊗ a j) .

• Sample a vector 1 ∈ �d with iid standard gaussian entries. Evaluate M in its first mode in the
direction of 1 to obtain M ∈ �d2

×d2 :

M :� M(1 , Idd2 , Idd2) �
∑

i , j∈[n]
〈1 , T(ai ⊗ a j)〉 · (ai ⊗ a j)(ai ⊗ a j)> .

• Let Σ def
� �[(aa>)⊗2] for a ∼ N(0, Idd). Let R def

�
√

2 · (Σ+)1/2. Compute the top eigenvector
u ∈ �d2 of RMR, and reshape Ru to a matrix U ∈ �d×d .

• For each of the signings of the top 2 unit left (or right) singular vectors ±u1 ,±u2 of U, check
if

∑
i∈[n]〈ai ,±u j〉3 > 1 − c(n , d) where c(n , d) � Θ(n/d3/2) is an appropriate threshold. If so,

output ±u j . Otherwise output nothing.

Theorem 5.3 gets us most of the way to the correctness of Algorithm 5.17, proving that the top
eigenvector of the matrix RMR is correlated with some a⊗2

i with reasonable probability. We need
a few more ingredients to prove Theorem 5.2. First, we need to show a bound on the runtime of
Algorithm 5.17.

Lemma 5.18. Algorithm 5.17 can be implemented in time Õ(d1+ω) 6 Õ(d3.3729), where dω is the runtime
for multiplying two d × d matrices.

Proof. To run the algorithm, we only require access to power iteration using the matrix RMR. We
first give a fast implementation for power iterationwith thematrix M, and handle themultiplications
with R separately.

Consider a vector v ∈ �d2 , and a random vector 1 ∼ N(0, Idd), and let V,G ∈ �d×d be the
reshapings of v and 1T respectively into matrices. Call Tv � T(Idd ,V,G), where we have applied V
and G in the second and third modes of T, and call Tv the reshaping of Tv into a d × d2 matrix. We
have that

Tv �

∑
i∈[n]

ai(Vai ⊗ Gai)> .
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We show that the matrix-vector multiply Mv can be computed as a flattening of the following
product:

TvT> �
*.
,

∑
i∈[n]

ai(Vai ⊗ Gai)>+/
-

*.
,

∑
j∈[n]

(a j ⊗ a j)a>j +/
-

�

∑
i , j∈[n]

〈a j ,Vai〉 · 〈a j ,Gai〉 · ai a>j

�

∑
i , j∈[n]

〈ai ⊗ a j , v〉 · 〈1T, ai ⊗ a j〉 · ai a>j .

Flattening TvT> from a d × d matrix to a vector vTT ∈ �
d2 , we have that

vTT �

∑
i , j∈[n]

〈1T, ai ⊗ a j〉 · 〈ai ⊗ a j , v〉 · ai ⊗ a j � Mv .

So we have that Mv is a flattening of the product TvT>, which we will compute as a proxy for
computing Mv via direct multiplication.

Computing Tv � T(Id,V,G) can be done with two matrix multiplication operations, both times
multiplying a d2

× d matrix with a d × d matrix. Computing TvT> is a multiplication of a d × d2

matrix by a d2
× d matrix. Both these steps may be done in time O(d1+ω), by regarding the d × d2

matrices as block matrices with blocks of size d × d. The asymptotically fastest known algorithm for
matrix multiplication gives a time of O(d3.3729) [Gal14].

Now, to compute thematrix-vector multiply RMRu for any vector u ∈ �d2 , wemay first compute
v � Ru, perform the operation Mv in time O(d1+ω) as described above, and then again multiply
by R. The matrix R is sparse: it has O(d) entries per row (see Fact C.4), so the multiplication Ru
requires time O(d3).

Performing the update RMRv a total of O(log2 n) times is sufficient for convergence, as we have
that with reasonable probability, the spectral gap λ2(RMR)/λ1(RMR) 6 1 − O( 1

log n ), as a result of
applying Theorem 5.3 with the choice of ε � O( 1

log n ).
Finally, checking the value of

∑
i〈ai , x〉3 requires O(d3) operations, and we do so a constant

number of times, once for each of the signings of the top 2 left (or right) singular vectors of U. �

Next, we need to show that given u with 〈Ru , ai ⊗ ai〉2 > (1 − Õ(n3/2/εd2)) · ‖u‖2
· ‖ai‖4 we

can actually recover the tensor component ai . Here Algorithm 5.17 reshapes Ru to a d × d matrix
and checks the top two left- or right-singular vectors; the next lemma shows one of these singular
vectors must be highly correlated with ai . (The proof is deferred to Section A.1.)

Lemma 5.19. Let M ∈ �d2
×d2 be a symmetric matrix with ‖M‖ 6 1, and let v ∈ �d and u ∈ �d2 be

vectors. Furthermore, let U be the reshaping of the vector Mu ∈ �d2 to a matrix in �d×d . Fix c > 0, and
suppose that 〈Mu , v ⊗ v〉2 > c2

· ‖u‖2
· ‖v‖4. Then U has some left singular vector a and some right

singular vector b such that
|〈a , v〉|, |〈b , v〉| > c · ‖v‖ .

Furthermore, for any 0 < α < 1, there are a′, b′ among the top b 1
αc2 c singular vectors of U with

|〈a′, v〉|, |〈b′, v〉| > √1 − α · c · ‖v‖ .
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If c >
√

1
2 (1 + η) for some η > 0, then a , b are amongst the top b (1+η)

ηc2 c singular vectors.
Since here c2 � 1 − o(1), we can choose η � 1 − o(1) and check only the top 2 singular vectors.
Next, wemust show how to choose the threshold c(n , d) so that a big enough value

∑
i∈[n]〈ai , u j〉3

is ensures that u j is close to a tensor component. The proof is at the end of this section. (A very
similar fact appears in [GM15]. We need a somewhat different parameterization here, but we reuse
many of their results in the proof.)

Lemma 5.20. Let T �
∑

i∈[n] ai ⊗ ai ⊗ ai for normally distributed vectors ai ∼ N(0, 1
d Idd). For all

0 < γ, γ′ < 1,

1. With overwhelming probability, for every v ∈ �d such that
∑

i∈[n]〈ai , v〉3 > 1 − γ,

max
i∈[n]

|〈ai , v〉| > 1 − O(γ) − Õ(n/d3/2) .

2. With overwhelming probability over a1 , . . . , an if v ∈ �d with ‖v‖ � 1 satisfies 〈v , a j〉 > 1 − γ′ for
some j then

∑
i〈ai , v〉3 > 1 − O(γ′) − Õ(n/d3/2).

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. By Theorem 5.3, with probability 1 − o(1) over a1 , . . . , an there are events
E1 , . . . , En so that �1(Ei) > Õ(1/n1+O(ε)) such that when event Ei occurs the top eigenvector u of
RMR satisfies

〈Ru , ai ⊗ ai〉2

‖u‖2 · ‖ai‖4 > 1 − Õ
(

n3/2

εd2

)
.

For a particular sample 1 ∼ N(0, Idd), let u1 be this eigenvector.
The algorithm is as follows. Sample 11 , . . . , 1r ∼ N(0, Idd) independently for some r to be

chosen later. Compute Ru11 , . . . , Ru1r , reshape each to a d × d matrix, and compute its singular
value decomposition. This gives a family of (right) singular vectors v1 , . . . , vdr . For each, evaluate∑

i〈ai , v j〉3. Let c(n , d) be a threshold to be chosen later. Initialize S ⊂ �d to the empty set.
Examining each 1 6 j 6 dr in turn, add v j to S if

∑
i〈ai , v j〉3 > 1− c(n , d) and for every v already in

S, 〈v , v j〉2 6 1/2. Output the set S.
Choose ε � 1/ log n. By Lemma 5.19, when Ei occurs for 1 j one of v ∈ {±v jr , . . . ,±v( j+1)r} has

〈v , ai〉 > (1 − Õ(n3/2/d2))(‖u j‖2
· ‖a j‖4). Then by Lemma 5.20, when Ei occurs for 1 j , this v we will

have
∑

i〈ai ,±v〉3 > 1 − Õ(n/d3/2). Choose c(n , d) � Θ̃(n3/2/d2) so that when Ei occurs for 1 j , so
long as it has not previously occurred for some j′ < j, the algorithm adds ±v to S.

The events E(t)
i and E(t′)

i are independent for any two executions of the algorithm t and t′ and
have probability Ω̃(1/n). Thus, after r � Õ(n) executions of the algorithm, with high probability
for every i ∈ [n] there is j ∈ [r] so that Ei occurs for 1 j . Finally, by Lemma 5.20, the algorithm can
never add to S a vector which is not (1 − Õ(n/d3/2))-close to some ai . �

It just remains to prove Lemma 5.20.

Proof of Lemma 5.20. We start with the first claim. By [GM15, Lemma 2, (proof of) Lemma 8,
Theorem 4.2], the following inequalities all hold w.ov.p..∑

i∈n

〈ai , x〉4 6 1 + Õ(n/d3/2) for all ‖x‖ � 1 , (5.6)
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∑
i∈[n]

〈ai , x〉6 > 1 − O *.
,

∑
i∈[n]

〈ai , x〉3
− 1+/

-
− Õ(n/d3/2) for all ‖x‖ � 1 , (5.7)

�������

∑
i∈[n]

〈ai , x〉3
�������
6 1 + Õ(n/d3/2) for all ‖x‖ � 1 . (5.8)

To begin, ∑
i∈[n]

〈ai , v〉6 6

(
max
i∈[n]

〈ai , v〉2
)
·

*.
,

∑
i∈[n]

〈ai , v〉4+/
-
.

By (5.6), this implies
max
i∈[n]

〈ai , v〉2 > (1 − Õ(n/d3/2)) ·
∑
i∈[n]

〈v , ai〉6. (5.9)

Now combining (5.7) with (5.9) we have

max
i∈[n]

〈ai , v〉2 > (1 − Õ(n/d3/2)) · (1 − O(1 −
∑

i

〈ai , v〉3) − Õ(n/d3/2)) .

Together with (5.8) this concludes the of the first claim.
For the second claim, we note that by (5.8), and homogeneity, |∑i, j〈ai , x〉3 | 6 ‖x‖3(1+ Õ(n/d3/2)

w.ov.p.. We write v � 〈a j , x〉a j + x⊥, where 〈x⊥ , a j〉 � 0. Now we expand∑
i

〈ai , v〉3 > (1 − γ′)3 +
∑
i, j

〈〈a j , x〉a j + x⊥ , ai〉3

� (1 − γ′)3 +
∑
i, j

〈a j , x〉3〈a j , ai〉3
+ 3〈a j , x〉2〈a j , ai〉2〈x⊥ , ai〉

+ 3〈a j , x〉〈a j , ai〉〈x⊥ai〉2
+ 〈x⊥ , ai〉3 .

We estimate each term in the expansion:

�������

∑
i, j

〈a j , x〉3〈a j , ai〉3
�������
6 |〈a j , x〉3 |

∑
i, j

|〈a j , ai〉|3 6 Õ
( n

d3/2

)
w.ov.p. by Cauchy-Schwarz and standard concentration.

�������

∑
i, j

〈a j , x〉2〈a j , ai〉2〈x⊥ , ai〉
�������
6 *.

,

∑
i, j

〈a j , x〉4〈a j , ai〉4+/
-

1/2
*.
,

∑
i, j

〈x⊥ , ai〉2+/
-

1/2

by Cauchy-Schwarz

6 O(√n) ·max
i, j

〈a j , ai〉2
· Õ

(n
d

)1/2
w.ov.p. by standard concentration.

6 Õ
( n

d3/2

)
w.ov.p. by standard concentration

�������

∑
i, j

〈a j , x〉〈a j , ai〉〈x⊥ , ai〉2
�������
6 O(1) ·max

i, j
|〈a j , ai〉| ·

∑
i, j

〈x⊥ , ai〉2 w.ov.p. by standard concentration

6 Õ
(

1
√

d

)
· Õ

(n
d

)
w.ov.p. by standard concentration
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6 Õ
( n

d3/2

)
�������

∑
i, j

〈x⊥ , ai〉3
�������
6 γ′ + Õ

( n
d3/2

)
w.ov.p. by (5.8) and homogeneity .

Now we estimate∑
i

〈ai , v〉3 > (1 − γ′)3 +
∑
i, j

〈ai , x〉3 > (1 − γ)3 − γ′ − Õ(n/d3/2) > 1 − O(γ′) − Õ(n/d3/2) .

since γ′ < 1. �

5.4.1 Boosting Accuracy with Local Search

We remark that Algorithm 5.17 may be used in conjunction with a local search algorithm to obtain
much greater guarantees on the accuracy of the recovered vectors. Previous progress on the
tensor decomposition problem has produced iterative algorithms that provide local convergence
guarantees given a good enough initialization, but which leave the question of how to initialize
the procedure up to future work, or up to the specifics of an implementation. In this context,
our contribution can be seen as a general method of obtaining good initializations for these local
iterative procedures.

In particular, Anandkumar et al. [AGJ15] give an algorithm that combines tensor power iteration
and a form of coordinate descent, which when initialized with the output of Algorithm 5.17,
achieves a linear convergence rate to the true decomposition within polynomial time.

Theorem 5.21 (Adapted from Theorem 1 in [AGJ15]). Given a rank-n tensor T �
∑

i ai ⊗ ai ⊗ ai with
random Gaussian components ai ∼ N(0, 1

d Idd). There is a constant c > 0 so that if a set of unit vectors
{xi ∈ �

d}i satisfies
〈xi , ai〉 > 1 − c , ∀i ∈ [n],

then there exists a procedure which with overwhelming probability over T and for any ε > 0, recovers a set of
vectors {âi} such that

〈âi , ai〉 > 1 − ε, ∀i ∈ [n],
in time O(poly(d) + nd3 log ε).
Remark 5.22. Theorem 1 of Anandkumar et al. is stated for random asymmetric tensors, but the
adaptation to symmetric tensors is stated in equations (14) and (27) in the same paper.

The theorem of Anandkumar et al. allows for a perturbation tensor Φ, which is just the zero
tensor in our setting. Additionally, the weight ratios specifying the weight of each rank-one
component in the input tensor are wmax � wmin � 1. Lastly, the initialization conditions are given
in terms of the distance between the intialization vectors and the true vectors |xi − ai |, which is
related to our measure of closeness 〈xi , ai〉 by the equation |xi − ai |2 � |xi |2 + |ai |2 − 2〈xi , ai〉.

The linear convergence guarantee is stated in Lemma 12 of Anandkumar et al.

Corollary 5.23 (Corollary of Theorem 5.2). Given as input the tensor T �
∑n

i�1 ai ⊗ ai ⊗ ai where
ai ∼ N(0, 1

d Idd) with d 6 n 6 d4/3/polylog d, there is a polynomial-time algorithm which with probability
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1 − o(1) over the input T and the algorithm randomness finds unit vectors â1 , . . . , ân ∈ �
d such that for all

i ∈ [n],
〈âi , ai〉 > 1 − O (2−n) .

Proof. We repeatedly invoke Algorithm 5.17 until we obtain a full set of n vectors as characterized
by Theorem 5.2. Apply Theorem 5.21 to the recovered set of vectors until the desired accuracy is
obtained. �

6 Tensor principal component analysis

The Tensor PCA problem in the spiked tensor model is similar to the setting of tensor decomposition,
but here the goal is to recover a single large component with all smaller components of the tensor
regarded as random noise.

Problem 6.1 (Tensor PCA in theOrder-3 Spiked TensorModel). Given an input tensorT � τ ·v⊗3+A,
where v ∈ �n is an arbitrary unit vector, τ > 0 is the signal-to-noise ratio, and A is a random noise
tensor with iid standard Gaussian entries, recover the signal v approximately.

Using the partial trace method, we give the first linear-time algorithm for this problem that
recovers v for signal-to-noise ratio τ � O(n3/4/poly log n). In addition, the algorithm requires only
O(n2) auxiliary space (compared to the input size of n3) and uses only one non-adaptive pass over
the input.

6.1 Spiked tensor model

This spiked tensor model (for general order-k tensors) was introduced by Montanari and Richard
[RM14], who also obtained the first algorithms to solve themodelwith provable statistical guarantees.
Subsequently, the SoS approach was applied to the model to improve the signal-to-noise ratio
required for odd-order tensors [HSS15]; for 3-tensors reducing the requirement from τ � Ω(n) to
τ � Ω(n3/4 log(n)1/4).

Using the linear-algebraic objects involved in the analysis of the SoS relaxation, the previous
work has also described algorithms with guarantees similar to those of the SoS SDP relaxation,
while requiring only nearly subquadratic or linear time [HSS15].

The algorithm here improves on the previous results by use of the partial trace method,
simplifying the analysis and improving the runtime by a factor of log n.

6.2 Linear-time algorithm

Linear-Time Algorithm for Tensor PCA

Algorithm 6.2. Input: T � τ · v⊗3 + A. Goal: Recover v′ with 〈v , v′〉 > 1 − o(1).
• Compute the partial trace M :� Tr�n

∑
i Ti ⊗ Ti ∈ �

n×n , where Ti are the first-mode slices of T.

• Output the top eigenvector v′ of M.
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Theorem 6.3. When A has iid standard Gaussian entries and τ > Cn3/4 log(n)1/2/ε for some constant C,
Algorithm 6.2 recovers v′ with 〈v , v′〉 > 1 − O(ε) with high probability over A.

Theorem 6.4. Algorithm 6.2 can be implemented in linear time and sublinear space.

These theorems are proved by routine matrix concentration results, showing that in the partial
trace matrix, the signal dominates the noise.

To implement the algorithm in linear time it is enough to show that this (sublinear-sized) matrix
has constant spectral gap; then a standard application of the matrix power method computes the
top eigenvector.

Lemma 6.5. For any v, with high probability over A, the following occur:



∑
i

Tr(Ai) · Ai


6 O(n3/2 log2 n)



∑
i

v(i) · Ai


6 O(√n log n)



∑
i

Tr(Ai)v(i) · vv>

6 O(√n log n) .

The proof may be found in Appendix D.

Proof of Theorem 6.3. We expand the partial trace Tr�n
∑

i Ti ⊗ Ti .

Tr�n

∑
i

Ti ⊗ Ti �
∑

i

Tr(Ti) · Ti

�

∑
i

Tr(τ · v(i)vv> + Ai) · (τ · v(i)vv> + Ai)

�

∑
i

(τv(i)‖v‖2
+ Tr(Ai)) · (τ · v(i)vv> + Ai)

� τ2vv> + τ *
,

∑
i

v(i) · Ai +
∑

i

Tr(Ai)v(i)vv>+
-
+

∑
i

Tr(Ai) · Ai .

Applying Lemma 6.5 and the triangle inequality, we see that


τ *

,

∑
i

v(i) · Ai +
∑

i

Tr(Ai)v(i)vv>+
-
+

∑
i

Tr(Ai) · Ai


6 O(n3/2 log n)

with high probability. Thus, for appropriate choice of τ � Ω(n3/4√(log n)/ε), thematrix Tr�n
∑

i Ti⊗

Ti is close to rank one, and the result follows by standard manipulations. �

Proof of Theorem 6.4. Carrying over the expansion of the partial trace from above and setting
τ � O(n3/4√(log n)/ε), the matrix Tr�n

∑
i Ti ⊗ Ti has a spectral gap ratio equal to Ω(1/ε) and so

the matrix power method finds the top eigenvector in O(log(n/ε)) iterations. This matrix has
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dimension n × n, so a single iteration takes O(n2) time, which is sublinear in the input size n3.
Finally, to construct Tr�n

∑
i Ti ⊗ Ti we use

Tr�n

∑
i

Ti ⊗ Ti �
∑

i

Tr(Ti) · Ti

and note that to construct the right-hand side it is enough to examine each entry of T just O(1)
times and perform O(n3) additions. At no point do we need to store more than O(n2)matrix entries
at the same time. �
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A Additional preliminaries

A.1 Linear algebra

Here we provide some lemmas in linear algebra.
This first lemma is closely related to the sos Cauchy-Schwarz from [BKS14], and the proof is

essentially the same.
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Lemma A.1 (PSDCauchy-Schwarz). Let M ∈ �d×d , M � 0 and symmetric. Let p1 , . . . , pn , q1 , . . . , qn ∈

�d . Then

〈M,
n∑

i�1
pi q>i 〉 6 〈M,

n∑
i�1

pi p>i 〉1/2〈M,
n∑

i�1
qi q>i 〉1/2 .

In applications, we will have
∑

i pi qi as a single block of a larger block matrix containing also
the blocks

∑
i pi p>i and

∑
i qi q>i .

Proof. We first claim that

〈M,
n∑

i�1
pi q>i 〉 6

1
2
〈M,

n∑
i�1

pi p>i 〉 +
1
2
〈M,

n∑
i�1

qi q>i 〉 .

To see this, just note that the right-hand side minus the left is exactly

〈M,
n∑

i�1
(pi − qi)(pi − qi)>〉 �

∑
i

(pi − qi)>M(pi − qi) > 0 .

The lemma follows now be applying this inequality to

p′i �
pi

〈M,
∑n

i�1 pi p>i 〉1/2 q′i �
qi

〈M,
∑n

i�1 qi q>i 〉1/2 . �

Lemma A.2 (Operator Norm Cauchy-Schwarz for Sums). Let A1 , . . . ,Am , B1 , . . . , Bm be real random
matrices. Then



∑
i

�AiBi


6



∑
i

�A>i Ai



1/2 

∑
i

� B>i Bi



1/2

.

Proof. We have for any unit x , y,

x>
∑

i

�AiBi x �

∑
i

�〈Ai x , Bi y〉

6
∑

i

� ‖Ai x‖‖Bi y‖

6
∑

i

(� ‖Ai x‖2)1/2(� ‖Bi x‖2)1/2

6

√∑
i

� ‖Ai x‖2
√∑

i

� ‖Bi y‖2

�

√
� x>

∑
i

A>i Ai x
√
� y>

∑
i

B>i Bi y

6


∑
i

�A>i Ai



1/2 

∑
i

� B>i Bi



1/2

.

where the nontrivial inequalities follow from Cauchy-Schwarz for expectations, vectors and scalars,
respectively. �
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The followng lemma allows to argue about the top eigenvector of matrices with spectral gap.

Lemma A.3 (Top eigenvector of gapped matrices). Let M be a symmetric r-by-r matrix and let u , v
be a vectors in �r with ‖u‖ � 1. Suppose u is a top singular vector of M so that |〈u ,Mu〉| � ‖M‖ and v
satisfies for some ε > 0,

‖M − vv>‖ 6 ‖M‖ − ε · ‖v‖2

Then, 〈u , v〉2 > ε · ‖v‖2.

Proof. We lower bound the quadratic form of M − vv> evaluated at u by

|〈u , (M − vv>)u〉| > |〈u ,Mu〉| − 〈u , v〉2
� ‖M‖ − 〈u , v〉2 .

At the same time, this quadratic form evaluated at u is upper bounded by ‖M‖ − ε · ‖v‖2. It follows
that 〈u , v〉2 > ε · ‖v‖2 as desired.

�

The following lemma states that a vector in �d2 which is close to a symmetric vector v⊗2, if
flattened to a matrix, has top eigenvector correlated with the symmetric vector.

Lemma (Restatement of Lemma 5.19). Let M ∈ �d2
×d2 be a symmetric matrix with ‖M‖ 6 1, and let

v ∈ �d and u ∈ �d2 be vectors. Furthermore, let U be the reshaping of the vector Mu ∈ �d2 to a matrix in
�d×d . Fix c > 0, and suppose that 〈Mu , v ⊗ v〉2 > c2

· ‖u‖2
· ‖v‖4. Then U has some left singular vector a

and some right singular vector b such that

|〈a , v〉|, |〈b , v〉| > c · ‖v‖ .
Furthermore, for any 0 < α < 1, there are a′, b′ among the top b 1

αc2 c singular vectors of U with

|〈a′, v〉|, |〈b′, v〉| > √1 − α · c · ‖v‖ .

If c >
√

1
2 (1 + η) for some η > 0, then a , b are amongst the top b (1+η)

ηc2 c singular vectors.
Proof. Let v̂ � v/‖v‖. Let (σi , ai , bi) be the ith singular value, left and right (unit) singular vectors
of U respectively.

Our assumptions imply that
�
v̂>Uv̂

�
� |〈Mu , v̂ ⊗ v̂〉| > c · ‖u‖.

Furthermore, we observe that ‖U‖F � ‖Mu‖ 6 ‖M‖ · ‖u‖, and that therefore ‖U‖F 6 ‖u‖. We thus
have that,

c · ‖u‖ 6 �
v̂>Uv̂

�
�

�������

∑
i∈[d]

σi · 〈v̂ , ai〉〈v̂ , bi〉
�������
6 ‖u‖ ·

√∑
i∈[d]

〈v̂ , ai〉2〈v̂ , bi〉2 ,

where to obtain the last inequality we have used Cauchy-Schwarz and our bound on ‖U‖F . We may
thus conclude that

c2 6
∑
i∈[d]

〈v̂ , ai〉2〈v̂ , bi〉2 6 max
i∈[d]

〈ai , v̂〉2
·

∑
i∈[d]

〈bi , v̂〉2
� max

i∈[d]
〈ai , v̂〉2 , (A.1)
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where we have used the fact that the left singular values of U are orthonormal. The argument is
symmetric in the bi .

Furthermore, we have that

c2
· ‖u‖2 6

�
v̂>Uv̂

�2
�

�������

∑
i∈[d]

σi · 〈v̂ , ai〉〈v̂ , bi〉
�������

2

6 *.
,

∑
i∈[d]

σ2
i 〈v̂ , ai〉2+/

-
·

*.
,

∑
i∈[d]

〈v̂ , bi〉2+/
-
�

∑
i∈[d]

σ2
i 〈v̂ , ai〉2 ,

where we have applied Cauchy-Schwarz and the orthonormality of the bi . In particular,∑
i∈[d]

σ2
i 〈v̂ , ai〉2 > c2‖u‖2 > c2‖U‖2

F .

On the other hand, let S be the set of i ∈ [d] for which σ2
i 6 αc2‖U‖2

F. By substitution,∑
i∈S

σ2
i 〈v̂ , ai〉2 6 αc2‖U‖2

F

∑
i∈S

〈v̂ , ai〉2 6 αc2‖U‖2
F ,

wherewe have used the fact that the right singular vectors are orthonormal. The last two inequalities
imply that S , [d]. Letting T � [d] \ S, it follows from subtraction that

(1 − α)c2‖U‖2
F 6

∑
i∈T

σ2
i 〈v̂ , ai〉2 6 max

i∈T
〈v̂ , ai〉2

∑
i∈T

σ2
i � max

i∈T
〈v̂ , ai〉2‖U‖2

F ,

so that maxi∈T〈v̂ , ai〉2 > (1 − α)c2. Finally,

|T | · αc2‖U‖2
F 6 |T | ·min

i∈T
σ2

i 6
∑
i∈[d]

σ2
i � ‖U‖2

F ,

so that |T | 6 b 1
αc2 c. Thus, one of the top b 1

αc2 c right singular vectors a has correlation |〈v̂ , a〉| >√(1 − α)c. The same proof holds for the b.
Furthermore, if c2 > 1

2 (1 + η) for some η > 0, and (1 − α)c2 > 1
2 , then by (A.1) it must be that

maxi∈T〈v̂ , ai〉2 � maxi∈[d]〈v̂ , ai〉2, as v̂ cannot have square correlation larger than 1
2 with more than

one left singular vector. Taking α �
η

1+η guarantees this. The conclusion follows. �

A.2 Concentration tools

We require a number of tools from the literature on concentration of measure.

A.2.1 For scalar-valued polynomials of Gaussians

We need the some concentration bounds for certain polynomials of Gaussian random variables.
The following lemma gives standard bounds on the tails of a standard gaussian variable—

somewhat more precisely than other bounds in this paper. Though there are ample sources, we
repeat the proof here for reference.

Lemma A.4. Let X ∼ N(0, 1). Then for t > 0,

� (X > t) 6 e−t2/2

t
√

2π
,

and

� (X > t) > e−t2/2
√

2π
·

(1
t
−

1
t3

)
.
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Proof. To show the first statement, we apply an integration trick,

� (X > t) � 1
√

2π

∫
∞

t
e−x2/2dx

6
1
√

2π

∫
∞

t

x
t

e−x2/2dx

�
e−t2/2

t
√

2π
,

where in the third step we have used the fact that x
t 6 x for t > x. For the second statement, we

integrate by parts and repeat the trick,

� (X > t) � 1
√

2π

∫
∞

t
e−x2/2dx

�
1
√

2π

∫
∞

t

1
x
· xe−x2/2dx

�
1
√

2π

[
−

1
x

e−x2/2
·

]∞
t
−

1
√

2π

∫
∞

t

1
x2 · e

−x2/2dx

>
1
√

2π

[
−

1
x

e−x2/2
·

]∞
t
−

1
√

2π

∫
∞

t

x
t3 · e

−x2/2dx

�
1
√

2π

(1
t
−

1
t3

)
e−t2/2.

This concludes the proof. �

The following is a small modification of Theorem 6.7 from [Jan97] which follows from Remark
6.8 in the same.

Lemma A.5. For each ` > 1 there is a universal constant c` > 0 such that for every f a degree-` polynomial
of standard Gaussian random variables X1 , . . . ,Xm and t > 2,

�(| f (X)| > t � | f (X)|) 6 e−c` t2/`
.

The same holds (with a different constant c`) if � | f (x)| is replaced by (� f (x)2)1/2.
In our concentration results, we will need to calculate the expectations of multivariate Gaussian

polynomials, many of which share a common form. Below we give an expression for these
expectations.

Fact A.6. Let x be a d-dimensional vector with independent identically distributed gaussian entries
with variance σ2. Let u be a fixed unit vector. Then setting X � (‖x‖2

− c)p‖x‖2m xxT , and setting
U � (‖x‖2

− c)p‖x‖2m uuT , we have

�[X] � *.
,

∑
06k6p

(
p
k

)
(−1)k ck(d + 2) · · · (d + 2p + 2m − 2k)σ2(p+m−k+1)+/

-
· Id,

and

�[U] � *.
,

∑
06k6p

(
p
k

)
(−1)k ck d(d + 2) · · · (d + 2p + 2m − 2k − 2)σ2(p+m−k)+/

-
· uuT
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Proof.

�[X] � �[(‖x‖2
− c)p‖x‖2m x2

1] · Id

� Id ·
∑

06k6p

(
p
k

)
(−1)k ck �



*.
,

∑
`∈[d]

x2
i
+/
-

p+m−k

x2
1



Since
�∑

i∈[d] x2
i

�p+m−k is symmetric in x1 , . . . , xd , we have

� Id · 1
d

∑
06k6p

(
p
k

)
(−1)k ck �



*.
,

∑
i∈[d]

x2
i
+/
-

p+m−k+1
We have reduced the computation to a question of the moments of a Chi-squared variable with d
degrees of freedom. Using these moments,

� Id · 1
d

∑
06k6p

(
p
k

)
(−1)k ck d(d + 2) · · · (d + 2p + 2m − 2k)σ2(p+m−k+1)

� Id · *.
,

∑
06k6p

(
p
k

)
(−1)k ck(d + 2) · · · (d + 2p + 2m − 2k)σ2(p+m−k+1)+/

-
.

A similar computation yields the result about �[U]. �

A.2.2 For matrix-valued random variables

On several occasions we will need to apply a Matrix-Bernstein-like theorem to a sum of matrices
with an unfortunate tail. To this end, we prove a “truncated Matrix Bernstein Inequality.” Our
proof uses an standard matrix Bernstein inequality as a black box. The study of inequalities of
this variety—on tails of sums of independent matrix-valued random variables— was initiated by
Ahlswede and Winter [AW02]. The excellent survey of Tropp [Tro12] provides many results of this
kind.

In applications of the following the operator norms of the summands X1 , . . . ,Xn have well-
behaved tails and so the truncation is a routine formality. Two corollaries following the proposition
and its proof capture truncation for all the matrices we encounter in the present work.

Proposition A.7 (Truncated Matrix Bernstein). Let X1 , . . . ,Xn ∈ �
d1×d2 be independent random

matrices, and suppose that

�
[‖Xi −�[Xi]‖op > β

]
6 p for all i ∈ [n].

Furthermore, suppose that for each Xi ,
�
�[Xi] −�[Xi �

�‖Xi‖op < β
�]� 6 q.

Denote

σ2
� max






∑
i∈[n]
�

�
XiXT

i

�
−� [Xi]� �

XT
i

�op

,



∑
i∈[n]
�

�
XT

i Xi
�
−� [Xi]T � [Xi]

op



.
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Then for X �
∑

i∈[n] Xi , we have

�
�‖X −�[X]‖op > t

�
6 n · p + (d1 + d2) · exp

(
−(t − nq)2

2(σ2 + β(t − nq)/3)
)
.

Proof. For simplicity we start by centering the variables Xi . Let X̃i � Xi −�Xi and X̃ �
∑

i∈[n] X̃i

The proof proceeds by a straightforward application of the noncommutative Bernstein’s Inequality.
We define variables Y1 , . . . ,Yn , which are the truncated counterparts of the X̃is in the following
sense:

Yi �



X̃i ‖X̃i‖op < β,

0 otherwise.

Define Y �
∑

i∈[n] Yi . We claim that



∑
i

�YiYT
i −�[Yi]�[Yi]T

op
6



∑
i

� X̃iX̃T
i

op
6 σ2 and (A.2)



∑
i

�YT
i Yi −�[Yi]T �[Yi]

op
6



∑
i

� X̃T
i X̃i

op
6 σ2 , (A.3)

which, togetherwith the fact that ‖Yi‖ 6 β almost surely, will allow us to apply the non-commutative
Bernstein’s inequality to Y. To see (A.2) ((A.3) is similar), we expand �YiYT

i as

�YiYT
i � �

[�
X̃i

�
op < β

]
�

[
X̃iX̃T

i
����

�
X̃i

�
op < β

]
.

Additionally expanding �
�
X̃iX̃T

i

�
as

�
�
X̃iX̃T

i

�
� �

[�
X̃i

�
op < β

]
�

[
X̃iX̃T

i
����

�
X̃i

�
op < β

]
+ �

[�
X̃i

�
op > β

]
�

[
X̃iX̃T

i
����

�
X̃i

�
op > β

]
,

we note that �[X̃iX̃T
i | �

X̃i
�
op > β] is PSD. Thus, �[YiYT

i ] � �[XiXT
i ]. But by definition �[YiYT

i ] is
still PSD (and hence

�∑
i �[YiYT

i ]
�
op is given by the maximum eigenvalue of �[YiYT

i ]), so


∑
i

�YiYT
i

op
6



∑
i

� X̃iX̃T
i

op
.

Also PSD are �[Yi]�[Yi]T and �[(Yi −�[Yi])(Yi −�[Yi])T] � �[YiYT
i ]−�[Yi]�[Yi]T . By the same

reasoning again, then, we get
�∑

i �YiYT
i −�[Yi]�[Yi]T�

op 6
�∑

i �[YiYT
i ]

�
op. Putting this all

together gives (A.2).
Now we are ready to apply the non-commutative Bernstein’s inequality to Y. We have

�
�‖Y −�[Y]‖op > α

�
6 (d1 + d2) · exp

(
−α2/2

σ2 + β · α/3

)
.

Now, we have

�
�‖X −�[X]‖op > t

�
� �

�‖X −�[X]‖op > t | X � Y
�
· � [X � Y]

49



+�
�‖X −�[X]‖op > t | X , Y

�
· � [X , Y] ,

6 �
�‖X −�[X]‖op > t | X � Y

�
+ n · p

by a union bound over the events {Xi , Yi}. It remains to bound the conditional probability
�

�‖X −�[X]‖op > t | X � Y
�
. By assumption, ‖�[X] − �[Y]‖op 6 nq, and so by the triangle

inequality,

‖X −�[X]‖op 6 ‖X −�[Y]‖op + ‖�[Y] −�[X]‖op 6 ‖X −�[Y]‖op + nq.

Thus,

�
�‖X −�[X]‖op > t | X � Y

�
6 �

�‖X −�[Y]‖op + nq > t | X � Y
�

� �
�‖Y −�[Y]‖op > t − nq | X � Y

�
.

Putting everything together and setting α � t − nq,

�[‖X −�[X]‖op > t] 6 n · p + (d1 + d2) · exp
(
−(t − nq)2/2

σ2 + β(t − nq)/3
)
,

as desired. �

The following lemma helps achieve the assumptions of Proposition A.7 easily for a useful class
of thin-tailed random matrices.

Lemma A.8. Suppose that X is a matrix whose entries are polynomials of constant degree ` in unknowns
x, which we evaluate at independent Gaussians. Let f (x) :� ‖X‖op and 1(x) :� ‖XXT ‖op , and either f is
itself a polynomial in x of degree at most 2` or 1 is a polynomial in x of degree at most 4`. Then if β � R · α

for α > min{� �| f (x)|� ,
√
�

�
1(x)�} and R � polylog(n),

�
�‖X‖op > β

�
6 n− log n , (A.4)

and

�
�‖X · �{‖X‖op > β}‖op

�
6 (β + α)n− log n . (A.5)

Proof. We begin with (A.4). Either f (x) is a polynomial of degree at most 2`, or 1(x) is a polynomial
of degree at most 4` in gaussian variables. We can thus use Lemma A.5 to obtain the following
bound,

�
�| f (x)| > tα

�
6 exp

(
−ct1/(2`)) , (A.6)

where c is a universal constant. Taking t � R � polylog(n) gives us (A.4).
We now address (A.5). To this end, let p(t) and P(t) be the probability density function and

cumulative density function of ‖X‖op , respectively. We apply Jensen’s inequality and instead bound

‖� �
X �{‖X‖op > β}� ‖ 6 � �‖X‖op �{‖X‖op > β}�

�

∫
∞

0
t · �{t > β}p(t)dt
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since the indicator is 0 for t 6 β,

�

∫
∞

β
(−t)(−p(t))dt

integrating by parts,

� −t · (1 − P(t))����
∞

β
+

∫
∞

β
(1 − P(t))dt

and using the equality of 1 − P(t) with �(‖X‖op > t) along with (A.4),

6 βn− log n
+

∫
∞

β
�(‖X‖op > t)dt

Applying the change of variables t � αs so as to apply (A.6),

� βn− log n
+ α

∫
∞

R
�(‖X‖op > αs)ds

6 βn− log n
+ α

∫
∞

R
exp(−cs1/(2`))ds

Now applying a change of variables so s � ( u log n
c )2` ,

� βn− log n
+ α

∫
∞

cR1/(2`)
log n

n−u
· 2`

(
log n

c

)2`

u2`−1du

6 βn− log n
+ α

∫
∞

cR1/(2`)
log n

n−u/2du ,

where we have used the assumption that ` is constant. We can approximate this by a geometric
sum,

6 βn− log n
+ α

∞∑
u� cR1/(2`)

log n

n−u/2

6 βn− log n
+ α · n−cR1/(2`)/(2 log n)

Evaluating at R � polylog n for a sufficiently large polynomial in the log gives us

�
�‖X · �{‖X‖op > β}‖op

�
6 (β + α)n− log n ,

as desired. �
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B Concentration bounds for planted sparse vector in random linear
subspace

Proof of Lemma 4.7. Let c :�
∑n

i�1 v(i)bi . The matrix in question has a nice block structure:
n∑

i�1
ai a>i � *

,

‖v‖2
2 c>

c
∑n

i�1 bi b>i
+
-
.

The vector c is distributed asN(0, 1
n Idd−1) so by standard concentration has ‖c‖ 6 Õ(d/n)1/2 w.ov.p..

By assumption, ‖v‖2
2 � 1. Thus by triangle inequality w.ov.p.



n∑
i�1

ai a>i − Idd


6 Õ

(
d
n

)1/2

+



n∑
i�1

bi b>i − Idd−1


.

By [Ver10, Corollary 5.50] applied to the subgaussian vectors nbi , w.ov.p.


n∑
i�1

bi b>i − Idd−1


6 O

(
d
n

)1/2

and hence ‖∑n
i�1 ai a>i − Idd ‖ 6 Õ(d/n)1/2 w.ov.p.. This implies ‖(∑n

i�1 ai a>i )−1
− Idd ‖ 6 Õ(d/n)1/2

and ‖(∑n
i�1 ai a>i )−1/2

− Idd ‖ 6 Õ(d/n)1/2 when d � o(n) by the following facts applied to the
eigenvalues of

∑n
i�1 ai a>i . For 0 6 ε < 1,

(1 + ε)−1
� 1 − O(ε) and (1 − ε)−1

� 1 + O(ε) ,
(1 + ε)−1/2

� 1 − O(ε) and (1 − ε)−1/2
� 1 + O(ε) .

These are proved easily via the identity (1 + ε)−1 �
∑
∞

k�1 ε
k and similar. �

Orthogonal subspace basis

Lemma B.1. Let a1 , . . . , an ∈ �
d be independent random vectors from N(0, 1

n Id) with d 6 n and let
A �

∑n
i�1 ai a>i . Then for every unit vector x ∈ �d , with overwhelming probability 1 − d−ω(1),

���〈x ,A−1x〉 − ‖x‖2��� 6 Õ
(

d +
√

n
n

)
· ‖x‖2 .

Proof. Let x ∈ �d . By scale invariance, we may assume ‖x‖ � 1.
By standard matrix concentration bounds, the matrix B � Id−A has spectral norm ‖B‖ 6

Õ(d/n)1/2 w.ov.p. [Ver10, Corollary 5.50]. Since A−1 � (Id−B)−1 �
∑
∞

k�0 Bk , the spectral norm of
A−1
− Id−B is at most

∑
∞

k�2‖B‖
k (whenever the series converges). Hence, ‖A−1

− Id−B‖ 6 Õ(d/n)
w.ov.p..

It follows that it is enough to show that |〈x , Bx〉| 6 Õ(1/n)1/2 w.ov.p.. The random variable
n − n〈x , Bx〉 � ∑n

i�1〈
√

n · ai , x〉2 is χ2-distributed with n degrees of freedom. Thus, by standard
concentration bounds, n |〈x , Bx〉| 6 Õ(√n) w.ov.p. [LM00].

We conclude that with overwhelming probability 1 − d−ω(1),

���〈x ,A−1x〉 − ‖x‖2��� 6 |〈x , Bx〉| + Õ(d/n) 6 Õ
(

d +
√

n
n

)
.

�
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Lemma B.2. Let a1 , . . . , an ∈ �
d be independent random vectors from N(0, 1

n Id) with d 6 n and let
A �

∑n
i�1 ai a>i . Then for every index i ∈ [n], with overwhelming probability 1 − dω(1),

���〈a j ,A−1a j〉 − ‖a j ‖
2��� 6 Õ

(
d +
√

n
n

)
· ‖a j ‖

2 .

Proof. Let A− j �
∑

i, j ai a>i . By Sherman–Morrison,

A−1
� (A− j + a j a>j )−1

� A−1
− j −

1
1 + a>j A−1

− j a j
A−1
− j a j a>j A−1

− j

Thus, 〈a j ,A−1a j〉 � 〈a j ,A−1
− j a j〉 − 〈a j ,A−1

− j a j〉2/(1 + 〈a j ,A−1
− j a j〉). Since ‖ n

n−1 A− j − Id‖ � Õ(d/n)1/2
w.ov.p., we also have ‖A−1

− j ‖ 6 2 with overwhelming probability. Therefore, w.ov.p.,

���〈a j ,A−1a j〉 − 〈a j ,A−1
− j a j〉��� 6 〈a j ,A−1

− j a j〉2 6 4‖a j ‖
4 6 Õ(d/n) · ‖a j ‖

2 .

At the same time, by Lemma B.1, w.ov.p.,

���〈a j , n
n−1 A−1

− j a j〉 − ‖a j ‖
2��� 6 Õ

(
d +
√

n
n

)
· ‖a j ‖

2 .

We conclude that, w.ov.p.,

���〈a j ,A−1a j〉 − ‖a j ‖
2��� 6

���〈a j ,A−1a j〉 − 〈a j ,A−1
− j a j〉��� +

���〈a j ,A−1
− j a j〉 − n−1

n ‖a j ‖
2��� +

1
n ‖a j ‖

2

6 Õ
(

d +
√

n
n

)
.

�

Lemma B.3. Let A be a block matrix where one of the diagonal blocks is the 1 × 1 identity; that is,

A � *
,

‖v‖2 c>

c B
+
-
� *

,

1 c>

c B
+
-
.

for some matrix B and vector c. Let x be a vector which decomposes as x � (x(1) x′) where x(1) � 〈x , e1〉
for e1 the first standard basis vector.

Then

〈x ,A−1x〉 � 〈x′,
(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
x′〉 + 2x(1)〈

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , x′〉 + (1 − c>B−1c)−1x(1)2 .

Proof. By the formula for block matrix inverses,

A−1
� *

,

(1 − c>B−1c)−1 cT(B − cc>)−1

(B − cc>)−1c (B − cc>)−1
+
-
.

The result follows by Sherman-Morrison applied to (B − cc>)−1 and the definition of x. �
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Lemma B.4. Let v ∈ �n be a unit vector and let b1 , . . . , bn ∈ �
d−1 have iid entries from N(0, 1/n). Let

ai ∈ �
d be given by ai :� (v(i) bi). Let A :�

∑
i ai aT

i . Let c ∈ �d−1 be given by c :�
∑

i v(i)bi . Then for
every index i ∈ [n], w.ov.p.,

�〈ai ,A−1ai〉 − ‖ai‖2�
6 Õ

(
d +
√

n
n

)
· ‖ai‖2 .

Proof. Let B :�
∑

i bi bT
i . By standard concentration, ‖B−1

−Id ‖ 6 Õ(d/n)1/2 w.ov.p. [Ver10, Corollary
5.50]. At the same time, since v has unit norm, the entries of c are iid samples from N(0, 1/n),
and hence n‖c‖2 is χ2-distributed with d degrees of freedom. Thus w.ov.p. ‖c‖2 6 d

n + Õ(dn)−1/2.
Together these imply the following useful estimates, all of which hold w.ov.p.:

|c>B−1c | 6 ‖c‖2‖B−1‖op 6
d
n
+ Õ

(
d
n

)3/2

‖B−1cc>B−1‖op 6 ‖c‖2‖B−1‖2
op 6

d
n
+ Õ

(
d
n

)3/2


B−1cc>B−1

1 − c>B−1c

op
6

d
n
+ Õ

(
d
n

)3/2

,

where the first two use Cauchy-Schwarz and the last follows from the first two.
We turn now to the expansion of 〈ai ,A−1ai〉 offered by Lemma B.3,

〈ai ,A−1ai〉 �〈bi ,

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
bi〉 (B.1)

+ 2v(i)〈
(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , bi〉 (B.2)

+ (1 − c>B−1c)−1v(i)2 . (B.3)

Addressing (B.1) first, by the above estimates and Lemma B.2 applied to 〈bi , B−1bi〉,
�����
〈bi ,

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
bi〉 − ‖bi‖2

�����
6 Õ

(
d +
√

n
n

)
· ‖bi‖2

w.ov.p.. For (B.2), we pull out the important factor of ‖c‖ and separate v(i) from bi : w.ov.p.,

�����
2v(i)〈

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , bi〉

�����
�

�����
2‖c‖v(i)〈

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c
‖c‖ , bi〉

�����

6
�����
‖c‖2

(
v(i)2 + 〈

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c
‖c‖ , bi〉2

) �����

6 Õ
(

d
n

)
(v(i)2 + ‖bi‖2)

� Õ
(

d
n

)
‖ai‖2 ,

where the last inequality follows from our estimates above and Cauchy-Schwarz.
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Finally, for (B.3), since (1 − c>B−1c) > 1 − Õ(d/n) w.ov.p., we have that

|(1 − c>B−1c)−1v(i)2 − v(i)2 | 6 Õ
(

d
n

)
v(i)2 .

Putting it all together,

�〈ai ,A−1ai〉 − ‖ai‖2�
6

�����
〈bi ,

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
bi〉 − ‖bi‖2

�����

+

�����
2v(i)〈

(
B−1

+
B−1cc>B−1

1 − c>B−1c

)
c , bi〉

�����
+ |(1 − c>B−1c)−1v(i)2 − v(i)2 |
6 Õ

(
d +
√

n
n

)
· ‖ai‖2 . �

C Concentration bounds for overcomplete tensor decomposition

We require some facts about the concentration of certain scalar-and matrix-valued random variables,
which generally follow from standard concentration arguments. We present proofs here for
completeness.

The first lemma captures standard facts about random Gaussians.

Fact C.1. Let a1 , . . . , an ∈ �
d be sampled ai ∼ N(0, 1

d Id).
1. Inner products |〈ai , a j〉| are all ≈ 1/

√
d:

�

{
〈ai , a j〉2 6 Õ

( 1
d

) ���� ∀i , j ∈ [n], i , j
}
> 1 − n−ω(1).

2. Norms are all about ‖ai‖ ≈ 1 ± Õ(1/√d):

�

{
1 − Õ(1/√d) 6 ‖ai‖2

2 6 1 + Õ(1/√d) ���� ∀i ∈ [n]
}
> 1 − n−ω(1) .

3. Fix a vector v ∈ �d . Suppose 1 ∈ �d is a vector with entries identically distributed 1i ∼ N(0, σ).
Then 〈1 , v〉2

≈ σ2
· ‖v‖2

2 :

�

{����〈1 , v〉
2
− σ2

· ‖v‖4
2

���� 6 Õ(σ2
· ‖v‖2

4)
}
> 1 − n−ω(1) .

Proof of Fact C.1. We start with Item 1. Consider the quantity 〈ai , a j〉2. We calculate the expectation,

�
�〈ai , a j〉2�

�

∑
k ,`∈[d]

�
�
ai(k)ai(`)a j(k)a j(`)� �

∑
k∈[d]
�

�
ai(k)2�

· �
�
a j(k)2�

� d ·
1
d2 �

1
d
.

Since this is a degree-4 square polynomial in the entries of ai and a j , we may apply Lemma A.5 to
conclude that

�

(
〈ai , a j〉2 > t ·

1
d

)
6 exp

�
−O(t1/2)� .
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Applying this fact with t � polylog(n) and taking a union bound over pairs i , j ∈ [n] gives us the
desired result.

Next is Item 2. Consider the quantity ‖ai‖2
2 . We will apply Lemma A.5 in order to obtain a tail

bound for the value of the polynomial (‖ai‖2
2 − 1)2. We have

�
�(‖ai‖2

2 − 1)2�
� O

( 1
d

)
,

and now applying Lemma A.5 with the square root of this expectation, we have

�

(�‖ai‖2
2 − 1

�
> Õ( 1

√
d
)
)
6 n− log n .

This gives both bounds for a single ai . The result now follows from taking a union bound over all i.
Moving on to Item 3, we view the expression f (1) :� (〈1 , v〉2

− σ2‖v‖2)2 as a polynomial in the
gaussian entries of 1. The degree of f (1) is 4, and �[| f (1)|] � 3σ4

· ‖v‖4
4 , and so we may apply

Lemma A.5 to conclude that

�
�| f (1)| > t · 3σ4

· ‖v‖4
4

�
6 exp(−c4t1/2),

and taking t � polylog(n) the conclusion follows. �

We also use the fact that the covariance matrix of a sum of sufficiently many gaussian outer
products concentrates about its expectation.

Fact C.2. Let a1 , . . . , an ∈ �
d be vectors with iid gaussian entries such that �

�‖ai‖2
2

�
� 1, and n � Ω(d).

Let E be the event that the sum
∑

i∈[n] ai a>i is close to n
d · Id, that is

�



Ω̃(n/d) · Id 6

∑
i∈[n]

ai a>i 6 Õ(n/d) · Id


> 1 − n−ω(1) .

Proof of Fact C.2. Weapply a truncatedmatrix bernstein inequality. For convenience,A :�
∑

i∈[n] ai a>i
and let Ai :� ai a>i be a single summand. To begin, we calculate the first and second moments of the
summands,

� [Ai] � 1
d
· Id

�
�
AiA>i

�
� O

( 1
d

)
· Id .

So we have � [A] � n
d · Id and σ2(A) � O

� n
d

�
.

We now show that each summand is well-approximated by a truncated variable. To calculate the
expected norm ‖Ai‖op , we observe that Ai is rank-1 and thus �

�‖Ai‖op
�
� �

�‖ai‖2
2

�
� 1. Applying

Lemma A.8, we have
�

�‖Ai‖op > Õ(1)� 6 n− log n ,

and also
�

�‖Ai‖op · �{‖Ai‖op > Õ(1)}�
6 n− log n .
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Thus, applying the truncated matrix bernstein inequality from Proposition A.7 with σ2 � O( n
d ),

β � Õ(1), p � n− log n , q � n− log n , and t � Õ
(

n1/2

d1/2

)
, we have that with overwhelming probability,

A −
n
d
· Id

op
6 Õ

(
n1/2

d1/2

)
.

�

We now show that among the terms of the polynomial 〈1 , Ta⊗2
i 〉, those that depend on a j with

j , i have small magnitude. This polynomial appears in the proof that Mdiag has a noticeable
spectral gap.

Lemma (Restatement of Lemma 5.6). Let a1 , . . . , an be independently sampled vectors fromN(0, 1
d Idd),

and let 1 be sampled from N(0, Idd). Let T �
∑

i ai(ai ⊗ ai)>. Then with overwhelming probability, for
every j ∈ [n],

�〈1 , T(a j ⊗ a j)〉 − 〈1 , a j〉‖a j‖4�
6 Õ

(√
n

d

)
.

Proof. Fixing ai and 1, the terms in the summation are independent, and we may apply a Bernstein
inequality. A straightforward calculation shows that the expectation of the sum is 0 and the variance
is Õ( n

d2 ) · ‖1‖2‖ai‖4. Additionally, each summand is a polynomial in Gaussian variables, the square
of which has expectation Õ( 1

d2 · ‖1‖2‖ai‖4). Thus Lemma A.5 allows us to truncate each summand
appropriately so as to employ Proposition A.7. An appropriate choice of logarithmic factors and
the concentration of ‖1‖2 and ‖ai‖2 due to Fact C.1 gives the result for each i ∈ [n]. A union bound
over each choice of i gives the final result. �

Finally, we prove that a matrix which appears in the expression for Msame has bounded norm
w.ov.p.

Lemma C.3. Let a1 , . . . , an be independent from N(0, 1
d Idd). Let 1 ∼ N(0, Idd). Fix j ∈ [n]. Then

w.ov.p.


∑
i∈[n]
i, j

〈1 , ai〉‖ai‖2〈ai , a j〉 · ai a>i



6 Õ(n/d2)1/2 .

Proof. The proof proceeds by truncated matrix Bernstein, since the summands are independent for
fixed 1 , a j . For this we need to compute the variance:

σ2
�



∑
i∈[n]
i, j

�〈1 , ai〉2‖ai‖6〈ai , a j〉2
· ai a>i



6 O(1/d) ·


∑
i∈[n]
i, j

� ai a>i



6 O(1/d) · n/d 6 O(n/d2) .

The norm of each term in the sum is bounded by a constant-degree polynomial of Gaussians.
Straightforward calculations show that in expectation each term is O( 1

d 〈1 , ai〉) in norm; w.ov.p. this
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is O(σ). So Lemma A.5 applies to establish the hypothesis of truncated Bernstein Proposition A.7.
In turn, Proposition A.7 yields that w.ov.p.



∑
i∈[n]
i, j

〈1 , ai〉‖ai‖2〈ai , a j〉 · ai a>i



6 Õ(σ) � Õ(n/d2)1/2 .

�

C.0.1 Proof of Fact C.4

Here we prove the following fact.

Fact C.4. Let Σ � �x∼N(0,Idd)(xx>)⊗2 and let Σ̃ � �x∼N(0,Idd)(xx>)⊗2/‖x‖4. Let Φ �
∑

i e⊗2
i ∈ �

d2 and
let Πsym be the projector to the symmetric subspace of �d2 (the span of vectors of the form x⊗2 for x ∈ �d).
Then

Σ � 2Πsym +ΦΦ> , Σ̃ �
2

d2+2dΠsym +
1

d2+2dΦΦ
> ,

Σ+
�

1
2Πsym −

1
2(d+2)ΦΦ

> , Σ̃+
�

d2+2d
2 Πsym −

d
2ΦΦ

> .

In particular,

R �
√

2 (Σ+)1/2 � Πsym −
1
d

(
1 −

√
2

d+2

)
ΦΦ> has ‖R‖ � 1

and for any v ∈ �d ,
‖R(v ⊗ v)‖2

2 �
�
1 − 1

d+2
�
· ‖v‖4.

We will derive Fact C.4 as a corollary of a more general claim about rotationally symmetric
distributions.

Lemma C.5. LetD be a distribution over �d which is rotationally symmetric; that is, for any rotation R,
x ∼ D is distributed identically to Rx. Let Σ � �x∼D(xx>)⊗2, let Φ �

∑
i e⊗2

i ∈ �
d2 and let Πsym be the

projector to the symmetric subspace of �d2 (the span of vectors of the form x⊗2 for x ∈ �d). Then there is a
constant r so that

Σ � 2rΠsym + r ΦΦ> .

Furthermore, r is given by
r � �〈x , a〉2〈x , b〉2

�
1
3 �〈x , a〉4

where a , b are orthogonal unit vectors.

Proof. First, Σ is symmetric and operates nontrivially only on the symmetric subspace (in other
words kerΠsym ⊆ kerΣ). This follows from Σ being an expectation over symmetric matrices whose
kernels always contain the complement of the symmetric subspace.

Let â , b̂ , ĉ , d̂ ∈ �d be any four orthogonal unit vectors. Let R be any rotation of �d that takes â
to −â, but fixes b̂, ĉ, and d̂ (this rotation exists for d > 5, but a different argument holds for d 6 4) .
By rotational symmetry about R, all of these quantities are 0:

�〈â , x〉〈b̂ , x〉〈ĉ , x〉〈d̂ , x〉 � 0,
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�〈â , x〉〈b̂ , x〉〈ĉ , x〉2
� 0, �〈â , x〉〈b̂ , x〉3

� 0.

Furthermore, let Q be a rotation of �d that takes â to (â + b̂)/√2. Then by rotational symmetry
about Q,

�〈â , x〉4
� �〈â ,Qx〉4

� � 1
4〈â + b̂ , x〉4

� � 1
4 [〈â , x〉4

+ 〈b̂ , x〉4
+ 6〈â , x〉2〈b̂ , x〉2]

Thus, since �〈â , x〉4 � �〈b̂ , x〉4 by rotational symmetry, we have

�〈â , x〉4
� 3�〈â , x〉2〈b̂ , x〉2.

So let r :� �〈â , x〉2〈b̂ , x〉2 �
1
3 �〈â , x〉4. By rotational symmetry, r is constant over choice of

orthogonal unit vectors â and b̂.
SinceΣ operates only on the symmetric subspace, let u ∈ �d2 be any unit vector in the symmetric

subspace. Such a u unfolds to a symmetric matrix in �d×d , so that it has an eigendecomposition
u �

∑d
i�1 λi ui ⊗ ui . Evaluating 〈u ,Σu〉,

〈u ,Σu〉 �
d∑

i , j�1
� λiλ j〈x , ui〉2〈x , u j〉2 other terms are 0 by above

� 3r
d∑

i�1
λ2

i + r
∑
i, j

λiλ j

� 2r
d∑

i�1
λ2

i + r *
,

d∑
i�1

λi+
-

2

� 2r ‖u‖2
+ r *

,

d∑
i�1

λi+
-

2

Frobenious norm is sum of squared eigenvalues

� 2r ‖u‖2
+ r *

,

∑
i

ui ,i+
-

2

trace is sum of eigenvalues

� 2r 〈u ,Πsymu〉 + r 〈u ,ΦΦ>u〉 ,
so therefore Σ � 2rΠsym + r ΦΦ>. �

Proof of Fact C.4. When x ∼ N(0, Idd), the expectation �〈x , a〉2〈x , b〉2 � 1 is just a product of
independent standard Gaussian second moments. Therefore by Lemma C.5, Σ � 2Πsym +ΦΦ>.

To find Σ̃where x is uniformly distributed on the unit sphere, we compute

1 � � ‖x‖4
�

∑
i , j

� x2
i x2

j � d � x4
1 + (d2

− d) � x2
1x2

2

and use the fact that � x4
1 � 3 � x2

1 (by Lemma C.5) to find that � x2
1x2

2 �
1

d2+2d , and therefore by
Lemma C.5, Σ̃ �

2
d2+2dΠsym +

1
d2+2dΦΦ

>.
To verify the pseudoinverses, it is enough to check that MM+ � Πsym for each matrix M and its

claimed pseudoinverse M+.
To show that

‖R(v ⊗ v)‖2
2 �

�
1 − 1

d+2
�
· ‖v‖4 ,
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for any v ∈ �d , we write ‖R(v ⊗ v)‖2
2 � (v ⊗ v)>R2(v ⊗ v) and use the substitution R2 � 2Σ+, along

with the facts that Πsym(v ⊗ v) � v ⊗ v and 〈Φ, v ⊗ v〉 � ‖v‖2.
�

Now we can prove some concentration claims we deferred:

Lemma (Restatement of Lemma 5.11). Let a1 , . . . , an ∼ N(0, 1
d Idd). Let Σ, R be as in Fact 5.8. Let

ui � ai ⊗ ai . With overwhelming probability, every j ∈ [n] satisfies ∑
i, j〈u j , R2ui〉2 � Õ(n/d2) and

|1 − ‖Ru j‖2 | 6 Õ(1/√d).
Proof of Lemma 5.11. We prove the first item:∑

i, j

〈u j , R2ui〉2
�

∑
i, j

〈u j , 2Σ+ui〉2

�

∑
i, j

〈u j , (Πsym −
1

d+2ΦΦ
>)ui〉2 by Fact C.4

�

∑
i, j

(〈a j , ai〉2
−

1
d+2 ‖u j‖2‖ui‖2)2

�

∑
i, j

Õ(1/d)2 w.ov.p. by Fact C.1

� Õ(n/d2) .
And one direction of the second item, using Fact C.4 and Fact C.1 (the other direction is similar):

‖Ru j‖2
� 〈u j , R2u j〉 � 〈u j , (Πsym +

1
d+2ΦΦ

>)u j〉 � (1 −Θ(1/d))‖a j‖4
� 1 − Õ(1/√d)

where the last equality holds w.ov.p.. �

C.0.2 Proof of Lemma 5.9

To prove Lemma 5.9 we will begin by reducing to the case S � [n] via the following.

Lemma C.6. Let v1 , . . . , vn ∈ �
d . Let AS have columns {vi}i∈S. Let ΠS be the projector to Span{vi}i∈S.

Suppose there is c > 0 so that ‖A>[n]A[n] − Idn ‖ 6 c. Then for every S ⊆ [n], ‖ASA>S −ΠS‖ 6 c

Proof. If the hypothesized bound ‖A>[n]A[n] − Idn ‖ 6 c holds then for every S ⊆ [n] we get
‖A>S AS − Id|S| ‖ 6 c since A>S AS is a principal submatrix of A>[n]A[n]. If ‖A>S AS − Id|S| ‖ 6 c, then
because ASA>S has the same nonzero eigenvalues as A>S AS, we must have also ‖ASA>S −ΠS‖ 6 c. �

It will be convenient to reduce concentration for matrices involving ai ⊗ ai to analogous matrices
where the vectors ai ⊗ ai are replaced by isotropic vectors of constant norm. The following lemma
shows how to do this.

Lemma C.7. Let a ∼ N(0, 1
d Idd). Let Σ̃ :� �x∼N(0,Idd)(xx>)⊗2/‖x‖4. Then u :� (Σ̃+)1/2a ⊗ a/‖a‖2

is an isotropic random vector in the symmetric subspace Span{y ⊗ y | y ∈ �d} with ‖u‖ �√
dim Span{y ⊗ y | y ∈ �d}.
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Proof. The vector u is isotropic by definition so we prove the norm claim. Let Φ̃ � Φ/‖Φ‖. By
Fact C.4,

Σ̃+
�

d2+2d
2 Πsym −

d
2ΦΦ

>

Thus,
‖u‖2

� 〈 a⊗a
‖a‖2 , Σ̃

+ a⊗a
‖a‖2 〉 � d2+2d

2 −
d
2 �

d2+d
2 � dim Span{y ⊗ y | y ∈ �d} . �

The last ingredient to finish the spectral bound is a bound on the incoherence of independent
samples from (Σ̃+)1/2.
Lemma C.8. Let Σ̃ � �a∼N(0,Idd)(aa> ⊗ aa>)/‖a‖4. Let a1 , . . . , an ∼ N(0, Idd) be independent, and let
ui � (Σ̃+)1/2(ai ⊗ ai)/‖ai‖2. Let d′ � dim Span{y ⊗ y | y ∈ �d} �

1
2 (d2 + d). Then

1
d′ �max

i

∑
j,i

〈ui , u j〉2 6 Õ(n) .

Proof. Expanding 〈ui , u j〉2 and using Σ̃+ �
d2+2d

2 Πsym −
d
2ΦΦ

>, we get

〈ui , u j〉2
�

(
d2+2d

2 〈 ai⊗ai
‖ai ‖2 ,

a j⊗a j

‖a j ‖2 〉 − d
2

)2
�

(
d2+2d

2 ·
〈ai ,a j〉2

‖ai ‖2‖a j ‖2 −
d
2

)2

From elementary concentration, �maxi, j〈ai , a j〉2/‖ai‖2‖a j‖2 6 Õ(1/d), so the lemma follows by
elementary manipulations. �

Weneed the following bound on the deviation from expectation of a tall matrixwith independent
columns.

Theorem C.9 (Theorem 5.62 in [Ver10]). Let A be an N × n matrix (N > n) whose columns A j are
independent isotropic random vectors in �N with ‖A j‖2 �

√
N almost surely. Consider the incoherence

parameter

m def
�

1
N
�max

i∈[n]

∑
j,i

〈Ai ,A j〉2 .

Then � ‖ 1
N ATA − Id ‖ 6 C0

√
m log n

N .

We are now prepared to handle the case of S � [n] via spectral concentration for matrices with
independent columns, Theorem C.9.

Lemma (Restatement of Lemma 5.9). Let a1 , . . . , an ∼ N(0, 1
d Idd) be independent random vectors with

d 6 n. Let R :�
√

2 · ((�(aa>)⊗2)+)1/2 for a ∼ N(0, Idd). For S ⊆ [n], let PS �
∑

i∈S(ai ai
>)⊗2 and letΠS

be the projector into the subspace spanned by {Ra⊗2
i | i ∈ S}. Then, with probability 1 − o(1) over the choice

of a1 , . . . , an ,

∀S ⊆ [n]. �
1 − Õ(n/d3/2)� ·ΠS � RPSR �

�
1 + Õ(n/d3/2)� ·ΠS .

Proof of Lemma 5.9. By Lemma C.6 it is enough to prove the lemma in the case of S � [n]. For
this we will use Theorem C.9. Let A be the matrix whose columns are given by ai ⊗ ai , so that
P[n] � P � AA>. Because RAA>R and A>RRA have the same nonzero eigenvalues, it will be
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enough to show that ‖A>R2A − Id ‖ 6 Õ(√n/d)+ Õ(n/d3/2)with probability 1− o(1). (Since n 6 d
we have

√
n/d � Õ(n/d3/2) so this gives the theorem.)

The columns of RA are independent, given by R(ai ⊗ ai). However, they do not quite satisfy the
normalization conditions needed for TheoremC.9. Let D be the diagonalmatrix whose i-th diagonal
entry is ‖ai‖2. Let Σ̃ � �x∼N(0,Id)(xx>)⊗2/‖x‖4. Then by Lemma C.7 the matrix (Σ̃+)1/2D−1A has
independent columns from an isotropic distribution with a fixed norm d′. Together with Lemma C.8
this is enough to apply Theorem C.9 to conclude that � ‖ 1

(d′)2 A>D−1Σ̃+D−1A − Id ‖ 6 Õ(√n/d). By
Markov’s inequality, ‖ 1

(d′)2 A>D−1Σ̃+D−1A − Id ‖ 6 Õ(√n/d) with probability 1 − o(1).
We will show next that ‖A>R2A − 1

(d′)2 A>D−1Σ̃+D−1A‖ 6 Õ(n/d3/2)with probability 1 − o(1);
the lemma then follows by triangle inequality. The expression inside the norm expands as

A>(R2
−

1
(d′)2 D−1Σ̃+D−1)A .

and so
‖A>R2A − 1

(d′)2 A>D−1Σ̃+D−1A‖ 6 ‖A‖2‖R2
−

1
(d′)2 D−1Σ̃+D−1‖

By Fact C.1, with overwhelming probability ‖D − Id ‖ 6 Õ(1/√d). So ‖(1/d′)2D−1Σ̃+D−1
−

(1/d′)2Σ̃+‖ 6 Õ(1/√d) w.ov.p.. We recall from Fact C.4, given that R �
√

2 · (Σ+)1/2, that
R2

� Πsym −
1

d+2ΦΦ
> and 1

(d′)2 Σ̃
+
�

d+2
d+1Πsym −

1
d+1ΦΦ

> .

This implies that ‖R2
− (1/d′)2Σ̃+‖ 6 O(1/d). Finally, by an easy application of Proposition A.7,

‖A‖2 � ‖∑i(ai a>i )⊗2‖ 6 Õ(n/d) w.ov.p.. All together, ‖A>R2A − 1
(d′)2 A>D−1Σ̃+D−1A‖ 6 Õ(n/d3/2).

�

D Concentration bounds for tensor principal component analysis

For convenience, we restate Lemma 6.5 here.

Lemma D.1 (Restatement of Lemma 6.5). For any v, with high probability over A, the following occur:



∑
i

Tr(Ai) · Ai


6 O(n3/2 log2 n)



∑
i

v(i) · Ai


6 O(√n log n)



∑
i

Tr(Ai)v(i) · vvT

6 O(√n log n) .

Proof of Lemma 6.5. We begin with the term
∑

i Tr(Ai) · Ai . It is a sum of iid matrices Tr(Ai) · Ai . A
routine computation gives�Tr(Ai) ·Ai � Id. Wewill use the truncatedmatrix Bernstein’s inequality
(Proposition A.7) to bound ‖∑i Tr(Ai)Ai‖.

For notational convenience, let A be distributed like a generic Ai . By a union bound, we have
both of the following:

�
(‖ Tr(A) · A‖ > tn

)
6 �

(| Tr(A)| > √tn
)
+ �

(‖A‖ > √tn
)
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�
(‖ Tr(A) · A − Id ‖ > (t + 1)n)

6 �
(| Tr(A)| > √tn

)
+ �

(‖A‖ > √tn
)
.

Since Tr(A) the sum of iid Gaussians, �(| Tr(A)| > √tn) 6 e−c1t for some constant c1. Similarly,
since the maximum eigenvalue of a matrix with iid entries has a subgaussian tail, �(‖A‖ >
√

tn) 6 e−c2t for some c2. All together, for some c3, we get �(‖ Tr(A) · A‖ > tn) 6 e−c3t and
�(‖ Tr(A) · A − Id ‖ > (t + 1)n) 6 e−c3t .

For a positive parameter β, let �β be the indicator variable for the event ‖ Tr(A) · A‖ 6 β. Then

� ‖ Tr(A) · A‖ −� ‖ Tr(A) · A‖ �β �
∫
∞

0

�
�(‖ Tr A · A‖ > s) − �(‖ Tr A · A‖ �β > s)� ds

� β�(‖ Tr A · A‖ > β) +
∫
∞

β
�(‖ Tr A · A‖ > s)ds

6 βe−c3β/n
+

∫
∞

β
�(‖ Tr A · A‖ > s)ds

� βe−c3β/n
+

∫
∞

β/n
�(‖ Tr A · A‖ > tn) n dt

6 βe−c3β/n
+

∫
∞

β/n
ne−c3t dt

� βe−c3β/n
+

n
c3

e−c3β/n .

Thus, for some β � O(n log n)we may take the parameters p , q of Proposition A.7 to be O(n−150).
The only thing that remains is to bound the parameter σ2. Since (�Tr(A) · A)2 � Id, it is enough
just to bound ‖�Tr(A)2AAT ‖. We use again a union bound:

�(‖ Tr(A)2AAT ‖ > tn2) 6 �(| Tr(A)| > t1/4√n) + �(‖A‖ > t1/4√n) .
By a similar argument as before, using the Gaussian tails of Tr A and ‖A‖, we get �(‖ Tr(A)2AAT ‖ >
tn2) 6 e−c4

√
t . Then starting out with the triangle inequality,

σ2
� ‖n · �Tr(A)2AAT ‖
6 n · � ‖ Tr(A)2AAT ‖
� n ·

∫
∞

0
�(Tr(A)2AAT > s)ds

� n ·
∫
∞

0
�(Tr(A)2AAT > tn2) n2 dt

6 n ·
∫
∞

0
e−c4

√
t n2 dt

� n ·

−

2n2(c4
√

t + 1)
c2

4
e−c4

√
t


t�∞

t�0

6 O(n3) .
This gives that with high probability,



∑
i

Tr(Ai) · Ai


6 O(n3/2 log2 n) .
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The other matrices are easier. First of all, we note that the matrix
∑

i v(i) · Ai has independent
standard Gaussian entries, so it is standard that with high probability ‖∑i v(i) · Ai‖ 6 O(√n log n).
Second, we have ∑

i

v(i)Tr(Ai)vvT
� vvT

∑
i

v(i)Tr(Ai).

The random variable Tr(Ai) is a centered Gaussian with variance n, and since v is a unit vector,∑
i v(i)Tr(Ai) is also a centered Gaussian with variance n. So with high probability we get


vvT

∑
i

v(i)Tr(Ai)

�

������

∑
i

v(i)Tr(Ai)
������
6 O(√n log n)

by standard estimates. This completes the proof. �
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