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Abstract

A direct product is a function of the form 1(x1, . . . , xk) = (11(x1), . . . , 1k(xk)). We show
that the direct product property is locally testable with 2 queries, that is, a canonical
two-query test distinguishes between direct products and functions that are from
direct products with constant probability.

This local testing question comes up naturally in the context of PCPs, where direct
products play a prominent role for gap amplification. We consider the natural two
query test for a given function f : [N]k

→ [M]k

Two query direct product test: Choose x, y that agree on a random set A
of t coordinates and accept if f (x)A = f (y)A.

We provide a comprehensive analysis of this test for all parameters N,M, k, t 6 O(k)
and success probability δ > 0.

Our main result is that if a given function f : [N]k
→ [M]k passes the test with

probability δ > 1− ε then there is a direct product function 1 such that P[ f (x) = 1(x)] >
1−O(ε). This is the first result relating success in the (or any) test to the fraction of the
domain on which f is equal to a direct product function. This test has been analyzed
in previous works for the case t� k� N, and results show closeness of f to a direct
product under a less natural measure of “approximate agreement”.

In the small soundness “list-decoding” regime, we show that if the test above
passes with probability δ > exp(−k), then the function agrees with a direct product
function on local parts of the domain. This extends the previous range of parameters
of δ > exp(−

3√
k) to the entire meaningful range of δ > exp(−k).
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1 Introduction

The direct product of functions 11, . . . , 1k : [N] → [M] is defined as the function 1 =
11 × · · · × 1k : [N]k

→ [M]k given by 1(x1, . . . , xk) = 11(x1), . . . , 1k(xk). Product operations are
studied extensively in various domains, including products of functions as above, products
of graphs, and products of (one-round two-player) games—known as parallel repetition. In
this work we resolve the following question about the structure of direct products:

“Does there exist a two-query test that distinguishes between direct products
and functions that are far from direct products with constant probability?”

This question comes up naturally in the context of PCPs where products play an important
role for gap amplification [Raz98, Din07]. In the analysis of PCPs, one is given information
about local consistency and wants to deduce a global direct product behavior. Thus,
the direct product (DP) testing question lies at the heart of many questions regarding
products, for CSPs, for two-player games, and possibly also for graphs. Its relation to
PCP constructions is analogous to that of the low degree testing question. Indeed, past
results analyzing direct product tests have had direct applications for constructions of
PCPs [DR06, IKW12, DM11].

Our main result is an affirmative answer to the question above. We consider the
following canonical two-query test:

T (t) - Two-query test with intersection t

Choose a random set A ⊂ [k] of size t. Choose x, y ∈ [N]k uniformly at random,
conditioned on xA = yA. Accept iff f (x)A = f (y)A.

We give a comprehensive analysis of this test for all parameters N,M, k, t 6 O(k),

Theorem 1.1. Let k,N,M be positive integers, let t 6 k/2, and let ε > 0. Let f : [N]k
→ [M]k be

given such that
P

A,x,y
[ f (x)A = f (y)A] > 1 − ε

where x, y,A are chosen from the test distribution T (t). Then, there exists a direct product function
1 = 11 × · · · × 1k such that Ex[dist( f (x), 1(x))] = O(εk/t), where dist(·, ·) denotes the Hamming
distance. In particular, when t = k/2 this implies

P
x

[ f (x) = 1(x)] > 1 −O(ε)

Moreover, if f is rotation-invariant1, then 1 is rotation invariant, i.e. 11 = · · · = 1k.

This is the first testing result to show that f is equal to a direct product function on most
of its domain. Previously, results on DP testing showed closeness of f to a direct product
under a less natural measure of closeness, namely, where f and 1 agree on “most of their
coordinates” [GS97, DR06, DG08, IKW12]. In addition, previous results only handled
the case t � k � N whereas we allow any N,M, k and any t 6 O(k). We remark that the
approximate notion of agreement that is present in all of the previous works is inherent
for t� k.2

Our proof of Theorem 1.1 begins by first establishing direct product structure for the
function on local pieces, and then merging them all.

1A function is rotation-invariant if σ f (x) = f (σx) for all x and permutations σ, see Section 2.2.
2Consider a function f obtained by taking 11 × · · · × 1k and for each x changing one coordinate of f (x)

independently at random. This function still passes T (t) with probability at least (1 − t/k)2 = 1 −O(t/k).
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The result on local direct product structure may be of independent interest and can
be viewed as a DP testing result in the so-called list decoding regime. We show (see
Lemma 1.2 below) that if a function passes the test with any non-negligible probability
δ (and here δ can be as small as exp(−k)) then it must have some local direct product
structure. This extends the previous range of δ > exp(−

3√
k) for which this result was

known [IKW12].
Our analysis is related to a recent work of the authors [DS13] on parallel repetition

(and in fact, that work started from working on the direct product question). Similarly to
[DS13], we make technical gains by comparing how the given function f behaves on a
family of related two-query tests,

T (a, b) - Two-query test with parameters a and b :

Choose disjoint subsets A,B ⊂ [k] of sizes a and b and let C = [k] − (A ∪ B).
Choose u, v,w,w′ uniformly at random such that u ∈ [N]A, v ∈ [N]B and
w,w′ ∈ [N]C. Accept if f (uvw)A = f (uvw′)A.

Clearly, this test generalizes the previous one, with a = t, b = 0. The extra b parameter
provides a way to compare between the acceptance probability of the test on nearby values
of a, b. We denote by win(a, b) the success probability of the test with parameters a and b.
Whereas the difference between win(t, 0) and win(t+1, 0) is hard to control, we show through
a hybrid argument that there are values a, b for which win(a, b) ≈ win(a+1, b) ≈ win(a, b+1).
This approximate equality is quite powerful. Intuitively, it means that conditioned on
already finding agreement on some a coordinates, the value of the function on one
extra coordinate is pretty much determined already (because whether or not we check
consistency there will hardly affect the acceptance probability). This is the key to our local
direct product lemma.

In this lemma we partition the event that T (a, b) accepts into smaller events ‘T (a, b)
accepts on s’ where s is a tuple s = (A,B,u, v, α) and the event ‘T (a, b) accepts on s’ occurs
iff T chooses A,B,u, v and f (uvw)A = α = f (uvw′). For each s we define (by plurality) a
direct product function βs : [N]C

→ [M]C where C = [k] − (A ∪ B) and where βs = (βs,i)i∈C
for βs,i : [N]→ [M]. We prove that the event ‘accept on s’ coincides, up to an η margin of
error, with the event that f agrees with βs. Equivalently, we assign each s a probability
proportional to P[T (a, b) accepts on s] and show that in expectation over s, the probability
of f being equal to a direct product, conditioned on the event ‘accept on s’, is close to 1.

Lemma 1.2 (Local Structure). Let k,N,M, t 6 k/2 be positive integers, let δ > 0, and set
η = 1 − δ2/t. Let f : [N]k

→ [M]k be given such that

P[T (t) accepts f ] > δ = (1 − η)t/2 .

Then, there are values t/2 6 a 6 t and b 6 t/2 such that δ 6 win(a, b) and, a direct product
function βs : [N]C

→ [M]C for each s = ABuvα such that,

E
s∼µ
E

i∈C
P
z|s

[ f (z)i = βs,i(zi)]2 > 1 −O(η) ,

where s is a tuple s = ABuvα distributed according to µ given by µ(s) =
P[T (a, b) accepts on s]/P[T (a, b) accepts]. Moreover, if f is rotation-invariant then βs is rotation-
invariant for each s.

The step in our analysis in which we deduce a direct product structure based on
win(a, b) ≈ win(a, b + 1) ≈ win(a + 1, b) is reminiscent of a part of the analysis of Feige and
Kilian, in their work on parallel repetition [FK94] (which was later followed in [DG08]
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for obtaining a direct product testing result). However, the quantities studied in [FK94]
are more like win(a, 1) and win(a, 0) which are very hard to relate, and in particular, the
relationship proven in [FK94] has an additive and not multiplicative error. This limits the
[FK94, DG08] analysis to values of δ that are polynomial in k and not exponential.

We remark that there is one interesting aspect in which the result of [IKW12] is more
powerful than our lemma. [IKW12] show that conditioned on the test accepting, the
probability of f agreeing with a direct product is 1 − poly(δ), whereas in our lemma it is
only 1 −O(η) = 1 −O(δ2/t). The stronger conclusion allows them to lift their DP testing
result into a PCP construction, and also to extend the local structure to a global structure
by adding another query to the test (getting a "Z-test").

Finally, we mention that a well-studied variant of the direct product test is one that
randomly permutes the entries of x before querying f , and then permutes back the answer.
This twist is essentially equivalent to forcing the given f to be itself permutation invariant,
in that f (σx) = σ f (x). Our results immediately extend to this test, and we describe this in
Section 2.2.

Related Work

Goldreich and Safra pioneered the study of direct product tests as a combinatorial
alternative to low degree tests, potentially leading to constructions of PCPs [GS97]. They
proved an analog of Theorem 1.1 for a derandomized test, and for t =

√
k. The two

query test above3 was analyzed in [DR06] for t = k2/3, where it was used for a PCP
construction. Further work was done in [DG08, IKW12] on the list decoding regime, but
always with intersection size t that is some polynomial fraction of k. As already mentioned,
for such intersection parameters the conclusion f (x) = 1(x) cannot be expected for any
non-negligible fraction of the domain and must be weakened to agreement of f (x) and
1(x) on ‘most of their coordinates’.

A very recent application of our Theorem 1.1 is in the study of direct sum testing
[DDG+13]. The k-fold direct sum of a (Boolean, i.e. M = 2) function 1 : [N] → {0, 1} is a
function 1(⊕k) that maps to each k-tuple x1, . . . , xk a single bit

∑
i 1(xi) mod 2. This has the

extra feature of maintaining the alphabet size, a desirable feature for PCP constructions, that
is usually achieved by an additional alphabet-reduction step. It was shown in [DDG+13],
that a certain natural three query test distinguishes between direct sums and functions
that are far from direct sums. The proof is by reduction to the direct product question,
and then invoking our main theorem. The high sensitivity of the XOR function to even
one bit-flip requires the stronger notion of exact agreement rather than an approximate
agreement.

We remark that the work of [IKW12] also contained a very elegant derandomization
for the DP test. It would be very interesting to see if that construction can be strengthened
to give a tester as in our Theorem 1.1, but derandomized. This could potentially lead to a
PCP construction that requires no alphabet reduction step.

Organization

We begin with some preliminaries and a quick discussion of the rotation-invariant version
of the direct product test. We prove Lemma 1.2 in Section 3 and then Theorem 1.1 in
Section 4. In the appendix we add some treatment of the direct product test for sets instead
of tuples (Section A), and of the relationship to parallel repetition (Section B).

3To be precise, [DR06] analyzed a smooth version of this test, where the intersection size is t in expectation.
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2 Preliminaries

2.1 Notation

We represent a mapping of [N]k to [M]k by a function f : [N]k
× [M]k

→ R>0 such that
z 7→ α then f (z;α) = 1 and f (z, β) = 0 for all β , α. More generally, we consider functions
f : [N]k

× [M]k
→ R>0 such that for each z ∈ [N]k,

∑
α∈[M]k f (z;α) = 1. These represent

randomized mappings. For any z ∈ [N]k we let f (z) be the random variable that equals α
with probability f (z;α).

For a string z ∈ [N]k and a subset A ⊂ [k] we denote zA ∈ [N]A the substring
obtained by restricting z to the coordinates of A. Given u ∈ [N]A, v ∈ [N]B,w ∈ [N]C we
denote z = uvw the string in [N]k obtained by concatenating u, v,w appropriately, so that
zA = u, zB = v, zC = w. For a partition [k] = A ∪ B ∪ C denote

f (u, v, ?;α,?,?) = E
w

∑
β,γ

f (u, v,w;α, β, γ)

where the implicit dependence on A,B,C is in that (u, α) ∈ ([N]× [M])A, (v, β) ∈ ([N]× [M])B

and (w, γ) ∈ ([N]×[M])C. We interpret this quantity as the probability of selecting a random
w and having f (u, v,w) output an answer in [M]k that is equal to α on the coordinates of A.

Denote
win(a, b) = E

A,B
E
u,v

∑
α

f (u, v, ?;α,??)2

where the expectation is over all disjoint sets A,B with |A| = a and |B| = b.

Proposition 2.1. The quantity win(a, b) is the acceptance probability of T (a, b).

Proof. The proof follows by definition: for any u, v, the quantity
∑
α f (u, v, ?;α,?,?)2 is

the probability of selecting w,w′ at random and then selecting β, β′ and then accepting if
there is some α such that βA = α = β′A. �

2.2 Rotation Invariance

The direct product test we described in the introduction has a well-studied “rotation-
invariant” version, which is more relevant when testing that f = 1 × · · · × 1, i.e. that f is
the k-fold direct product of some 1 : [N]→ [M] with itself.

For a permutation σ : [k]→ [k] and a string x ∈ Xk let σx be the string xσ(1), . . . , xσ(k).

Trot(t) - rotation-invariant two-query test with intersection t

Choose A ⊂ [k] of size t. Choose x, y ∈ [N]k uniformly at random, conditioned
on xA = yA. Choose a random permutation σ : [k] → [k]. Accept iff f (x)A =
(σ−1 f (σy))A.

For any function f : [N]k
× [M]k

→ R>0, the “symmetrized” version of f is defined as
fsym : [N]k

× [M]k
→ R>0 given by

fsym(x;α) = E
σ

f (σx; σα)

It is not hard to see that fsym is “rotation invariant” : for every σ and x;α fsym(x;α) =
fsym(σx; σα). Moreover, the success of fsym in the original DP test is equal to the success of
f in the rotation invariant test. Thus, we can deduce for example from Theorem 1.1 that
fsym is close to a direct product that is rotation-invariant, and this implies the closeness of
f to the same direct product.
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3 Local Structure

In this section we prove Lemma 1.2. So assume f is given such that win(t, 0) > δ, and let
1 − η = δ2/t.

3.1 A Potential Function Argument

We first find values a, b for which win(a, b + 1) ≈ win(a, b) ≈ win(a + 1, b). We prove,

Lemma 3.1. There are values t/2 6 a 6 t and b 6 t/2, such that δ 6 win(a, b) and such that

(1 − η) 6
win(a, b)

win(a, b + 1)
6 1 and (1 − η) 6

win(a + 1, b)
win(a, b + 1)

6 1

First, we show a generic monotonicity property of the value win(a, b). This property is
very useful, and is the main reason to consider T (a, b) instead of T (t), as there is no direct
way to compare T (t) and T (t + 1).

Proposition 3.2 (Monotonicity). Suppose a + b < k. Then

win(a, b + 1) > win(a + 1, b)

and
win(a, b + 1) > win(a, b).

Proof. For a tuple τ = (A,B, i,u, v, α) where |A| = a, |B| = b and A ∩ B = φ and u ∈ [N]A, v ∈
[N]B and α ∈ [M]A, we denote

∀x ∈ [N], β ∈ [M] hτ(x, β) = f (ux, v, ?;αβ, ?,?). (3.1)

and define

T(τ) = E
x

hτ(x, ?)2, I(τ) = E
x

∑
β

hτ(x, β)2, K(τ) = (E
x

hτ(x, ?))2 . (3.2)

Let hτ(x, ?) =
∑
β hτ(x, β). Now

win(a, b + 1) = E
A,B,{i}

E
uv

∑
α

E
x

hτ(x, ?)2 = E
A,B,{i}

E
uv

∑
α

T(τ) (3.3)

win(a + 1, b) = E
A,B,{i}

E
uv

∑
α

E
x

∑
β

hτ(x, β)2 = E
A,B,{i}

E
uv

∑
α

I(τ) (3.4)

win(a, b) = E
A,B,{i}

E
uv

∑
α

(E
x

hτ(x, ?))2 = E
A,B,{i}

E
uv

∑
α

K(τ) (3.5)

where the expectations are over all uniformly chosen disjoint sets A,B of size a, b uniformly
chosen i < A ∪ B, and u ∈ [N]A, v ∈ [N]B, α ∈ [M]A. We will show that for each
τ = (A,B, i,u, v, α)

T(τ) > I(τ) and T(τ) > K(τ) .

Indeed, for any non-negative function h : [N] × [M] → R>0, (here we also denote
h(x, ?) =

∑
β h(x, β)):

E
x

h(x, ?)2 > E
x

∑
β

h(x, β)2

which means that T(τ) > I(τ) so win(a, b + 1) > win(a + 1, b). Also, due to Cauchy-Schwarz,

E
x

h(x, ?)2 > (E
x

h(x, ?))2

which means that T(τ) > K(τ) so win(a, b + 1) > win(a, b). �
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Using this monotonicity we can now easily prove Lemma 3.1,

Proof. The two upper bounds are immediate from Proposition 3.2 for all values of a, b. For
the lower bounds, we run a hybrid argument. Fix (a0, b0) to equal (t, 0). Inductively set
(ai+1, bi+1) = (ai − 1, bi + 1) or (ai+1, bi+1) = (ai, bi + 1) whichever maximizes win(ai+1, bi+1). By
Proposition 3.2 the sequence win(ai, bi) is non-decreasing with i (and in particular, each
win(ai, bi) is at least δ). However, the multiplicative increase from step i to i + 1 cannot
exceed

win(ai+1, bi+1)
win(ai, bi)

> (1 − η)−1

for more than t/2 steps because win(ai, bi) 6 1. �

3.2 Local Direct Product

With the values a, b in hand, we can complete the proof of Lemma 1.2. For a tuple
τ = (A,B, i,u, v, α) recall the definition of hτ from (3.1) and define

∀x ∈ [N] βτ(x) = argmaxβ hτ(x, β) . (3.6)

Also recall the definition of I(τ),T(τ),K(τ) from (3.2)

K(τ) = (E
x

hτ(x, ?))2, I(τ) = E
x

∑
β

hτ(x, β)2, T(τ) = E
x

hτ(x, ?)2

and we add
D(τ) = (E

x
hτ(x, β(x)))2 .

Define a distribution ν over tuples by ν(τ) =
T(τ)∑
τ T(τ) . Lemma 1.2 will follow directly from

Proposition 3.3. If Eτ∼ν
I(τ)
T(τ) > 1 − η and Eτ∼ν

K(τ)
T(τ) > 1 − η then Eτ∼ν

D(τ)
T(τ) > 1 − 8η.

Proof of Lemma 1.2 from Proposition 3.3. Observe that

E
τ∼ν

I(τ)
T(τ)

=
∑
τ

ν(τ)
I(τ)
T(τ)

=
∑
τ

T(τ)∑
τ′ T(τ′)

·
I(τ)
T(τ)

=

∑
τ I(τ)∑
τ′ T(τ′)

=
win(a + 1, b)
win(a, b + 1)

and similarly

E
τ∼ν

K(τ)
T(τ)

=

∑
τ K(τ)∑
τ T(τ)

=
win(a, b)

win(a, b + 1)
.

We already know from Lemma 3.1 that the two ratios above are at least 1 − η. So the
assumption of the proposition holds. As for the conclusion, the proposition asserts that

E
τ∼ν

D(τ)
T(τ)

=

∑
τ D(τ)∑
τ T(τ)

> 1 − 8η

which implies
(1 − 8η)−1

∑
τ

D(τ) >
∑
τ

T(τ) >
∑
τ

K(τ)

where the second inequality follows from Proposition 3.2. Equivalently, by similar
arguments we get Eτ∼µ

D(τ)
K(τ) > 1 − 8η for µ(τ) =

K(τ)∑
τ′ K(τ′) . One can check that D(s,i)

K(s,i) =

Pz|s[ f (z)i = βs,i(zi)], and it remains to verify that the definition of µ here coincides with the
definition in Lemma 1.2:

P[T (a, b) accepts on s]
P[T (a, b) accepts]

=
P[ABiuv] · K(ABiuvα)
EABiuv K(ABiuvα)

=
K(τ)∑
τ′ K(τ′)

�
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Proof. (of Proposition 3.3) Let 1 − η(τ) = 1
2

(
I(τ)
T(τ) +

K(τ)
T(τ)

)
, so that Eτ η(τ) 6 η. Observe that

I(τ)
T(τ) > 1 − 2η(τ) and K(τ)

T(τ) > 1 − 2η(τ). We now rely on the following lemma, plugging in

h = hτ, to deduce D(τ)
T(τ) > (1 − 2η(τ))(1 − 2η(τ)

1−2η(τ) )
2 > 1 − 8η(τ). Taking expectation over τ

(according to ν) completes the proof. �

Lemma 3.4. Let h : [N] × [M]→ R>0 and η > 0 be such that

(1 − η)E
x

h(x, ?)2 6 E
x

∑
β

h(x, β)2 (3.7)

and
(1 − η)E

x
h(x, ?)2 6 (E

x
h(x, ?))2 (3.8)

Then, letting β(x) = argmaxβ h(x, β),

(E
x

h(x, β(x)))2 > (1 − η)(1 −
η

1 − η
)2E

x
h(x, ?)2 .

Proof. Define p(x) = h(x, β(x))/h(x, ?). From (3.7),∑
x

p(x)h(x, ?)2 =
∑

x
max
β

h(x, β)
∑
β

h(x, β) >
∑
x,β

h(x, β)2 > (1 − η)
∑

x
h(x, ?)2

and rearranging, ∑
x

h(x, ?)2(1 − p(x)) 6 η
∑

x
h(x, ?)2 (3.9)

So according to the distribution given by P(x) =
h(x,?)2∑
x h(x,?)2 the expectation of 1 − p is small.

Next, let h̄ = Ex h(x, ?) and write

E
x

(h(x, ?) − h̄)2 = E
x

[h(x, ?)2
− 2h̄h(x, ?) + h̄2] = E

x
h(x, ?)2

− h̄2 6 ηE
x

h(x, ?)2 (3.10)

where the inequality at the end is from (3.8). Next,

h̄
∑

x
h(x, ?)(1 − p(x)) =

∑
x

(h̄ − h(x, ?))h(x, ?)(1 − p(x)) +
∑

x
h(x, ?)2(1 − p(x)) (3.11)

The second term is immediately bounded by η
∑

x h(x, ?)2 by (3.9). We bound the first
term using Cauchy Schwarz to get

(
∑

x
(h̄ − h(x, ?))2)1/2(

∑
x

h(x, ?)2(1 − p(x))2)1/2 6 η
∑

x
h(x, ?)2

where we have used (3.10) and again (3.9) (and using 1 − p(x) 6 1).
Plugging

∑
x h(x, ?)2 6 h̄

1−η
∑

x h(x, ?) (from (3.8)) into (3.11) and dividing by h̄ gives

E
x

[h(x, ?) − h(x, β(x))] 6
η

1 − η
E
x

h(x, ?)

Finally, by rearranging and squaring we get

(E
x

h(x, β(x)))2 > (1 −
η

1 − η
)2(E

x
h(x, ?))2 > (1 − η)(1 −

η

1 − η
)2E

x
h(x, ?)2 .

where the second inequality is from (3.8). �

Finally, we note that if f is rotation-invariant then for every s = ABuvα it is easy to see
that for every i, i′ < A∪ B, βs,i = βs,i′ because for each x, βs,i(x) is the most popular β among
all z|s with zi = x. But permuting each z so that i and i′ are swapped (this does not change
z|s) and implies that this equals βs,i′(x).
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4 Global Direct Product

In this section we prove Theorem 1.1. We now assume that the function f passes the test
with probability δ > 1 − ε for some small ε > 0, i.e. win(t, 0) > 1 − ε. We first show in
Lemma 4.1 that the high winning probability implies that for nearly all of ABuv there is
really only one α responsible for almost all of the winning probability, and so we get a
version of Lemma 1.2 that does not involve µ. We then proceed to prove Theorem 1.1 from
Lemma 4.1 by averaging arguments: we show that the local functions on each ABuv must
agree with each other essentially by arguing that a random element that sits in both ABuv
and A′B′u′v′ must agree with both functions. This gives rise to one global function.

Let t/2 6 a 6 t and b 6 t/2 be the values guaranteed by Lemma 1.2, and let η = 1 − δ2/t

and observe that η = Θ(ε/t). Throughout this section we refer to ABuvα implicitly assuming
that A,B are disjoint of sizes a, b respectively, and that u ∈ [N]A, v ∈ [N]B, α ∈ [M]A. We
first prove

Lemma 4.1. For each A,B,u, v there is a direct product function βABuv : [N]C
→ [M]C (where

C = [k] \ (A ∪ B)), such that

E
A,B,u,v

P
D,w

[ f (uvw)D = βABuv(wD)] > 1 −O(ε)

where D ⊂ C is a random subset of size t.

The difference between this statement and the conclusion of Lemma 1.2 is in that here
the average is over all uniform A,B,u, v and there is no dependence on µ, and in that the
local direct product functions are independent of α.

Proof. From Lemma 1.2 we have

E
s=ABuvα∼µ

E
i<A∪B

P
z|s

[ f (z)i , βτ(zi)] 6 O(η) .

For any D ⊂ C, |D| = t, we now do a simple union bound writing
∑

i∈DPz|s[ f (z)i , βs,i(zi)] >
Pz|s[ f (z)i , βs,i(zi) for some i ∈ D], and get∑

s
µ(s) P

D; z|s
[ f (z)D , βs(zD)] 6 O(tη) 6 O(ε)

where βs(zD) is short for (βs,i(zi))i∈D. Taking complements we get

E
s∼µ

P
D; z|s

[ f (z)D = βs(zD)] > 1 −O(ε) . (4.1)

Plugging in µ(s) = P[T (a, b, c + 1) accepts on s]/P[T (a, b, c + 1) accepts] into this, and
multiplying by P[T (a, b, c + 1) accepts] > 1− εwe get (keeping s = ABuvα and letting ‘win
with α’ be the event that T (a, b, c + 1) accepts with f (uvw)A = α = f (uvw′)A)

E
ABuv

∑
α

P[win with α |ABuv] · P
D; z|s

[ f (z)D = βs(zD)] > 1 −O(ε) . (4.2)

We now claim that P[T (a, b, c + 1) accepts] > 1 − ε implies∑
ABuv

∑
α,αmax

P[T (a, b, c + 1) accepts on s = ABuvα] 6 2ε (4.3)
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where αmax = argmaxαP[win with α |ABuv]. Indeed, write

1 − εABuv =
∑
α

P[win with α |ABuv] =
∑
α

f (u, v, ?;α,?,?)2

6
∑
α

f (u, v, ?;α,?,?) ·max
α

f (u, v, ?;α,?,?) 6 f (u, v, ?;αmax, ?, ?)

which means that

1 − 2ε = E
ABuv

[1 − 2εABuv] 6 E
ABuv

(1 − εABuv)2 6 E
ABuv
P[win with αmax |ABuv]

implying (4.3). So we can neglect in (4.2) all α except for αmax, while only losing another at
most 2ε, so, denoting βABuv = βABuvαmax we have

1 −O(ε) 6 E
ABuv
P[win with αmax |ABuv] · P

D; z|ABuvαmax
[ f (z)D = βABuv(zD)]

6 E
ABuv

P
D; z|ABuv

[ f (z)A = αmax] · P
z|ABuvαmax

[ f (z)D = βABuv(zD)]

= E
ABuv

P
D,w

[ f (uvw)A = αmax and f (uvw)D = βABuv(wD)]

6 E
ABuv

P
D,w

[ f (uvw)D = βs(wD)]

The inequality in the first line follows from removing the non-maximal α in (4.2) and using
the bound in (4.3). The inequality in the second line follows becauseP[win with α |ABuv] =
Pz|ABuv[ f (z)A = α]2 6 Pz|ABuv[ f (z)A = α]. In the last two lines we rewrote z|ABuv by
choosing a random w ∈ [N][k]−(A∪B) and letting z = uvw. �

Now that the local structure is more uniformly distributed we can finally merge the
piecewise local structure into a global structure. This is done by first using a union bound
to show that for a random ABuv, the local direct product function βABuv agrees with f whp
on almost all z, including those z that are not consistent with u, v. This already shows that
βABuv has global agreement with f . Next, since βABuv is only defined on the coordinates
C = [k] − (A ∪ B), we need to find another global function that takes care of the remaining
coordinates. This is done essentially by repeating this argument once more with a disjoint
pair of A′,B′.

Proof of Theorem 1.1. Choose A,B at random disjoint of size a, b and let C be their comple-
ment. Choose D ⊂ C at random such that |D| = t.

Choose u, v at random on A,B respectively, and complete them to z = (u, v,w1,w2)
where w2 ∈ [N]D is defined on the coordinates in D. Choose u′, v′,w′1 independently from
u, v,w1 and set z′ = (u′, v′,w′1,w2). The probability that f (z)D = f (z′)D is at least 1 − ε by
the assumption win(a, b, c + 1) > 1 − ε. We also know by the previous lemma, that the
probability that f (z)D = βABuv(zD) is at least 1 −O(ε). Together both events happen with
probability 1 −O(ε) − ε, and then we have

f (z′)D = f (z)D = βuvAB(zD) = βuvAB(z′D)

where we have used the direct-product-ness of β for the last equality. We conclude that for
a random choice of A,B,u, v and a uniformly random z (independent of A,B,u, v) and a
random subset D ⊂ [k] − (A ∪ B), P[ f (z)D = βABuv(zD)] > 1 − O(ε). A final union bound
allows us to choose at random both A,B,u, v and A′,B′,u′, v′ such that A′ ∪ B′ is disjoint
from A ∪ B and such that both

P
D⊂[k]−(A∪B)

[ f (z)D = βABuv(zD)] > 1−O(ε) and P
D⊂[k]−(A′∪B′)

[ f (z)D = βA′B′u′v′(zD)] > 1−O(ε) .
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where the probabilities are also over z and the choices of ABuv,A′B′u′v′. Thus, there
must be a choice of ABuv,A′B′u′v′ such that conditioning on this choice doesn’t lower
the probability, and we can choose βi = βABuv,i for all i < A ∪ B as well as βi = βA′B′u′v′,i for
i ∈ A ∪ B. Finally,

P
z∈[N]k, |D|=t

[ f (z)D = β(zD)] > 1 −O(ε)

follows by splitting D into D1 = D ∩ (A ∪ B) and D2 = D \ (A ∪ B). The above implies that
with probability 1 −O(ε) both f (z)D1 = β(zD1) and f (z)D2 = β(zD2).

For each z, PD[ f (z)D , β(zD)] > Ω(dist( f (z), β(z)) · t/k, and taking expectation over z
and multiplying by k/t we get Ez[dist( f (z), β(z))] 6 O(εt/k). For t = k/2 this implies that
the probability of f (x) , 1(x) is O(ε).

Finally, we note that if f is rotation-invariant, then by Lemma 1.2 each βs is rotation
invariant, and this carries over to each βuvAB. Our final β is obtained from gluing two such
together, but we can infer from their overlap that all coordinates of β are identical. We
omit the details. �

We remark that this theorem is tight (up to the constants in the O(·) notation). Clearly,
the conclusion must allow for ε fraction of total junk in f . Moreover, consider a function
f obtained by taking 11 × · · · × 1k and for each x changing r = εk/t coordinates of
f (x) independently at random. This function still passes T (t) with probability at least
(1 − t/k)2r = 1 −O(ε).
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A From tuples to sets

This section is joint work with Igor Shinkar.
The direct product construction takes a function 1 : [N] → [M] into a function

f : [N]k
→ [M]k, by assigning to each k-tuple in [N]k a value in [M]k f (z) = 1(z1), . . . , 1(zk).

A very similar construction is to assign to each k-element subset of N a value in [M]k.
In other words, the set-direct product of a function 1 : [N] → [M] is the function
f :

([N]
k
)
→ [M]k defined by f (S) = 1|S.

In this setting the same two-query test can be analysed: choose two subsets Z,Z′ ⊂ [N]
of size k, such that |Z ∩ Z′| = t, and check that f (Z)Z∩Z′ = f (Z′)Z∩Z′ .

Intuitively, any DP testing theorem that holds for the tuple-direct-product should also
hold for the set-direct-product.

The case k �
√

N. In this case a random k-tuple has whp k distinct elements, so the
theorems proven about the tuple version can be used for analyzing the set version. One
simply defines a function f ′ : [N]k

→ [M]k from f by setting f ′(z) = f (set(z)) where
set(z) = {z1, . . . , zk}. We can ignore the tuples that have repeated coordinates (for which
|set(z)| < k) because they occur with negligible probability when k�

√
N. So the success

probability of the newly defined f ′ is almost identical to the success probability of f .
Similarly, the conclusion for f ′ carries over to f . We remark that the fact that f ′ came
from a function on sets means that it is rotation invariant and this implies that the direct
product components are identical.

The case k 6 N/2. For larger values of k, we can no longer assume that for a random
z ∈ [N]k, |set(z)| = k with high probability. And in fact |set(z)| is not concentrated on one
single value. Nevertheless, it is concentrated enough on values "around" k to enable the
proofs to go through. Let f :

([N]
k
)
→ [M]k and let winset(t) denote the success probability of

the test with intersection parameter t.
Claim A.1. Let t = k/2 6 N/4. If winset(t) > 1 − ε then winset(s) > 1 − 2ε for every s < t.

Proof. We express the distribution of Tset(s) as two steps in the distribution Tset(t). Choose
a random pair of k-subsets X,Y that intersect on exactly s elements. Choose a third subset
Z = (X∩Y)∪X1∪Y1∪R where X1 ⊂ X\Y is a random subset of size t−s and symmetrically
Y1 ⊂ Y \ X is a random subset of size t − s, and R is a random subset of [N] \ (X ∪ Y) of
size k − 2t + s (more generally, need 3k − 2t 6 N for this to work). It is easy to check that
the distribution of X,Z is as in the set-DP-test(t) and similarly the distribution of Y,Z.
Therefore, with probability at least 1 − 2ε both pairs agree on their intersection in which
case so does the pair X,Y. �
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From this we can prove the analogous Theorem 1.1 for sets following these steps.

1. Given f , define a (randomized) function f ′ : [N]k
→ [M]k by setting f ′(z) as follows.

Choose a random k-element set Z ⊇ set(z), let α = f (Z) be viewed as a function from
the k elements of Z to [M]. Set f ′(z) to be (α(zi))k

i=1.

2. Show that if f passes the test with probability 1 − ε then f ′ passes the test with
probability 1 − 2ε. (Opening up the random choices of the test on f ′ one gets a
convex combination of tests on f with intersection parameter s for various s).

3. Deduce that f ′ is close to a global direct product and therefore so is f .

B Relation to Parallel Repetition of Games

We describe in this section a specific parallel repeated game is equivalent to the direct
product test, in that the squared collision value (defined below) of the game with strategy f
is exactly equal to the success probability of the test T (t) (or T (a, b)) on f .

We assume familiarity with the setting of [DS13]. Briefly, a one round two player
projection game G is given by a bipartite graph with constraints on the edges, such that
for each edge (u, v) Bob’s answer to v determines at most one possible answer for Alice to
u. A game is viewed as a linear map from a strategy f : V × Σ→ R>0 for Bob to a strategy
G f : U × Σ→ R>0 for Alice,

G f (u, α) = E
v|u

∑
β:α←[β

f (v, β)

The direct product of two games G and H is the game G ⊗H described by the tensor of the
operators.

The squared collision value of a projection game G is described by choosing a random
Alice question u, and then two independent neighbors of it v, v′, and then accepting if the
answers of Bob on v and v′ project to the same answer for u.

All of the games below will have right vertex set [N], and right alphabet [M]. This
means that they all map, as linear operators a function in R[N]×[M] to some other space.

I: The identity game described by the graph ([N], [N],E = ∪x∈[N](x, x)), alphabet [M],
and whose edges carry equality constraints. The corresponding operator is the
identity I : R[N]×[M]

→ R[N]×[M].

T: The sum-over-answers game described by the graph ([N], [N],E = ∪x∈[N](x, x)), right
alphabet [M], left alphabet {0}, and whose edges carry a free constraint: πe(a) = 0 for
every a and e. The corresponding operator is defined by

T f (v, 0) =
∑

b

f (v, b) .

K: The averaging game described by the graph (U = {0}, [N],E = ∪x∈[N](0, x)), right
alphabet [M], left alphabet {0}, and whose edges carry a free constraint: πe(a) = for
every a and e. The corresponding operator is defined by

K f (0, 0) = E
v

∑
b

f (v, b) .
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The direct product test T (t) is given by first choosing a random subset A ⊂ [k] of size t and
then letting G = I⊗A

⊗ K⊗[k]−A be the game. Thus, we have

win(t) = E
|A|=t
‖(I⊗A

⊗ K⊗[k]−A) f ‖2 .

and similarly
win(a, b) = E

|A|=a,|B|=b,A∩B=φ
‖(I⊗A

⊗ T⊗B
⊗ K⊗[k]−A−B) f ‖2 .

Our analysis can be seen as taking the original game G that has t copies of I and k − t
copies of K and replacing at each step one more coordinate with a copy of T. At each
step the value can only go up, but there is a point where it doesn’t change much. This is
exactly captured in the proof of Lemma 3.1 with quantities K(τ),T(τ) and I(τ) (see (3.2))
that represent the change on some coordinate i between games K,T or I.
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