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Abstract

A question raised by the recent subexponential algorithm for Unique Games (Arora,
Barak, Steurer, FOCS 2010) is what other “hard-looking” problems admit good approx-
imation algorithms with subexponential complexity.

In this work, we give such an algorithm for d-to-1 two-prover games, a broad class
of constraint satisfaction problems. Our algorithm has several consequences for Khot’s
d-to-1 Conjectures. We also give a related subexponential algorithm for certifying that
small sets in a graph have almost perfect expansion. Our algorithms follow the basic
approach of the algorithms in (Arora, Barak, Steurer, FOCS 2010), but differ in the
implementation of the individual steps.

Key ingredients of our algorithms are a local version of Cheeger’s inequality that
works in the regime of almost perfect expansion, and a graph decomposition algorithm
that finds for every graph, a subgraph with at least an ε fraction of the edges such that
every component has at most nO(log(1/λ)/ log(1/ε))1/2 eigenvalues larger than λ.

∗Microsoft Research New England, Cambridge, MA.
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1 Introduction

One of the main question raised by the recent subexponential algorithm for Unique Games
[ABS10] is what other “hard-looking” problems admit improved approximations in subex-
ponential time. For example, is there an algorithm for Max Cut that beats the Goemans–
Williamson approximation by ε > 0 and runs in time exp(n f (ε)) for a function f (ε) that tends
to 0 as ε→ 0? Similarly, is there an algorithm for Sparsest Cut with approximation ratio C
and running time exp(ng(C) for a function g(C) that tends to 0 as C → ∞?

In this work, we give subexponential approximation algorithms for two other “hard-
looking” problems: (1) the problem of approximating the optimal value of d-to-1 two-prover
games, and (2) the problem of certifying that all small vertex sets in a graph have almost
perfect expansion.

Khot’s Conjectures. In his seminal paper [Kho02], Khot proposed two conjectures about
the computational complexity of two-prover games (a class of constraint satisfaction prob-
lems). The first one, the Unique Games Conjecture, turns out to have many very strong
implications for the hardness of approximation. A confirmation of the conjecture would
essentially settle the approximability of many basic optimization problems, like Max Cut
[KKMO07, MOO05], Vertex Cover [KR08], and, in fact, every constraint satisfaction prob-
lem [Rag08]. The Unique Games Conjecture asserts that for a certain constraint satisfaction
problem, called Unique Games, it is NP-hard to distinguish between the case that most of
the constraints can be satisfied, at least a 1 − ε fraction, and the case that almost none of the
constraints can be satisfied, at most an ε fraction. (Here, ε > 0 can be arbitrarily close to 0.
See Section 2.2 for a formal definition.)

Khot’s second conjecture, the d-to-1 Conjecture also has very interesting (but fewer
known) implications: the first strong approximation hardness for various graph coloring
problems [DMR09, DS10, GS11] and optimal hardness for Max 3-CSPs with perfect com-
pleteness [OW09, Tan09]. The d-to-1 Conjecture asserts that for d-to-1 Games, a more
general constraint satisfaction problem than Unique Games, it is NP-hard to distinguish
between the case that all constraints can be satisfied and the case that almost none of the
constraints can be satisfied, at most an ε fraction. (Again, ε > 0 can be arbitrarily close to 0.
See Section 2.2 for a formal definition.)

Resolving Khot’s conjectures is one of the important open problems in approximation
complexity. In contrast to many other conjectures in complexity, there is no consensus
among researchers whether the Unique Games Conjecture or the d-to-1 Conjecture are true
or not. One of the few concrete evidences for the truth of the conjectures are integrality
gaps (which one can view as lower bounds in restricted computational models defined by
hierarchies of mathematical programming relaxations). For Unique Games, relatively strong
integrality gaps are known [KV05, RS09]. For d-to-1 Games, basic integrality gaps (with
perfect completeness) were recently shown [GKO+10].

Arora, Barak, and the author [ABS10] showed that Unique Games has a subexponential
algorithm. This algorithm achieves in time exp(nO(ε1/3)) an approximation that the Unique
Games Conjecture asserts to be NP-hard to achieve, that is, it distinguish between the
case that a 1 − ε fraction of the constraints can be satisfied and the case that at most an ε
fraction of the constraints can be satisfied. This algorithm demonstrates that hardness results
based on the Unique Games Conjecture cannot rule out subexponential algorithms. (Certain
approximation hardness results based on Label Cover (e.g., [Hås01, MR08]) do rule out
subexponential algorithms assuming the Exponential Time Hypothesis [IPZ01], namely
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3-Sat requires time 2Ω(n).) Another consequence of this algorithm is that if the Unique
Games Conjecture is true, then Unique Games is a problem with intermediate complexity
(strictly between polynomial and strongly exponential complexity).

Building on this work, we show that also the more general d-to-1 Games problem has a
subexponential algorithm, achieving an approximation that the d-to-1 Conjecture asserts to
be NP-hard to achieve.

Theorem (Informal, see Theorem 2.5). There exists an algorithm that given a satisfiable
d-to-1 game, finds an assignment that satisfies an ε fraction of the constraints in time

exp
(
nO(1/ log(1/ε))1/2

)
.

(Here, the O(·) notation hides factors depending polynomially on d and the alphabet size of
the game.)

Like the algorithm for Unique Games, this algorithm demonstrates that hardness results
based on the d-to-1 Conjecture (and its variants) do not rule out subexponential algorithms,
e.g., opening the possibility of an algorithm that colors a 3-colorable graph with C colors in
time exp(n f (C)), where f tends to 0 as C → ∞.

Our algorithm also shows that if the d-to-1 Conjecture (or the Unique Games Conjecture)
is true, then d-to-1 Games has intermediate complexity (similar to Unique Games). Further-
more, any reduction from 3-Sat or Label Cover proving the d-to-1 Conjecture must have
large polynomial blow-up, at least nΩ(log(1/ε))1/2 where ε is the desired soundness (assuming
that 3-Sat does not have subexponential algorithms).

The best known polynomial-time algorithm for d-to-1 Games [CMM06] can find an
assignment for satisfiable d-to-1 games that satisfies roughly a 1/k1−O(1/d1/2) fraction of
constraints, where k is the alphabet size of the game. For the case, we are interested in
the alphabet size of the game could be logarithmic in the instance size. (For significantly
larger alphabet size, the best algorithm for d-to-1 Games satisfies a 2−O(log n·log d)1/2 fraction
of constraints [Tre05].)

Expansion of Small Sets in Graphs. The (edge) expansion of small sets in graphs is
closely connected to the Unique Games problem. Raghavendra and the author [RS10] give
a reduction from Small-Set Expansion, the problem of approximating the expansion of
small sets in graphs, to Unique Games. This reduction shows that Unique Games is a harder
problem than Small-Set Expansion. In particular, the Unique Games Conjecture is true
if the following hypothesis, the Small-Set Expansion Hypothesis, is true: it is NP-hard
to distinguish between the case that there exists a small non-expanding vertex set, with
expansion at most ε, and the case that all small vertex sets have almost perfect expansion,
expansion at least 1 − ε. (Here, ε > 0 can be arbitrarily small. See [RS10] for a formal
statement.)

The subexponential algorithm for Unique Games [ABS10] gives further evidence for
the close connection between Small-Set Expansion and Unique Games: At the heart of this
algorithm lies a subexponential algorithm for approximating Small-Set Expansion.

In this work, we demonstrate a similar connection between d-to-1 Games and Small-
Set Expansion in the regime, where the minimum expansion of small sets is close to 1.
More concretely, our subexponential algorithm for d-to-1 Games builds on the following
subexponential algorithm for certifying that small sets in a graph have almost perfect
expansion.
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Theorem (Informal, see Theorem 2.2). There exists an algorithm that given a graph con-
taining a vertex set with volume at most δ and expansion at most 1 − ε, finds in time exp(nβ)
a vertex set with volume at most δ and expansion at most 1 − εO(1/β).

It is interesting to note that certifying almost perfect expansion for random graphs is easy.
For random graphs, the eigenvalue gap is an efficiently computable certificate that small sets
have almost perfect expansion. Concretely, in a graph with (normalized) eigenvalue gap
1 − ε, every set with volume at most δ has expansion at least 1 − δ − ε. (A random regular
graph with degree O(1/ε2) will have eigenvalue gap at least 1 − ε with high probability.)
However, in general, graphs in which small sets have close to perfect expansion do not
necessarily have eigenvalue gap close to 1. In fact, there are graphs with eigenvalue gap ε
in which sets of volume δ < 1/2 have expansion at least 1 − δO(ε). (Examples for this are
hypercontractive graphs, like Boolean noise graphs.)

The problem of certifying that small sets in a graph have almost perfect expansion is
related to the Densest k-Subgraph problem. In this problem, one is given graph and the goal
is to find a vertex set of size k with the maximum number of edges staying inside. Achieving
approximation ratio C for Densest k-Subgraph is roughly equivalent (at least for regular
graphs) to the problem of distinguishing between the case there exists a set with volume
k/n and expansion at most 1 − ε and the case that all sets of volume k/n have expansion
at least 1 − ε/C. The best known polynomial-time algorithm for Densest k-Subgraph has
approximation ratio C = O(n1/4) [BCC+10]. This approximation guarantee is incomparable
to ours. Assuming we choose β = Ω(1), the approximation guarantee of our subexponential
algorithm is better when ε is not too small, namely ε > 1/no(1). For smaller ε, namely
ε < 1/nΩ(1), the approximation guarantee of [BCC+10] remains the best known.

1.1 Techniques

Both of our algorithms follow the basic approach of the algorithms in [ABS10]. In this
section, we describe this basic approach and outline some of the differences between the
algorithms here and in [ABS10]. (Unlike the rest of the paper, the discussion here assumes
some familiarity with graph expansion and two-prover games.)

Subexponential Algorithms for Small-Set Expansion. One of the algorithms of
[ABS10] has the following approximation guarantee for Small-Set Expansion: Given a
graph containing a vertex set S with volume δ and expansion at most ε, the algorithm finds
in time exp(nO(ε)/δ) a vertex set with volume at most δ and expansion at most 0.9.

This algorithm is based on the following two facts: (1) Consider the eigenvectors of the
graph (or better, its stochastic adjacency matrix) with eigenvalue close to 1, say larger than
1 −O(ε). If S is a vertex set with expansion at most ε, then its indicator vector is close to the
subspace spanned by these eigenvectors. Hence, if there are only few such eigenvectors, we
can simply find a set close to S by enumerating this subspace (suitably discretized). This
enumeration takes time exponential in the dimension of the subspace. (2) On the other hand,
[ABS10] show that if there are many eigenvalues close to 1 (more than nO(ε)/δ), then not
all local random walks can mix quickly. Using an appropriate local variant of Cheeger’s
inequality, one can show that this can only happen if one of the level sets of a local random
walk does not expand.

Suppose we are interested in certifying that small sets in a graph have almost perfect
expansion. In other words, if the graph contains a small set S with expansion at most 1−ε, we
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want to be able to find a small set with expansion at most 1 − ε′ for some ε′ > 0 (depending
on ε). In this situation, one wants to look at all eigenvectors with eigenvalue larger than
Ω(ε). Similar to before, one can show that the indicator vector of S is Ω(ε)-correlated with
the subspace spanned by these eigenvectors. Given this information, one could find a vertex
set S ′ which agrees with S on an Ω(ε) fraction of its vertices. However, this fact alone is
not enough to imply that S ′ has expansion bounded away from 1. A fairly subtle argument
(see Section 3.1) shows that even if S is only Ω(ε)-correlated with the subspace, it is still
possible to decode a set with expansion bounded away from 1, namely at most 1 − εO(1).
Hence, if there are few eigenvectors with eigenvalue Ω(ε), we can solve the problem again
by enumerating a suitable discretization of the corresponding subspace.

On the other hand, if there are many significant eigenvalues, say at least nβ eigenvalues
larger than Ω(ε), the arguments of [ABS10] show the following: there exists a vertex i and
number t ∈ � such that the t-step random walk from i is concentrated on only a small fraction
of the vertices. In addition, the collision probability of this random walk does not decrease
by much if we take on more random step, concretely the drop in collision probability is at
most C = 1/εO(1/β). We would like to argue that this implies that there exists a vertex set
around vertex i with expansion bounded away from 1. Unfortunately, the usual statement
of Cheeger’s inequality does not apply in this situation, because C is much larger than 1.
(In [ABS10], one can achieve that the collision probability stays essentially the same when
one takes one more random step, which means that C is very close to 1. In this case, the
usual form of Cheeger’s inequality applies and yields a small vertex set with low expansion,
namely close to 0.) We show a tighter version of Cheeger’s inequality, which applies also
when C is much larger than 1. In our situation, this version of Cheeger’s inequality yields a
small vertex set with expansion at most 1 − O(1/C2).

Subexponential Algorithms for 2-Prover Games. Like the algorithm for Unique Games
[ABS10], our algorithm for d-to-1 Games first decomposes the constraint graphs into
components with nice eigenvalue distribution and then uses subspace enumeration to find
good assignments for the components. Unlike the decomposition for Unique Games, our
decomposition for d-to-1 Games has to control eigenvalues close to 0 (eigenvalues larger
than 1/dO(1)). The price that we pay for the additional control on eigenvalues close to 0
is that we might have to remove all but a small fraction of the edges of the graph. b The
subspace enumeration for d-to-1 Games is somewhat more involved than for Unique Games.
Essentially the algorithm uses some form of list decoding to find good assignments for the
components. In this way, one can get an assignment that agrees with an optimal assignment
on an 1/dO(1) fraction of the vertices. Let’s denote this set by T . (However, we have know
way of computing this set.) At this point, we know that all constraints that stay within this
vertex set T are satisfied by the assignment we found. Unfortunately, it could be the case that
the edges that stay inside of T make up much fewer than a 1/dO(1) fraction of the constraints
of the game (i.e., the set could have close-to-perfect expansion in the constraint graph). To
fix this problem, we “unlabel” a constant fraction of randomly chosen vertices and compute
new labels for these vertices using a greedy algorithm. One can show that the fraction of
constraints satisfied by this new assignment is up to a constant factor at least the fraction
of constraints that are incident to the vertex set T . (However, it is not guaranteed that it
actually satisfies a constant fraction of the constraint incident to the set T .) Since T has
volume 1/dO(1), the fraction of constraints incident to it is at least 1/dO(1). It follows that our
assignment satisfies a 1/dO(1) fraction of constraints.
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1.2 Organization

In the next section Section 1.3 (Notation), we introduce some convenient notation for graphs,
expansion, and eigenvalues (which is mostly standard). In Section 2 (Main Results), we
give detailed proofs of our main results assuming several key theorems. We prove these key
theorems in the remaining technical sections Section 3 (Subspace Enumeration), Section 4
(Threshold Rank versus Expansion close to 1), and Section 5 (Graph Decomposition).

1.3 Notation

Graphs and Expansion. Let G be a (possibly weighted) graph with vertex set V . We
write i j ∼ G to denote a random edge i j of the graph. (If the graph is weighted, we sample
an edge with probability proportional to its weight.) We assume that this edge distribution is
symmetric, so that a vertex pair i j has the same probability as the vertex pair ji. Abusing
notation, we write i ∼ G to denote a random vertex of G, distributed like the first endpoint of
a random edge of G.

For vertex subsets S ,T ⊆ V , we let G(S ,T ) := �i j∼G {i ∈ S , j ∈ T } be the fraction of
edges going from S to T . For a vertex i, its (fractional) degree di = G({i},V) is the fraction
of edges leaving the vertex. The volume of a vertex set S is defined as µ(S ) :=

∑
i∈S di.

Alternatively, µ(S ) = �i∼G {i ∈ S }. The expansion of a vertex set S is given by Φ(S ) :=
G(S ,V \ S )/µ(S ). Note that Φ(S ) = �i j∼G { j < S | i ∈ S }.

Linear Algebra for Non-Regular Graphs. For the construction of the graph decomposi-
tion used in the proof of Theorem 2.5 (Subexponential Algorithm for d-to-1 Games), it is
most convenient to allow non-regular graphs. (It’s no longer easily possible to avoid dealing
with non-regular graphs as it is in the case of Unique Games [ABS10].) In the following,
we define appropriate linear algebra notions (matrices, inner products, eigenvalues) for
non-regular graphs (which requires a bit more care than for regular graphs).

We let L2(V) be the space of functions f : V → � endowed with the inner product
〈 f , g〉 := �i∼G figi (For ease of notation, we write fi to denote the value of the function
f at a vertex i.) For a function f ∈ L2(V), we define two norms, ‖ f ‖ := 〈 f , f 〉1/2 and
‖ f ‖1 := �i∼G | fi|. The graph G naturally corresponds to a Markov operator KG on L2(V),

KG f (i) def
= �

j∼G|i
f ( j) .

Here, j ∼ G | i denotes a random neighbor of the vertex i in G. (Formally, we sample a
random edge of G and condition on the first endpoint being i.) It is straight-forward (but
somewhat tedious) to check the following facts about the operator KG. (The interested reader
can find their simple proofs in Section A.1.)

Fact 1.1 (Facts about Markov Operators).

1. The operator KG is self-adjoint, so that 〈 f ,KGg〉 = 〈KG f , g〉 for all f , g ∈ L2(V).

2. The operator KG is contractive in norm ‖·‖, so that ‖KG f ‖ 6 ‖ f ‖ for all f ∈ L2(V).

3. The operator KG is contractive in norm ‖·‖1, so that ‖KG f ‖1 6 ‖ f ‖1 for all f ∈ L2(V).

Since KG is self-adjoint, its eigenvalues are real numbers and there exists an orthonormal
basis of L2(V) formed by its eigenfunctions. Since KG is contractive with respect to ‖·‖,

5



the eigenvalues of KG are between −1 and 1. In fact, the all-ones function f = 1V is an
eigenfunction of KG with eigenvalue 1. When we refer to eigenvalues and eigenfunctions of
a graph, we mean the eigenvalues and eigenfunctions of its Markov operator.

Following [ABS10], we define the threshold rank and the soft-threshold rank of a graph.
For τ > 0, the threshold rank of G, denoted rankτ(G), is the number of eigenvalues of KG

strictly larger than τ. In some situations, the related notion of soft-threshold rank is more
convenient. For τ > 0, the soft-threshold rank of G, denoted rank∗τ(G), is the infimum of∑

i λi
2t/τ2t over all t ∈ �, where λ1, . . . , λ|V | are the eigenvalues of the operator KG. The soft-

threshold rank is always an upper bound on the threshold rank, so that rankτ(G) 6 rank∗τ(G)
for all thresholds τ > 0.

2 Main Results

A key ingredient for several parts of our algorithms is the following local variant of Cheeger’s
bound that works in regime when the expansion is close to 1. (We remark that finding vertex
sets with expansion bounded away from 1 is only non-trivial for sufficiently small sets. For
example, a random vertex set with volume 1/2 has typically expansion bounded away from 1,
namely 1/2. On the other hand, a random vertex set of volume δ is expected to have expansion
roughly 1 − δ.) We prove the following theorem in Section 6.

Theorem 2.1 (Local Cheeger Bound for Expansion close to 1). Let G be a regular graph
with vertex set V and let f ∈ L2(V) be a real-valued function on V such that ‖KG f ‖2 > ε‖ f ‖2

and ‖ f ‖21 6 δ‖ f ‖
2. Then, given the function f , one can compute in polynomial time a vertex

set with volume at most δ and expansion at most 1 −Ω(ε2).

The usual Cheeger bound (more precisely, its local variant used in [ABS10]) asserts
that if ‖KG f ‖2 > (1 − η)‖ f ‖2 and ‖ f ‖21 6 δ‖ f ‖

2, then one can efficiently find a vertex set
(among the level sets of f 2) with small volume, say at most 2δ, and low expansion, namely
at most O(

√
η). In addition, one has to assume that G is “lazy”, that is, at least half of the

degree of every vertex is due to self-loops (formally, � j∼G|i { j = i} > 1/2 for every vertex i).
It is important that Theorem 2.1 can avoid the assumption that G is lazy (the theorem is
trivally true for lazy graphs, because in lazy graphs every nonnegative function satisfies
‖KG f ‖2 > 1/4‖ f ‖2 and every vertex set has expansion at most 1/2.) The main feature of
Theorem 2.1 is that it applies whenever the ratio ‖KG f ‖2/‖ f ‖2 is bounded away from 0
(whereas the usual version of Cheeger’s inequality applies only if this ratio is sufficiently
close to 1).

2.1 Algorithm for Small-Set Expansion close to 1

In this section, we explain the components of the following subexponential algorithm for
certifying that all small sets in a graph have almost perfect expansion.

Theorem 2.2 (Subexponential Certificates for Almost Perfect Expansion). There exists an
algorithm that given a graph containing a vertex set with volume at most δ and expansion at
most 1 − ε, finds in time exp(nβ/δ) a vertex set with volume at most δ and expansion at most
1 − εO(1/β). (Here, ones assumes ε bounded away from 1, say ε < 0.9, and β not too small,
β � log log n/log n).

The algorithm consists of two parts. If the number of eigenvalues larger than ε/2 is
smaller than nβ/δ, we can use the following approximation algorithm based on subspace
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enumeration in order to find a set of volume δ and expansion at most 1 − εO(1). We prove of
the theorem in Section 3.1.

Theorem 2.3 (Subspace Enumeration for Expansion close to 1). There exists an algorithm
that given a graph containing a vertex with volume at most δ and expansion at most 1 − ε,
finds a vertex with volume at most δ and expansion at most 1 − εO(1). The running time of
the algorithm is exponential in rankε/2(G).

On the other hand, if the number of eigenvalues larger than ε/2 is larger than nβ/δ, we
can use the following algorithm for λ = ε/2 (which based on local random walks) to find a
vertex set with volume at most δ and expansion at most 1 − εO(1/β). We prove this theorem
in Section 4.

Theorem 2.4 (Threshold Rank vs Expansion close to 1). Let G be a graph with n vertices
such that rankλ(G) > nβ/δ. Then, G contains a vertex set with volume at most δ and
expansion at most 1 − λO(1/β). Furthermore, there exists a polynomial-time algorithm that
given G and δ, finds such a vertex set. (Here, we assume that the λ is bounded away from 1,
say λ < 0.9, and β is not too small, β � 1/ log n.)

Combining the above theorems in the way we described gives the proof of Theorem 2.2.

Proof of Theorem 2.2. Let G be the given graph (which is promised to contain a vertex set
of volume at most δ and expansion at most 1 − ε.) Our goal is to find a set with volume
at most δ and expansion at most 1 − εO(1/β) in time exp(nβ/δ). To this end, we distinguish
two cases. The first case is that G has more than nβ/δ eigenvalues larger than λ := ε/2. In
this case, Theorem 2.4 tells us that we can find in polynomial time a vertex set with volume
at most δ and expansion at most 1 − εO(1/β). Otherwise, if G has at most nβ/δ eigenvalues
larger than λ, then the algorithm in Theorem 2.3 allows us to find in time exp(nβ/δ) a vertex
set with volume at most δ and expansion at most 1 − εO(1). �

2.2 Algorithm for d-to-1 Games

In this section, we give a subexponential algorithm for d-to-1 Games with the following
approximation guarantee. (We parametrized the approximation guarantee slightly differently
than for the informal theorem statement in introduction. The two approximation guarantees
are equivalent.)

Theorem 2.5 (Subexponential Algorithm for d-to-1 Games). There exists an algorithm
that given a satisfiable d-to-1 game, finds in time exp(k2dnβ) an assignment that satisfies
a (1/d)O(1/β2) fraction of the constraints. (Here, one assumes d > 2 and β not too small,
β � log log n/log n.)

(We remark that the algorithm also works for almost satisfiable d-to-1 games (as long as
optimal solutions violate less than a (1/d)O(1/β2) fraction of the constraints.)

Before proving the theorem, we first give a formal definition of d-to-1 games: Let k ∈ �
and [k] = {1, . . . , k}. We say a binary relation P ⊆ [k] × [k] is d-to-1 if P contains for every
label a ∈ [k], at most d pairs of the form (a, b) ∈ P and at most d pairs of the form (b, a) ∈ P.
(We are abusing the term d-to-1 here. The more common definition would require that for
every a ∈ [k], there is at most one b with (b, a) ∈ P. For us, the more symmetric and more
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general definition is convenient.) We also add a technical condition1 (which is probably not
necessary), namely that P contains for every a ∈ [k], at least one pair of the form (a, b) ∈ P
and at least one pair of the form (b, a) ∈ P.

A d-to-1 game Γ with vertex set V and alphabet [k] = {1, . . . , k} is specified by a list
of d-to-1 constraints, represented as triples (i, j, P) where i, j ∈ V and P is a d-to-1 binary
relation over [k]. An assignment x ∈ [k]V satisfies a constraint (i, j, P) if (xi, x j) ∈ P. The
value of an assignment x for a game Γ is the fraction of constraints of Γ satisfied by x. In the
d-to-1 Games problem, we are given a d-to-1 game Γ and the goal is to find an assignment x
with maximum value. We let opt(Γ) denote the fraction of constraints of Γ satisfied by an
optimal assignment. A game Γ is satisfiable if it has optimal value opt(Γ) = 1.

We will allow the constraints of a game Γ to be weighted (with non-negative coefficients).
In this case, it is convenient to represent the game as a distribution over constraints. We
write (i, j, P) ∼ Γ to sample a random constraint from a game Γ. We will assume that this
distribution is symmetric, in the sense that the constraint (i, j, P) has the same probability as
the constraint ( j, i, P−1), where P−1 = {(b, a) | (a, b) ∈ P} is the inverse relation of P.

Khot [Kho02] conjectures the following for every d ∈ � with d > 2:

d-to-1 Conjecture: For every constant ε > 0, there exists an alphabet size k such that given
a d-to-1 game Γ with alphabet size k, it is NP-hard to distinguish between opt(Γ) = 1
and opt(Γ) 6 ε.

The Unique Games Conjecture is an analog of the d-to-1 Conjecture for d = 1. (However,
one gives up perfect completeness, i.e., opt(Γ) = 1, because such 1-to-1 games are trivial).
Due to the lack of perfect completeness, the Unique Games Conjecture is incomparable
to any d-to-1 Conjecture as far as we know. One usually refers to 1-to-1 games as unique
games.

Unique Games Conjecture: For every constant ε > 0, there exists an alphabet size k such
that given a unique (1-to-1) game Γ with alphabet size k, it is NP-hard to distinguish
between opt(Γ) > 1 − ε and opt(Γ) 6 ε.

For our algorithm, the constraint graph G = G(Γ) of a d-to-1 game will be important.
This graph specifies which vertices appear in a constraint together. Formally, the edge
distribution of G is the marginal distribution of the pair (i, j) for a random constraint
(i, j, P) ∼ Γ.

The following two theorems are needed for the proof of Theorem 2.5. The first theorem
allows us to partition any graph into components with small soft-threshold rank, smaller than
nβ for threshold λ, while preserving at least a λO(1/β2) fraction of the constraints.

Theorem 2.6 (Graph Decomposition). Let G be a graph with n vertices. (If G is weighted,
assume that edges have polynomial weight.) Then for every β, λ > 0, there exists a subgraph
G0 such that every connected component A of G0 satisfies rank∗λ(A) 6 nβ and G0 contains
at least a λO(1/β2) fraction of the edges of G. Furthermore, there exists a polynomial time
algorithm that given the graph G and parameters β and λ, finds such a subgraph G0. (Here,
one assumes λ bounded away from 1, say λ < 0.9, and β not too small, so that β � 1/log n.)

1The only reason we add this condition is because of Lemma 3.4, which seems to be false if some labels
never participate in satisfying configurations for constraints. We remark that the proof of Lemma 3.4 would go
through also for d-to-1 two-prover games in the sense of Khot [Kho02], i.e., where we have a bipartite constraint
graph with different alphabets for each side. Even in general, it is probably possible to fix Lemma 3.4 by pruning
labels that participate in exceptionally few constraints as satisfying configurations.
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After we decomposed the constraint graph using the previous theorem, we apply the
following algorithm to the individual components of the decomposition. (Since the original
instance was promised to be satisfiable, also all components of the decomposition are
satisfiable d-to-1 games.)

Theorem 2.7 (Subspace Enumeration for d-to-1 Games). There exists an algorithm that
given a satisfiable d-to-1 game Γ, finds an assignment that satisfies a 1/dO(1) fraction of
the constraints of Γ. The running time of the algorithm is at most exponential in k2d ·
rank∗1/dO(1)(G), where G = G(Γ) is the constraint graph.

Combining the above theorems in the way we described proves Theorem 2.5.

Proof of Theorem 2.5. Let Γ be a given satisfiable d-to-1 game with alphabet size k. Let
G = G(Γ) be the constraint graph of the game Γ. Our goal is to find in time exp(dk2nβ) an
assignment for Γ that satisfies an 1/dO(1/β2) fraction of constraints. Let λ = 1/dO(1) and let
G0 be the subgraph of G obtained from Theorem 2.6. Every connected component of G0
corresponds to subgame of Γ.

Since these subgames are satisfiable and their constraint graphs have soft-threshold rank
at most nβ, Theorem 2.7 allows us to find in time exp(dk2nβ) assignments for these subgames
that satisfy a 1/dO(1) fraction of constraints. Since a G0 contains a 1/dO(1/β2) fraction of the
constraints of Γ, the combination of these assignments also satisfy a 1/dO(1/β2) fraction of
constraints of Γ. �

3 Subspace Enumeration

In this section, we develop subspace enumeration algorithms for expansion close to 1 and for
d-to-1 games. Both algorithms follow the same scheme. First, one shows that if there exists
a good solution than it has to be correlated with a certain subspace (that one can enumerate).
Second, one shows how to decode an approximate solution from the projection of a good
solution into this subspace.

For us, the main difficulty here is that the projection only guaranteed to be slightly
correlated with a good solution. (In contrast, for the problems considered in [ABS10], the
projection was close to a good solution, which made the decoding easy.) As a consequence,
our decoding procedures are more involved compared to the previous decoding procedures.

For a graph G with vertex set V , a function f ∈ L2(V), and λ > 0, we let f >λ denote
the projection of f into the subspace of L2(V) spanned by the eigenfunctions of G with
eigenvalue larger than λ (in absolute2 value).

The following simple lemma is the common basis of our subspace enumeration algo-
rithms. This lemma appears in very similar (slightly weaker) form in previous works that use
subspace enumeration [KT07, Kol10, ABS10]. (We cannot directly reference one of their
lemmas only because we are interested in expansion close to 1. But we still omit the proof.)

Lemma 3.1 (Subspace Enumeration). Let G be a graph with vertex V and let f = 1S ∈ L2(V)
be the indicator function of a vertex set S ⊆ V with expansion at most 1 − ε. Then,

〈 f , f >λ〉 > 1
(1−λ)

(
ε − λ

)
‖ f ‖2

2It would be enough to consider only the positive eigenvalues larger than λ. We choose here to include the
negative ones as well in order to be consistent with the definition of threshold rank.

9



Furthermore, there exists an algorithm that given G computes in time poly(n) ·O(1/η)rankλ(G)

a list of functions containing a function f̃ that is η-close to f >λ (that is, ‖ f >λ − f̃ ‖ 6 η‖ f >λ‖).

3.1 Subspace Enumeration for Expansion close to 1

In this section, we prove the following theorem.

Theorem (Restatement of Theorem 2.3). There exists an algorithm that given a graph
containing a vertex with volume at most δ and expansion at most 1 − ε, finds a vertex with
volume at most δ and expansion at most 1 − εO(1). The running time of the algorithm is
exponential in rankε/2(G).

Suppose S is the promised vertex set with volume at most δ and expansion at most 1 − ε.
By Lemma 3.1, we can find in time exponential in rankλ(G) a function that is close to the
projection f >λ of the indicator function f = 1S . For simplicity, assume find a function that
is exactly equal to the projection f >λ. (Standard continuity arguments show that a function
close enough to the projection will also work.) Notice that if we choose λ = ε/2, then
Lemma 3.1 tells us 〈 f , f >λ〉 > Ω(ε)‖ f ‖2. Hence, if we combine the following lemma with
Theorem 2.1 (Local Cheeger for Expansion close to 1), then we can find a set with volume
at most δ and expansion at most 1 − εO(1) as required for Theorem 2.3.

Lemma 3.2. Let f = 1S be the indicator of a vertex set S with volume δ. Suppose f is
ε-correlated with its projection g = f >λ, so that 〈 f , g〉 > ε‖ f ‖2. Then, there exists a level set
S ′ of the function g2 with volume µ(S ′) = O(δ/ε2) such that the restriction of g to this level
set satisfies ‖Kg|S ′‖2 > Ω(λ2ε4)‖g|S ′‖2.

Proof. Consider the level set S ′ = {i ∈ V | g2
i > t} of g2 and define g′ := g|S ′ to be the

restriction of g to its level set S ′. (We choose the threshold t = Ω(ε2) at the end of the proof.)
We can upper bound the volume of the level set S ′ by

µ(S ′) 6 �
i∈V

{
g2

i > t
}
6 ‖g‖2/t 6 ‖ f ‖2/t = δ/t .

In order to show that g′ satisfies ‖Kg′‖2 > Ω(λε4)‖g′‖2, we will argue that the restriction g|S
and g′ = g|S ′ are correlated (which implies that also g and g′ are correlated).

Claim 3.2.1. The correlation of g and g′ is at least 〈g, g′〉 > 〈g|S , g|S ′〉 > αε,t‖ f ‖2 for
αε,t =

(
ε/2 −

√
t
)2.

First, we lower bound the norm of the restriction g|S , using the fact that g is correlated with
the function f , whose support is S ,

‖g|S ‖ = ‖ f|S − ( f − g)|S ‖ > ‖ f|S ‖ − ‖ f − g‖ = ‖ f ‖ − ‖ f − g‖ > (1 −
√

1 − ε)‖ f ‖ > (ε/2)‖ f ‖ .

On the other hand, we can upper bound the norm of the restriction g|S \S ′ (using the fact that
g2 6 t outside of the set S ′),

‖gS \S ′‖
2 6 t µ(S \ S ′) 6 t‖ f ‖2 .

Combining these bounds, we can lower bound the correlation of g|S and g|S ′ ,

〈g|S , g|S ′〉 = ‖g|S∩S ′‖
2 = ‖g|S −g|S \S ′‖

2 >
(
‖g|S ‖− ‖g|S \S ′‖

)2 >
(
ε/2 −

√
t
)2
‖ f ‖2 = αε,t‖ f ‖2 ,
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which proves our claim.

The above claim shows that the function g′ is αε,t-correlated with a function g that
lives in the span of the eigenfunctions with eigenvalue larger than λ. Hence, we can lower
bound the norm of the projection of g′ into this space by ‖(g′)>λ‖2 > α2

ε,t‖g
′‖2. Thus,

‖Kg′‖2 = ‖K(g′)>λ‖2 + ‖K(g′)6λ‖2 > λ2α2
ε,t‖g

′‖2

If we choose t = ε2/10, then αε,t = Ω(ε2) and the volume of S ′ is bounded by µ(S ′) 6
‖ f ‖2/t = O(δ/ε2). Furthermore, the function g′ satisfies ‖Kg′‖2 > Ω(λ2ε4)‖g′‖2. �

3.2 Subspace Enumeration for d-to-1 Games

Let Γ be a d-to-1 game with vertex set V = {1, . . . , n} and alphabet [k] = {1, . . . , k}. Let
G = G(Γ) be the constraint graph of the game. In this section, we prove the following result.

Theorem (Restatement of Theorem 2.7). There exists an algorithm that given a satisfiable
d-to-1 game Γ, finds an assignment that satisfies a 1/dO(1) fraction of the constraints of
Γ. The running time of the algorithm is at most exponential in k2d · rank∗1/dO(1)(G), where
G = G(Γ) is the constraint graph.

As for unique games, one can define a label-extended graph Ĝ = Ĝ(Γ) with vertex set
V̂ = V × [k]. The edge distribution of Ĝ is given by the following sampling procedure:

1. Sample a random constraint (i, j, P) ∼ Γ.

2. Sample a random label pair (a, b) ∈ P.

3. Output an edge between the vertices (i, a) ∈ V̂ and ( j, b) ∈ V̂ .

The following simple lemma shows that a good assignment for the d-to-1 game Γ

corresponds to a vertex set in Ĝ with volume 1/k and expansion roughly 1 − 1/dO(1). (We
omit the proof.)

Lemma 3.3. Let x ∈ [k]V be an assignment for Γ with value at least 1 − ε. Then, the vertex
set S = {(i, a) | xi = a} has volume 1/k and expansion 1 − 1/dO(1) + ε.

The following (somewhat tedious) lemma shows that the soft-threshold rank of the label
extended graph Ĝ can be bounded from above in terms of the soft-threshold rank of the
constraint graph G and the alphabet size k. We defer the proof to Section A.2.

Lemma 3.4. For every τ > 0, we have rank∗τ(Ĝ) 6 k2d · rank∗τ(G).

In order to prove Theorem 2.7, let x be an optimal assignment for Γ and let S be the
corresponding vertex set of Ĝ. By Lemma 3.3, the set S has volume 1/k and expansion at
most 1 − 1/dO(1). Hence, using Lemma 3.1, we can find in time exponential in rankλ(Ĝ) 6
k2drank∗λ(G) for λ = 1/dO(1) a function g ∈ L2(V) that is close to the projection f >λ of the
indicator f = 1S . In particular, we arrange that the function g satisfies 〈g,1S 〉 > d−O(1)‖1S ‖

2

and ‖g‖2 6 ‖1S ‖
2. Then, using the following algorithm, we can find an approximate

assignment for the game Γ. This concludes the proof of Theorem 2.7.

Lemma 3.5. Let x be an assignment for Γ with value 1 and let S be the vertex set of Ĝ
corresponding to this assignment. Then, given a function g ∈ L2(V̂) with 〈g,1S 〉 > ε‖1S ‖

2

and ‖g‖2 6 ‖1S ‖
2, we can compute in polynomial-time an assignment x′ that satisfies at

least an εO(1) fraction of the constraints of Γ.
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Proof. For t = ε2/100, consider the level set S ′ := {(i, a) | g2
i,a > t} of g2. For every vertex

i ∈ V , define a label set S ′i = {a | (i, a) ∈ S ′}. Our goal is to show that based on the sets
S ′i , one can decode an assignment (in a randomized way) that satisfies an εO(1) fraction of
constraints (in expectation).

Claim 3.5.1. The label set S ′i cannot be too large for many vertices, so that

�
i∼G

{
|S ′i | > 1/ε5

}
6 O(ε3) .

We can upper bound the volume of S ′,

µ(S ′) = �
(i,a)∼Ĝ

{
g2

i,a > t
}
6 ‖g‖2/t 6 O(1/ε2) · 1

k .

Therefore,
�

i∼G

{
|S ′i | > 1/ε5

}
6 ε5

�
i∼G
|S ′i | = ε5kµ(S ′) 6 O(ε3) .

Claim 3.5.2. The label set S ′i contains the “correct label”, i.e., the label assigned by x, for
about an ε2 fraction of the vertices, so that

�
i∼G

{
xi ∈ S ′i

}
= Ω(ε2) .

Using Cauchy–Schwarz, we can upper bound the correlation of g and 1S in terms of the
volume µ(S ∩ S ′).

ε/k 6 〈 f ,1S 〉 6 〈 f ,1S∩S ′〉 +
√

t · µ(S ) 6 ‖ f ‖ · µ(S ∩ S ′)1/2 +
√

t · µ(S ).

It follows that µ(S ∩ S ′) > Ω(ε2) · 1/k. Therefore,

�
i∼G

{
xi ∈ S ′i

}
= �

i∼G
|S ′i ∩ S | = k · µ(S ∩ S ′) > Ω(ε2) .

Consider the following distribution over assignments y ∈ [k]V . To every vertex, we
assign a random label yi ∈ S ′i . (If S ′i is empty, we assign a random label from [k].) It is
straight-forward to verify that the above claims imply that x and y agree on at least an εO(1)

fraction of constraints in expectation.
Let T be the set of vertices that x and y agree on. (Note that we cannot compute the

set T .) At this point, we know that all constraints with both endpoints in T are satisfied.
Unfortunately, this fraction of constraints could be much less than the volume of T . (In fact,
it could be the case that all edges incident to T leave the set.)

However, there is an easy way to fix the assignment y such that indeed an εO(1) fraction
of constraints will be satisfied. After sampling the assignment y, we compute an assignment
x′ by the following algorithm:

1. Sample a random subset of vertices A of volume 1/2.

2. For every vertex i < A, keep the label of i and assign x′i = yi.

3. For every vertex i ∈ A, compute a new label x′i ∈ [k] such that the assignment x′

satisfies as many constraints of the form (i, j, P) with j < A as possible. Formally,

x′i = argmaxa∈[k]

∣∣∣{(i, j, P) | j < A, (a, y j) ∈ P
}∣∣∣
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We claim that the weight of constraints satisfied by the assignment x′ is at least the number
of constraints between the vertex set A and the vertex set T \ A. This claim implies the
lemma, because the expected volume of T is εO(1) and every constraint incident to T goes
between A and T \ A with constant probability (since A is a random subset of volume 1/2).

To verify the claim, note that for every vertex i ∈ A there exists a label (namely xi) that
satisfies all constraints of the form (i, j, P) with j ∈ T \ A (using the fact that y and x′ agree
with x on T ). Hence, when the algorithm chooses in step 3 the label x′i for vertex i, we are
guaranteed to satisfy at least as many constraints as there are between i and T \ A. In total,
the number of satisfied constraints is at least the number of constraints between A and T \ A,
as desired. �

4 Threshold Rank versus Expansion close to 1

The following theorem is a restatement of Theorem 2.4 with the only difference being that
we assume a lower bound on the soft-threshold rank instead of the threshold rank. However,
since the soft-threshold rank is always larger than the threshold-rank, this theorem directly
implies Theorem 2.4.

Theorem 4.1. Let G be a graph with n vertices such that rank∗λ(G) > nβ/δ. Then, G contains
a vertex set with volume at most δ and expansion at most 1 − λO(1/β). Furthermore, there
exists a polynomial-time algorithm that given G and δ, finds such a vertex set. (Here, we
assume that the λ is bounded away from 1, say λ < 0.9, and β is not too small, β � 1/ log n.)

Proof. Let V = {1, . . . , n} be the vertex set of G. Consider the orthonormal basis f (1), . . . , f (n)

of L2(V) given by the scaled indicators f (i) =
√

1/di 1{i}. Note that ‖ f (i)‖21 = di and thus,∑
i‖ f (i)‖21 = 1. Let K = KG be the Markov operator of G and consider the functions

f (i,t) = Kt f (i) for t ∈ �.

Claim. For R = (β log n)/(2 log(1/λ)), there exists a vertex i0 with

‖ f (i0,R)‖2 >
(
‖ f (i0)‖21 + 1/n

)
/2δ .

The assumed lower bound on the soft-threshold rank of G implies that all t ∈ � (in particular,
t = R), ∑

i

‖ f (i,t)‖2 =
∑

i

〈 f (i),K2t f (i)〉 = Tr K2t > λ2tnβ/δ .

For t = R, the right-hand side evaluates to 1/δ. Hence, by averaging, there exists a vertex i0
such that ‖ f (i0,R)‖2 > (1/n + ‖ f (i0)‖21)/2δ. (Here, we are using that

∑
i‖ f (i)‖21 = 1.)

Claim. There exists t ∈ {0, . . . ,R − 1} such that ‖K f (i0,t)‖2 > λ2/β‖ f (i0,t)‖2.

By the previous claim, ‖ f (i0,R)‖2 > (1/n)‖ f (i0,1)‖2 (assuming δ 6 1/2). Hence, by averaging,
there exists t ∈ {0, . . . ,R − 1} such that ‖ f (i0,t+1)‖2/‖ f (i0,t)‖2 > (1/n)1/R = λ2/β. The claim
follows, because f (i0,t+1) = K f (i0,t).

The proof of the theorem follows by applying Theorem 2.1 (Local Cheeger Bound)
to the function f = f (i0,t). On the one hand, by the second claim, this function satisfies
‖K f ‖2 > λ2/β‖ f ‖2. On the other hand, by the first claim, the function satisfies ‖ f ‖2 >
‖ f (i0,R)‖2 > ‖ f (i0)‖21/2δ > ‖ f ‖

2
1/2δ. (Here, we are using that the operator K is contractive

with respect to the norms ‖·‖ and ‖·‖1.) Hence, Theorem 2.1 allows us to find a vertex set
with volume 2δ and expansion at most 1 − O(λ4/β). (We omitted this factor 2 for the volume
in theorem statement, because it can be absorbed into the O(·)-notation.) �
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5 Graph Decomposition for Eigenvalues close to 0

Theorem (Restatement of Theorem 2.6). Let G be a graph with n vertices. (If G is weighted,
assume that edges have polynomial weight.) Then for every β, λ > 0, there exists a subgraph
G0 such that every connected component A of G0 satisfies rank∗λ(A) 6 nβ and G0 contains
at least a λO(1/β2) fraction of the edges of G. Furthermore, there exists a polynomial time
algorithm that given the graph G and parameters β and λ, finds such a subgraph G0. (Here,
one assumes λ bounded away from 1, say λ < 0.9, and β not too small, so that β � 1/log n.)

Proof. The decomposition procedure is very similar to the procedure for the graph decom-
position in [ABS10]:

As long as there exists a connected component A that violates the upper bound
on the soft-threshold rank, so that rank∗λ(A) > nβ, use Theorem 4.1 to find a
set vertex S ⊆ V with µ(S ) 6 n−Ω(β)µ(A) and Φ(S ) 6 1 − λO(1/β), and then
subdivide the component A into two parts S and A \ S by removing the edges
between them.

Note that the graph changes in the course of the decomposition procedure. Therefore, also
the notion of volume and expansion change. To lower bound the fraction of edges that remain
when the procedure terminates, we introduce fictitious edge weights. (We don’t use these
weights for the decomposition, we only use them to analyze the procedure.) For simplicity,
we assume that all edges in the graph have the same actual weight. Initially, we let the
fictitious weights be equal to the actual edge weights. Whenever we subdivide a connected
component A using a subset S ⊆ A, we distribute the fictitious weight of the removed edges
equally among the edges that stay in S . (Notice that this charging scheme maintains the
invariant that all edges in the same connected component have the same fictitious weight.)
Since the expansion of S is at most 1 − λO(1/β), at least an λO(1/β) fraction of its edges
stay inside. Hence, the fictitious weight of the edges in S increases by at most a factor
of 1/λO(1/β). Note that the total fictitious weight in the graph remains the same during the
decomposition procedure. Hence, if we can upper bound the maximum fictitious weight at
the end of the procedure, we can lower bound the number of edges that remain in the graph.
(The fictitious weight of an edge indicates how often we are “overcounting” the edge.)

To bound the maximum fictitious weight of an edge, consider any vertex i ∈ V . How
often can we subdivide the component of this vertex? We claim that its component can be
subdivided at most O(1/β) times. The reason is that with every subdivision the volume of the
component of vertex i shrinks by a factor of at least nΩ(β). Hence, after O(1/β) subdivisions,
the fraction of edge of G that are contained in the component is less than 1/nO(1), which
means that the component consists just of the vertex i. (Recall that we assumed that edges
have polynomial weight.) It follows that we subdivide a component of a vertex at most
O(1/β) times and hence the maximum fictitious edge weight at the end of the decomposition
procedure is bounded by 1/λO(1/β2), which means that at least a λO(1/β2) fraction of the
original edges remain in the graph. �

6 Local Cheeger Bound for Expansion close to 1

In this section, we prove the following local version of Cheeger’s bound that works for
expansion close 1. An important difference to other versions of Cheeger’s bound is that we
consider the quadratic form 〈 f ,K2 f 〉 = ‖K f ‖2 instead of the form 〈 f ,K f 〉. In [ABS10], this
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issue was resolved by considering lazy graphs. Since we are interested in expansion close to
1, passing to lazy graphs is prohibitive.

Theorem (Restatement of Theorem 2.1). Let G be a regular graph with vertex set V and
let f ∈ L2(V) be a real-valued function on V such that ‖KG f ‖2 > ε‖ f ‖2 and ‖ f ‖21 6 δ‖ f ‖

2.
Then, given the function f , one can compute in polynomial time a vertex set with volume at
most δ and expansion at most 1 −Ω(ε2).

The proof of this theorem relies on the following lemma. The proof of this lemma is
essentially the same as the proof of the local variant of Cheeger’s bound used in [ABS10]
(which appeared in several previous works, for example, [DI98, GMT06, RST10].) The only
difference is that one step has to be done more carefully3 (when applying Cauchy–Schwarz).
We give a self-contained proof at the end of this section.

Lemma 6.1 (Local Cheeger Bound). For every function f ∈ L2(V), there exists a level set
S ⊆ V of the function f 2 with volume µ(S ) 6 δ and expansion

Φ(S ) 6

√
1 − 〈 f ,KG f 〉2/‖ f ‖4

1 − ‖ f ‖21/δ‖ f ‖
2

.

Assuming the above lemma, we can prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we may assume that f is nonnegative.
Consider the function g = K f + f . This function satisfies ‖g‖21 6 (‖K f ‖1 + ‖ f ‖)2 6 4‖ f ‖21.
Similarly, ‖g‖2 6 4‖ f ‖2. On the other hand, g > f and thus ‖g‖2 > ‖ f ‖2. (Here, we used that
both f and g are nonnegative.) Furthermore, 〈g,Kg〉 = 〈 f ,K f 〉+2‖K f ‖2+〈 f ,K3 f 〉 > 2‖K f ‖2

(again using nonnegativity). It follows that ‖g‖21 6 O(δ)‖g‖2 and 〈g,Kg〉 > Ω(ε)‖g‖2. Hence,
by Lemma 6.1 one of the level sets of g2 satisfies the requirements of the theorem.

�

6.1 Proof of Lemma 6.1

Lemma (Restatement of Lemma 6.1). For every function f ∈ L2(V), there exists a level set
S ⊆ V of the function f 2 with volume µ(S ) 6 δ and expansion

Φ(S ) 6

√
1 − 〈 f ,KG f 〉2/‖ f ‖4

1 − ‖ f ‖21/δ‖ f ‖
2

.

Proof. Let f ∈ L2(V). Suppose f 2 6 1. Consider the following distribution over vertex
subsets S ⊆ V:

1. Sample t ∈ [0, 1] uniformly at random.

2. Output the set S = {i ∈ V | f 2
i > t}.

Note that every set S in the support of this distribution is a level set of the function f 2. In
the following lemmas, we establish simple properties of this distribution.

Claim 6.1.1. The expected volume of S satisfies �S µ(S ) = ‖ f ‖2.

3A similar improvement for the classical (non-local) version of Cheeger’s inequality was noted in [RS07,
Appendix B].
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We calculate the expected volume as follows

�
S
µ(S ) = �

i∼µ
�

t∈[0,1]

{
f 2
i > t

}
= ‖ f ‖2 . �

Claim 6.1.2. The second moment of µ(S ) is at most �S µ(S )2 6 ‖ f ‖21.

We bound the expectation of µ(S )2 as follows

�
S
µ(S )2 = �

i, j∼µ
�
t

{
min{ f 2

i , f 2
j } > t

}
= �

i, j∼µ
min{ f 2

i , f 2
j } 6 �i, j∼µ

fi f j = ‖ f ‖21 .

Claim 6.1.3. Sets with volume larger than δ contribute to the expected volume at most
�S µ(S )1µ(S )>δ 6 �S µ(S )2/δ.

Immediate because µ(S )1µ(S )>δ 6 µ(S )2/δ holds pointwise.

Claim 6.1.4. The expected boundary of S is bounded by

�
S

G(S ,V \ S ) 6 ‖ f ‖2
√

1 − 〈 f ,KG f 〉2/‖ f ‖4.

We calculate the expected boundary of S and apply Cauchy–Schwarz,

�
S

G(S ,V \ S ) = �
i j∼G
�
S
{i ∈ S ∧ j < S } = �

i j∼G
�
t

{
f 2
i > t > f 2

j

}
= �

i j∼G
max

{
f 2
i − f 2

j , 0
}

= 1
2 �i j∼G

∣∣∣ f 2
i − f 2

j

∣∣∣ = 1
2 �i j∼G

∣∣∣ fi − f j
∣∣∣ · ∣∣∣ fi + f j

∣∣∣
6

(
�

i j∼G
1
2 ( fi − f j)2 · �

i j∼G
1
2 ( fi + f j)2

)1/2
(using Cauchy–Schwarz)

= 〈 f , (I − KG) f 〉1/2〈 f , (I + KG) f 〉1/2 =

√
‖ f ‖4 − 〈 f ,KG f 〉2 .

We combine the previous subclaims to complete the proof of Lemma 6.1. Let S ∗ be the
level set of f 2 with volume at most δ and minimum expansion. Then,

Φ(S ∗) 6
�S G(S ,V \ S )1µ(S )6δ

�S µ(S )1µ(S )6δ

6
�S G(S ,V \ S )

�S µ(S ) − �S µ(S )2/δ
(using 6.1.3)

6
‖ f ‖2

√
1 − 〈 f ,KG f 〉2/‖ f ‖4

‖ f ‖2 − ‖ f ‖21/δ
(using 6.1.1, 6.1.2, and 6.1.4).

Therefore, the set S ∗ satisfies the conclusion of the local Cheeger bound (Lemma 6.1).

7 Conclusion

An interesting question raised by this work is how closely graph expansion and d-to-1
games are related. A concrete question is whether Khot’s d-to-1 Conjecture is implied by a
conjecture about approximating graph expansion (in the same way as the Unique Games
Conjecture is implied by a conjecture about the approximability of graph expansion [RS10].)
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A Deferred Proofs

A.1 Facts about Markov Operators

Fact (Restatement of Fact 1.1). 1. The operator KG is self-adjoint, so that 〈 f ,KGg〉 =

〈KG f , g〉 for all f , g ∈ L2(V).

2. The operator KG is contractive in norm ‖·‖, so that ‖KG f ‖ 6 ‖ f ‖ for all f ∈ L2(V).

3. The operator KG is contractive in norm ‖·‖1, so that ‖KG f ‖1 6 ‖ f ‖1 for all f ∈ L2(V).

Proof. Item 1: From the definition of the Markov operator KG and the inner product on
L2(V),

〈 f ,KGg〉 = �
i∼G

fi(KGg)i

= �
i∼G
�

j∼G|i
fig j

= �
j∼G
�

i∼G| j
fig j (since G is undirected)

= 〈KG f , g〉

Item 2: From the definition of KG and the norm ‖·‖ on L2(V),

‖KG f ‖2 = �
i∼G

(
�

j∼G|i
f j
)2

6 �
i∼G
�

j∼G|i
f 2

j (by Cauchy–Schwarz)

= �
j∼G

f 2
j (since G is undirected)

= ‖ f ‖2 .

Item 3:From the definition of KG and the norm ‖·‖1 on L2(V),

‖KG f ‖1 = �
i∼G

∣∣∣ �
j∼G|i

f j
∣∣∣

6 �
i∼G
�

j∼G|i
| f j| (triangle inequality)

= �
j∼G
| f j| (since G is undirected)

= ‖ f ‖1 .

�

A.2 Label-Extended Graph vs Constraint Graph

Let Γ be a d-to-1 game with vertex set V and alphabet [k]. Let G = G(Γ) be its constraint
graph and Ĝ = Ĝ(Γ) be its label-extended graph.

Lemma (Restatement of Lemma 3.4). For every τ > 0, we have rank∗τ(Ĝ) 6 k2d · rank∗τ(G).

Proof. Let K̂ = KĜ be the Markov operator of the label-extended graph Ĝ and let K = KG

be the Markov operator of the constraint graph G.

19



By the definition of rank∗τ, it is enough to show that Tr K̂2t 6 k · Tr K2t for all t ∈ �. Let
{ f (i,a)}i∈V,a∈[k] be an orthonormal basis of L2(V̂). (We will fix a specific basis later.) Then,

Tr K̂2t =
∑
i,a

‖K̂t f (i,a)‖2 =
∑
i,a

�
j,b

(
�

(`,c)∼Ĝt |( j,b)
f (i,a)
`,c

)2

Next, we choose an appropriate basis. Let di be the fractional degree of i in the constraint
graph, and let di,a be the fractional degree of (i, a) in the label extended graph. Note that
di =

∑
a di,a for every i ∈ V . Consider the orthonormal basis f (i,a) =

√
1/di,a1(i,a) for L2(V̂)

and the related basis f (i) =
√

1/di for L2(V). Then,

‖K̂t f (i,a)‖2 = �
j,b

(
�

(`,c)∼Ĝt |( j,b)
{(`, c) = (i, a)}

)2

/di,a

6 �
j

(
�

`∼Gt | j
{` = i}

)2

/di,a = ‖Kt f (i)‖2 ·
di

di,a
.

By our assumption on the structure of the constraint (that every label a participates in at least
one satisfying configuration per constraint (i, j, P) of Γ), we can lower bound di,a > di/(kd)
for all i ∈ V and a ∈ [k]. Hence, for C > 1, we can relate the upper bound the trace of K̂2t by

Tr K̂2t =
∑
i,a

‖K̂t f (i,a)‖2 6 k2d
∑

i

‖Kt f (i)‖2 = k2d Tr K2t . �
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