
Robust Moment Estimation and Improved Clustering via Sum of
Squares∗

Pravesh K. Kothari

Princeton University and the Institute

for Advanced Study

Princeton, NJ, USA

Jacob Steinhardt

Stanford University

Palo Alto, CA, USA

David Steurer

ETH Zurich

Zurich, Switzerland

ABSTRACT
We develop efficient algorithms for estimating low-degree moments

of unknown distributions in the presence of adversarial outliers

and design a new family of convex relaxations for k-means cluster-

ing based on sum-of-squares method. As an immediate corollary,

for any γ > 0, we obtain an efficient algorithm for learning the

means of a mixture of k arbitrary Poincaré distributions in �d in

time dO (1/γ )
so long as the means have separation Ω(kγ ). This

in particular yields an algorithm for learning Gaussian mixtures

with separation Ω(kγ ), thus partially resolving an open problem

of Regev and Vijayaraghavan (2017). The guarantees of our robust

estimation algorithms improve in many cases significantly over the

best previous ones, obtained in the recent works. We also show

that the guarantees of our algorithms match information-theoretic

lower-bounds for the class of distributions we consider. These im-

proved guarantees allow us to give improved algorithms for inde-

pendent component analysis and learning mixtures of Gaussians

in the presence of outliers.

We also show a sharp upper bound on the sum-of-squares norms

for moment tensors of any distribution that satisfies the Poincaré
inequality. The Poincaré inequality is a central inequality in proba-

bility theory, and a large class of distributions satisfy it including

Gaussians, product distributions, strongly log-concave distribu-

tions, and any sum or uniformly continuous transformation of such

distributions. As a consequence, this yields that all of the above algo-

rithmic improvements hold for distributions satisfying the Poincaré

inequality.
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1 INTRODUCTION
Progress on many fundamental unsupervised learning tasks has re-

quired circumventing a plethora of intractability results by coming

up with natural restrictions on input instances that preserve some

essential character of the problem. For example, while k-means clus-

tering is NP-hard in the worst-case [51], there is an influential line

of work providing spectral algorithms for clustering mixture mod-

els satisfying appropriate assumptions [1, 7, 45]. On the flip side, we

run the risk of developing algorithmic strategies that exploit strong

assumptions in a way that makes them brittle. We are thus forced to

walk the tight rope of avoiding computational intractability without

“overfiting” our algorithmic strategies to idealized assumptions on

input data.

Consider, for example, the problem of clustering data into k

groups. On the one hand, a line of work leading to [7] shows that a

variant of spectral clustering can recover the underlying clustering

so long as each cluster has bounded covariance around its center and

the cluster centers are separated by at least Ω(
√
k ). Known results

can improve on this bound to require a separation of Ω(k1/4) if the

cluster distributions are assumed to be isotropic and log-concave

[63]. If the cluster means are in general position, other lines of

work yields results for Gaussians [6, 12, 14, 16, 28, 31, 36, 41, 53]

or for distributions satisfying independence assumptions [4, 38].

However, the assumptions often play a crucial role in the algorithm.

For example, the famous method of moments that yields a result for

learning mixtures of Gaussians in general position uses the specific

algebraic structure of the moment tensor of Gaussian distributions.

Such techniques are unlikely to work for more general classes of

distributions.

As another example, consider the robust mean estimation prob-

lem which has been actively investigated recently. Lai et. al. [46]

and later improvements [24, 61] show how to estimate the mean of

an unknown distribution (with bounded secondmoments) where an
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ε fraction of points are adversarially corrupted, obtaining additive

error O (
√
ε ). On the other hand, Diakonikolas et. al. [23] showed

how to estimate the mean of a Gaussian or product distribution

with nearly optimal additive error Õ (ε ). However, their algorithm

again makes strong use of the known algebraic structure of the

moments of these distributions.

Further scrutiny reveals that the two examples of clustering and

robust mean estimation suffer from a “second-moment” barrier.

For both problems, the most general results algorithmically exploit

only some boundedness condition on the second moments of the

data, while the strongest results use exact information about higher

moments (e.g. by assuming Gaussianity) and are thus brittle. This

leads to the key conceptual driving force of the present work:

Can we algorithmically exploit boundedness information about a
limited number of low-degree moments?

As the above examples illustrate, this is a natural way to formu-

late the “in-between” case between the two well-explored extremes.

From an algorithmic perspective, this question forces us to develop

techniques that can utilize information about higher moments of

data for problems such as clustering and mean estimation. For these

problems, we can more concretely ask:

Can we beat the second-moment barrier in the agnostic setting for
clustering and robust mean estimation?

The term agnostic here refers to the fact that we want our al-

gorithm to work for as wide a class of distributions as possible,

and in particular to avoid making parametric assumptions (such as

Gaussianity) about the underlying distribution.

The main goal of this work is to present a principled way to

utilize higher moment information in input data and break the

second moment barrier for both clustering and robust estimation of

basic parameters such as mean, covariance and in general, higher

moments of distributions.

Outlier-Robust Parameter Estimation. We consider the problem

of outlier-robust parameter estimation: We are given independent

draws x1, . . . ,xn from an unknown distribution D over �d and the

goal is to estimate parameters of the distribution, e.g., its mean or

its covariance matrix. Furthermore, we require that the estimator

is outlier-robust: even if an ε-fraction of the draws are corrupted by

an adversary, the estimation error should be small.

These kind of estimators have been studied extensively in statis-

tics (under the term robust statistics) [33, 40, 52, 62]. However, many

robust estimators coming out of this research effort are computa-

tionally efficient only for low-dimensional distributions (because

the running time is say exponential in the dimension d) [13].

A recent line of research developed the first robust estimators

for basic parameter estimation problems (e.g., estimating the mean

and covariance matrix of a Gaussian distribution) that are compu-

tationally efficient for the high-dimensional case, i.e., the running

time is only polynomial in the dimension d [19, 21, 25, 47].

Our work continues this line of research. We design efficient

algorithms to estimate low-degree moments of distributions. Our

estimators succeed under significantly weaker assumptions about

the unknown distribution D, even for the most basic tasks of esti-

mating the mean and covariance matrix of D. For example, in order

to estimate the mean of D (in an appropriate norm) our algorithms

do not need to assume thatD is Gaussian or has a covariance matrix

with small spectral norm in contrast to assumptions of previous

works. Similary, our algorithms for estimating covariance matrices

work, unlike previous algorithms, for non-Gaussian distributions

and distributions that are not (affine transformations of) product

distributions.

Besides these qualitative differences, our algorithms also offer

quantitative improvements. In particular, for the class of distribu-

tions we consider, the guarantees of our algorithms—concretely,

the asymptotic behavior of the estimation error as a function of the

fraction ε of corruptions—match, for the first time in this generality,

information-theoretic lower bounds.

Outlier-robust method of moments. Our techniques for robust
estimation of mean vectors and covariance matrices extend in a

natural way to higher-order moment tensors. This fact allows us to

turn many non-outlier-robust algorithms in a black-box way into

outlier-robust algorithms. The reason is that for many parameter

estimation problems the best known algorithms in terms of provable

guarantees are based on the method of moments, which means that

they don’t require direct access to a sample from the distribution

but instead only to its low-degree moments (e.g. [42, 54, 56]). (Often,

a key ingredient of these algorithms in the high-dimensional setting

is tensor decomposition [3, 5, 10, 15, 29, 39, 49, 55].) If there were no

outliers, we could run these kinds of algorithms on the empirical

moments of the observed sample. However, in the presence of

outliers, this approach fails dramatically because even a single

outlier can have a huge effect on the empirical moments. Instead,

we apply method-of-moment-based algorithms on the output of

our outlier-robust moment estimators. Following this strategy, we

obtain new outlier-robust algorithms for independent component

analysis (even if the underlying unknown linear transformation is

ill-conditioned) and mixtures of spherical Gaussians (even if the

number of components of the mixture is large and the means are

not separated).

Estimation algorithms from identifiability proofs. Our algorithms

for outlier-robust parameter estimation and their analysis follow

a recent paradigm for computationally-efficient provable parame-

ter estimation that has been developed in the context of the sum-
of-squares method. We say that a parameter estimation problem

satisfies identifiability if it is information-theoretically possible to

recover the desired parameter from the available data (disregarding

computational efficiency). The key idea of this paradigm is that a

proof of identifiability can be turned into an efficient estimation

algorithm if the proof is captured by a low-complexity proof system
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like sum-of-squares. Many estimation algorithms based on convex

relaxations, in particular sum-of-squares relaxations, can be viewed

as following this paradigm (e.g., compressed sensing and matrix

completion [17, 18, 32, 58]). Moreover, this paradigm has been used,

with a varying degree of explicitness, in order to design a number

of recent algorithms based on sum-of-squares for unsupervised

learning, inverse, and estimation problems like overcomplete ten-

sor decomposition, sparse dictionary learning, tensor completion,

tensor principal component analysis [10, 11, 35, 49, 57].

In many of these settings, including ours, the proof of identifia-

bility takes a particular form: given a (corrupted) sample X ⊆ �d

from a distribution D and a candidate parameter
ˆθ that is close to

true parameter θ of D, we want to be able to efficiently certify that

the candidate parameter
ˆθ is indeed close to θ . (This notion of cer-

tificate is similar to the one for NP.) Following the above paradigm,

if the certification in this identifiability proof can be accomplished

by a low-degree sum-of-squares proof, we can derive an efficient

estimation algorithm (that computes an estimate
ˆθ just given the

sample X ).

Next we describe the form of our identifiability proofs for outlier-

robust estimation.

Identifiability in the presence of outliers. Suppose we are given an

ε-corrupted sample X = { x1, . . . ,xn } ⊆ �
d
of an unknown distri-

bution D and our goal is to estimate the mean µ ∈ �d of D. To hope

for the mean to be identifiable, we need to make some assumptions

aboutD. Otherwise,D could for example have probability mass 1−ε

on 0 and probability mass ε on µ/ε . Then, an adversary can erase

all information about the mean µ in an ε-corrupted sample from D

(because only an ε fraction of the draws from D carry information

about µ). Therefore, we will assume that D belongs to some class

of distributions C (known to the algorithm). Furthermore, we will

assume that the class C is defined by conditions on low-degree mo-

ments so that if we take a large enough (non-corrupted) sample X 0

from D, the uniform distribution over X 0
also belongs to the class

C with high probability. (We describe the conditions that define C

in a paragraph below.)

With this setup in place, we can describe our robust identifiability

proof: it consists of a (multi-)set of vectorsX ′ = { x ′
1
, . . . ,x ′n } ⊆ �

d

that satisfies two conditions:

(1) x ′i = xi for all but an ε fraction of the indices i ∈ [n],

(2) the uniform distribution over X ′ is in C.

Note that given X and X ′, we can efficiently check the above con-

ditions, assuming that the conditions on the low-degree moments

that define C are efficiently checkable (which they will be).

Also note that the above notion of proof is complete in the

following sense: if X is indeed an ε-corruption of a typical
1
sample

1
The sample X 0

of D should be typical in the sense that the empirical low-degree

moments of the sample X 0
are close to the (population) low-degree moments of the

distribution D . If the sample is large enough (polynomial in the dimension), this

condition is satisfied with high probability.

X 0
from a distributionD ∈ C, then there exists a setX ′ that satisfies

the above conditions, namely the uncorrupted sample X 0
.

We show that the above notion of proof is also sound: if X is

indeed an ε-corruption of a (typical) sample X 0
from a distribution

D ∈ C and X ′ satisfies the above conditions, then the empirical

mean µ ′ := 1

n
∑n
i=1 x

′
i of the uniform distribution over X ′ is close

to µ. We can rephrase this soundness as the following concise

mathematical statement, which we prove in the full version.if D

andD ′ are two distributions in C that have small statistical distance,

then their means are close to each other (and their higher-order

moments are close to each other as well).

Furthermore, the above soundness is captured by a low-degree

sum-of-squares proof (using for example the sum-of-squares ver-

sion of Hölder’s inequality); this fact is the basis of our efficient

algorithm for outlier-robust mean estimation.

Outlier-robustness and (certifiable) subgaussianity. To motivate

the aforementioned conditions we impose on the distributions,

consider the following scenario: we are given an ε-corrupted sample

of a distributionD over� and our goal is to estimate its variance σ 2

up to a constant factors. To hope for the variance to be identifiable,

we need to rule out for example that D outputs 0 with probability

1 − ε and a Gaussian N (0,σ 2/ε2) with probability ε . Otherwise, an

adversary can remove all information about σ by changing an ε

fraction of the draws in a sample from D. If we look at the low-

degree moments of this distributionD, we see that (�D (x ) x
k )1/k ≈√

k/ε1−2/k (�D (x ) x
2)1/2. So for large enough k (i.e., k ≈ log(1/ε )),

the ratio between the Lk norm of D and the L2 norm of D exceeds

that of a Gaussian by a factor of roughly 1/
√
ε . In order to rule

out this example, we impose the following condition on the low-

degree moments of D, and we show that this condition is enough

to estimate the variance of a distribution D over � up to constant

factors given an ε-corrupted sample,

(
�

D (x )
(x − µD )

k
)
1/k
⩽
√
Ck ·

(
�

D (x )
(x − µD )

2

)
1/2

for C > 0 and even k ∈ � with Ck · ε1−2/k ≪ 1 . (1.1)

Here, µD is the mean of the distribution D.

In the high-dimensional setting, a natural idea is to impose the

condition Eq. (1.1) for every direction u ∈ �d ,(
�

D (x )
⟨x − µD ,u⟩

k
)
1/k
⩽
√
Ck ·

(
�

D (x )
⟨x − µD ,u⟩

2

)
1/2

. (1.2)

We show that this condition is indeed enough to ensure identifiabil-

ity and that it is information-theoretically possible to estimate the

covariance matrix ΣD of D up to constant factors (in the Löwner

order sense) assuming again that Ck · ε1−2/k ≪ 1. Unfortunately,

condition Eq. (1.2) is unlikely to be enough to guarantee an efficient

estimation algorithm. The reason is that Eq. (1.2) might hold for

the low-degree moments of some distribution D but every proof

of this fact requires exponential size. (This phenomenon is related
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to the fact that finding a vector u ∈ �d that violates Eq. (1.2) is an

NP-hard problem in general.)

To overcome this source of intractability, we require that inequal-

ity Eq. (1.2) is not only true but also has a low-degree sum-of-squares

proof.

Definition 1.1 (Certifiable subgaussianity of low-degree moments).
A distribution

2 D over �d with mean µ is (k, ℓ)-certifiably sub-
gaussian with parameter C > 0 if there for every positive integer

k ′ ⩽ k/2, there exists a degree-ℓ sum-of-squares proof
3
of the

degree-2k ′ polynomial inequality over the unit sphere,

∀u ∈ �d−1. �
D (x )
⟨x − µ,u⟩2k

′

⩽
(
C · k ′ �

D (x )
⟨x − µ,u⟩2

)k ′
(1.3)

With this additional condition, we give a polynomial-time al-

gorithm to estimate the covariance matrix ΣD of D up to con-

stant factors (in the Löwner order sense) assuming again that

Ck · ε1−2/k ≪ 1.

Since any valid polynomial inequality over the sphere has a sum-

of-squares proof if we allow the degree to be large enough and

the inequality has positive slack, we say that D is (k,∞)-certifiably
subgaussian with parameter C > 0 if the inequalities Eq. (1.3) hold

for all k ′ ⩽ k/2. In most cases we consider, a sum-of-squares proof

of degree ℓ = k is enough. In this case, we just say that D is k-

certifiably subgaussian. Observe that k-certifiable subgaussianity

only restricts moments up to degreek of the underlying distribution.

In this sense, it is a much weaker assumption than the usual notion

of subgaussianity, which imposes Gaussian-like upper bounds on

all moments.

Certain certifiably subgaussian distributions have been well-

known and utilized in previous results on applications of the SoS

method in machine learning. We also discuss some basic examples

of certifiably subgaussian distributions such as uniform distribu-

tion on the hypercube {±1}d and the any d dimensional gaussian

distribution. We also observe that many operations on distributions

preserve this property. In particular, (affine transformations of)

products of scalar-valued subgaussian distributions and mixtures

thereof satisfy this property.

Sum-of-squares and quantifier alternation. Taking together the
above discussion of robust identifiability proofs and certifiable sub-

gaussianity, our approach to estimate the low-degree moments of

a certifiable subgaussian distribution is the following: given an ε-

corrupted sample X = { x1, . . . ,xn } ⊆ �
d
from D, we want to find

a (multi-)set of vectors X ′ = { x ′
1
, . . . ,x ′n } ⊆ �

d
such that the uni-

form distributions over X and X ′ are ε-close in statistical distance

and the uniform distribution over X ′ is certifiably subgaussian.

2
We emphasize that our notion of certifiable subgaussianity is a property only of the

low-degree moments of a distribution and, in this way, significantly less restrictive

then the usual notion of subgaussianity (which restricts all moments of a distribution).

3
In the special case of proving that p (u ) ⩾ 0 holds for every vector u ∈ �d−1 , a

degree-ℓ sum-of-squares proof consists of a polynomial q (u ) with degq ⩽ ℓ − 2 and
polynomials r1 (u ), . . . , rt (u ) with deg rτ ⩽ ℓ/2 such that p = q · ( ∥u ∥2 − 1) +
r 2
1
+ · · · + r 2t .

It is straightforward to formulate these conditions as a system

E of polynomial equations over the reals such that x ′
1
, . . . ,x ′n are

(some of the) variables.Our outlier-robust moment estimation pro-

ceeds by solving a standard sum-of-squares relaxation of this sys-

tem E. The solution to this relaxation can be viewed as a pseudo-
distribution D ′ over vectors x ′

1
, . . . ,x ′n that satisfies the system of

equations E. (This pseudo-distribution behaves in many ways like

a classical probability distribution over vectors x ′1, . . . ,x
′
n that sat-

isfy the equations E.) Our moment estimation algorithm simply out-

puts the expected empirical moments �̃D′ (x ′
1
, ...,x ′n )

1

n
∑n
i=1 (x

′
i )
⊗r

with respect to the pseudo-distribution D ′.

We remark that previous work on computationally-efficiently

outlier-robust estimation also used convex optimization techniques

albeit in different ways. For example, Diakonikolas et al. solve an

implicitly-defined convex optimization problem using a customized

separation oracle [25]. (Their optimization problem is implicit in

the sense that it is defined in terms of the uncorrupted sample

which we do not observe.)

An unusual feature of the aforementioned system of equations

E is that it also includes variables for the sum-of-squares proof of

the inequality Eq. (1.2) because we want to restrict the search to

those sets X ′ such that the uniform distribution X ′ is certifiably

subgaussian. It is interesting to note that in this way we can use

sum-of-squares as an approach to solve ∃∀-problems as opposed to

just the usual ∃-problems. (The current problem is an ∃∀-problem

in the sense that we want to find X ′ such that for all vectors u the

inequality Eq. (1.2) holds for the uniform distribution over X ′.)

We remark that the idea of using sum-of-squares to solve prob-

lems with quantifier alternation also plays a role in control theory

(where the goal is find a dynamical system together with an associ-

ated Lyapunov functions, which can be viewed as sum-of-squares

proof of the fact that the dynamical system behaves nicely in an ap-

propriate sense). However, to the best of our knowledge, this work

is the first that uses this idea for the design of computationally-

efficient algorithms with provable guarantees. We remark that in

a concurrent and independent work, Hopkins and Li use similar

ideas to learn mixtures of well-separated spherical Gaussians [34].

2 RESULTS

2.1 Certifiably Subgaussian Distributions
In our first main result, we show that a large class of non-product

distributions are also certifiably subgaussian.

Poincaré Distributions. A distribution p on �d is said to be σ -
Poincaré if for all differentiable functions f : �d → �we have

�
x∼p

[f (x )] ⩽ σ 2
�x∼p [∥∇f (x )∥

2

2
]. (2.1)

This is a type of isoperimetric inequality on the distribution x and

implies concentration of measure. In the full version(s), we discuss

in more detail various examples of distributions that satisfy (2.1), as

well as properties of such distributions. Poincaré inequalities and
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distributions are intensely studied in probability theory; indeed, we

rely on one such powerful result of Adamczak and Wolff Adamczak

and Wolff [2] for establishing a sharp bound on the sum-of-squares

algorithm’s estimate of the injective norm of an i.i.d. sample from

a Poincaré distribution.

Theorem 2.1. Let p be a zero-mean σ -Poincaré distribution over
�d with 2t moment tensor M2t = �x∼p x

⊗2t . Then, for some con-
stant C = C (t ) (depending only on t ) with probability at least 1 − δ
we have ⟨M2t ,v

⊗2t ⟩ ⩽ C2tσ ∥v ∥2t
2
. Further, this inequality has a

degree 2t sum of squares proof. As a consequence, isotropic σ -Poincaré
distributions are C-certifiabiliy t-subgaussian for any t .

Next, we describe our results on outlier-robust parameter esti-

mation and clustering for certifiably subgaussian distributions.

2.2 Outlier-Robust Estimation
Without any assumptions about the underlying distribution, the

best known efficient algorithms for robust mean estimation incur an

estimation error that depends on the spectral norm of the covariance

matrix Σ of the underlying distribution and is proportional to

√
ε

(where ε > 0 is the fraction of outliers) [26, 60]. Concretely, given

an ε-corrupted sample of sufficiently larger polynomial size from a

distributionD, they compute an estimate µ̂ for the mean µ ofD such

that with high probability ∥µ̂ − µ∥ ⩽ O (
√
ε ) · ∥Σ∥1/2. Furthermore,

this bound is optimal for general distributions in the sense that

up to constant factors no better bound is possible information-

theoretically in terms of ε and the spectral norm of Σ.

In the following theorem, we show that better bounds for the

mean estimation error are possible for large classes of distributions.

Concretely, we assume (certifiable) bounds on higher-order mo-

ments of the distribution (degree 4 and higher). These higher-order

moment assumptions allow us to improve the estimation error as a

function of ε (instead of a

√
ε bound as for the unconditional mean

estimation before we obtain an ε1−1/k if we assume a bound on the

degree-k moments). Furthermore, we also obtain multiplicative ap-

proximations for the covariance matrix (in the Löwner order sense)

regardless of the spectral norm of the covariance. (Note that our

notion of certifiable subgaussianity does not restrict the covariance

matrix in any way.)

Theorem 2.2 (Robust mean and covariance estimation un-

der certifiable subgaussianity). For every C > 0 and even
k ∈ �, there exists a polynomial-time algorithm that given a (cor-
rupted) sample S ⊆ �d outputs a mean-estimate µ̂ ∈ �d and a
covariance-estimate Σ̂ ∈ �d×d with the following guarantee: there
exists n0 ⩽ (C + d )O (k ) such that if S is an ε-corrupted sample with
size |S | ⩾ n0 of a k-certifiably C-subgaussian distribution D over
�d with mean µ ∈ �d and covariance Σ ∈ �d×d , then with high
probability

∥µ − µ̂∥ ⩽ O (Ck )1/2 · ε1−1/k · ∥Σ∥1/2 (2.2)

∥Σ−1/2 (µ − µ̂ )∥ ⩽ O (Ck )1/2 · ε1−1/k (2.3)

(1 − δ )Σ ⪯ Σ̂ ⪯ (1 + δ )Σ for δ ⩽ O (Ck ) · ε1−2/k . (2.4)

For the last two bounds, we assume in addition Ck · ε1−2/k ⩽ Ω(1).4

Note that the second guarantee for the mean estimation error

µ − µ̂ is stronger because ∥µ − µ̂∥ ⩽ ∥Σ∥1/2 · ∥Σ−1/2 (µ − µ̂ )∥. We

remark that ∥Σ−1/2 (µ − µ̂ )∥ is the Mahalanobis distance between µ̂

and D.

In general, our results provide information theoretically tight

way to utilize higher moment information and give optimal de-

pendence of the error on the fraction of outliers in the input sam-

ple for every (k, ℓ)-certifiably O (1)-subgaussian distribution. This,

in particular, improves on the mean estimation algorithm of [47]

by improving on their error bound of O (ε1/2)∥Σ∥1/2
√
log (d ) to

O (ε3/4∥Σ∥1/2 under their assumption of bounded 4th moments

(whenever “certified” by SoS).

Frobenius vs spectral norm for covariance-matrix estimation. Pre-
vious work for robust covariance estimation [27, 47] work with

Frobenius norms for measuring the estimation error Σ − Σ̂ and

obtain in this way bounds that can be stronger than ours. However,

it turns out that assuming only k-certifiable subgaussianity makes

it information-theoretically impossible to obtain dimension-free

bounds in Frobenius norm and that we have to work with spec-

tral norms instead. In this sense, the assumptions we make about

distributions are substantially weaker compared to previous works.

Concretely, [47] show a bound of ∥Σ∥ − Σ̂F ⩽ Õ (ε1/2)∥Σ∥

assuming a 4-th moment bound and that the distribution is an

affine transformation of a product distribution. [27] show a bound

∥Σ∥ − Σ̂F ⩽ O (ε )∥Σ∥ assuming the distribution is Gaussian.
5

However, even for simple k-certifiably subgaussian distributions

with parameterC ⩽ O (1), the information-theoretically optimal er-

ror in terms of Frobenius norm is ∥Σ∥ − Σ̂F ⩽ O (
√
d · ε1−2/k ) · ∥Σ∥.

Concretely, consider the mixture of N (0, I ) and N (0, ε−2/k I ) with

weights 1−ε and ε , respectively. Then, it’s easy to confirm that both

the mixture and the standard gaussian N (0, I ) are k-certifiably 2-

subgaussian and at most ε far in total variation distance. Thus, given

only k-certifiable 2-subgaussianity, it is information theoretically

impossible to decide which of the above two distributions generated

a given ε-corrupted sample. Finally, the difference of their covari-

ance equals ε (ε−2/k − 1)I which has Frobenius norm Ω(ε1−2/k )
√
d

for any ε < 1. For this case, our algorithms guarantee the signifi-

cantly stronger
6
spectral-norm bound ∥Σ − Σ̂∥ ⩽ O (ε1−2/k ) · ∥Σ∥.

Multiplicative vs. additive estimation error. Another benefit of
our covariance estimation algorithm is that provide a multiplicative

4
This notation means that we require Ck · ε1−2/k ⩽ c0 for some absolute constant

c0 > 0 (that could in principle be extracted from the proof).

5
In the Gaussian case, [27] establish the stronger bound ∥Σ∥−1/2 (Σ − Σ̂)Σ−1/2F ⩽

O (ε ). This norm can be viewed as the Frobenius norm in a transformed space. Our

bounds are for the spectral norm in the same transformed space.

6
Similarly to [27], we also work with norms in a transformed space (in which the

distribution is isotropic) and obtain the stronger bound ∥Σ−1/2 (Σ − Σ̂)Σ−1/2 ∥ ⩽
O (ε1−2/k ).
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approximation guarantee, that is, the quadratic form of the esti-

mated covariance at any vector u is within (1 ± δ ) of the quadratic

form of the true covariance. This strong guarantee comes in handy,

for example, in whitening or computing an isotropic transformation

of the data—a widely used primitive in algorithm design. Indeed,

this ability to use the estimated covariance to whiten the data is

crucial in our outlier-robust algorithm for independent component

analysis.The Frobenius norm error guarantees, in general, do not

imply good multiplicative approximations and thus cannot be used

for this application.

We note that in the special case of gaussian distributions, the

results of Diakonikolas et al. [25] allow recovering the mean and

covariance in fixed polynomial time with better dependence of

the error on the fraction of outliers that grows as Õ (ε )∥Σ∥1/2. Our

results when applied for the special case of gaussian mean and

covariance estimation will require a running time of dO (
√
log (1/ε ))

to achieve a similar error guarantee. Their algorithm for gaussian

covariance estimation also provides multiplicative error guarantees.

Robust Estimation of Higher Moments. Our techniques for ro-
bustly estimating mean and covariance of a distribution extend in

a direct way to robustly estimating higher-order moment tensors.

In order to measure the estimation error, we use a variant of the in-

jective tensor norm (with respect to a transformed space where the

distribution is isotropic), which generalizes the norm we use for the

estimation error of the covariance matrix. This error bound allows

us to estimate for every direction u ∈ �d , the low-degree moments

of the distribution in direction u with small error compared to the

second moment in direction u.

The approaches in previous works fact inherent obstacles in

generalizing to the problem of estimating the higher moments with

multiplicative (i.e. in every direction u) error guarantees. This type

of error is in fact crucial in applications for learning latent variable

models such as mixtures of Gaussians and independent component

analysis.

In fact, our guarantees are in some technical way stronger, which

is crucial for our applications of higher-order moment estimates.

Unlike spectral norms, injective norms are NP-hard to compute

(even approximately, under standard complexity assumptions). For

this reason, it is not clear how to make use of an injective-norm

guarantee when processing moment-estimates further. Fortunately,

it turns out that our algorithm not only guarantees an injective-

norm bound for the error but also a good certificate for this bound,

in form of a low-degree sum-of-squares proof. It turns out that this

kind of certificate is precisely what we need for our applications—in

particular, recent tensor decomposition algorithms based on sum-

of-squares [49] can tolerate errors with small injective norm if that

is certified by a low-degree sum-of-squares proof.

Theorem 2.3 (Robust Higher Moment Estimation). For every
C > 0 and even k ∈ �, there exists a polynomial-time algorithm
that given a (corrupted) sample S ⊆ �d outputs a moment-estimates

M̂2 ∈ �
d2

, . . . , M̂k ∈ �
dk with the following guarantee: there exists

n0 ⩽ (C + d )O (k ) such that if S is an ε-corrupted sample with size
|S | ⩾ n0 of a k-certifiablyC-subgaussian distribution D over�d with
moment-tensorsM2 ∈ �

d2

, . . . ,Mk ∈ �
dk such that Ck · ε1−2/k ⩽

Ω(1), then with high probability for every r ⩽ k/2,

∀u ∈ �d . ⟨Mr−M̂r ,u
⊗r ⟩2 ⩽ δr ·⟨M2,u

⊗2⟩r for δr ⩽ O (Ck )r /2·ε1−
r
k

(2.5)

Furthermore, there exist degree-k sum-of-squares proofs of the above
polynomial inequalities in u.

Information-theoretic optimality. We show that the error guar-

antees in our robust moment-estimation algorithms are tight in

their dependence on both k and ε . For example, we show that there

are two k-certifiablyO (1)-subgaussian distributions with statistical

distance ε but means that are Ω(
√
kε1−1/k ) apart. A similar state-

ment holds for higher-order moments. The distributions are just

mixtures of two one-dimensional Gaussians.

Application: independent component analysis. As an immediate

application of our robust moment estimation algorithm, we get an

algorithm for Outlier Robust Independent Component Analysis.

Independent component analysis (also known as blind source sep-

aration) is a fundamental problem in signal processing, machine

learning and theoretical computer science with applications to di-

verse areas including neuroscience. Lathauwer et. al. [22], following

up on a long line of work gave algorithms for ICA based on 4th order

tensor decomposition. A noise-tolerant version of this algorithm

was developed in [49]. There is also a line of work in theoretical

computer science on designing efficient algorithms for ICA [30, 64].

In the ICA problem, we are given a non-singular
7
mixing matrix

A ∈ �d×d with condition number κ and a product distribution

on �d . The observations come from the model {Ax } that is, the

observed samples are linear transformations (using the mixing

matrix) of independent draws of the product random variable x . The

goal is to recover columns ofAup to small relative error in Euclidean

norm (up to signs and permutations) from samples. It turns out

that information theoretic recovery of A is possible whenever at

most one source is non-gaussian. A widely used convention in this

regard is the 4th moment assumption: for each i , �[x4i ] , 3�[x2i ].

It turns out that we can assume�[x2i ] = 1 without loss of generality

so this condition reduces to asserting �[x4i ] , 3.

Outlier robust version of ICA was considered as an application

of the outlier-robust mean and covariance estimation problems

in [47]. They sketched an algorithm with the guarantee that the

relative error in the columns of A is at most ε
√
log (d ) poly(κ).

In particular, this guarantee is meaningful only if the fraction

of outliers ε ≪ 1√
log (d ) poly(κ )

. Here, we improve upon their result

by giving an outlier-robust ICA algorithm that recovers columns

7
We could also consider the case that A is rectangular and its columns are linearly

independent. Essentially the same algorithm and analysis would go through in this

case. We focus on the quadratic case for notational simplicity.
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of A up to an error that is independent of both dimension d and the

condition number κ of the mixing matrix A.

Our algorithm directly follows by applying 4th order tensor

decomposition. However, a crucial step in the algorithm involves

“whitening” the 4th moments by using an estimate of the covariance

matrix. Here, the multiplicative guarantees obtained in estimating

the covariance matrix are crucial - estimates with respect to the

Frobenius norm error do not give such whitening transformation

in general. This whitening step essentially allows us to pretend that

the mixing matrix A is well-conditioned leading to no dependence

on the condition number in the error.

Theorem 2.4 (Robust independent component analysis). For
every C ⩾ 1 and even k ∈ �, there exists a polynomial-time algo-
rithm that given a (corrupted) sample S ⊆ �d outputs component
estimates â1, . . . , âd ∈ �d with the following guarantees: Suppose
A ∈ �d×d is a non-singular matrix with condition number κ and
columns a1, . . . ,ad ∈ �d . Suppose x is a centered random vector with
d independent coordinates such that every coordinate i ∈ [d] satisfies
�[x2i ] = 1, �[x4i ] − 3 = γ , 0, and �[xki ]

1/k ⩽
√
Ck . Then, if S is

an ε-corrupted sample of size |S | ⩾ n0 from the distribution {Ax },
where n0 ⩽ (C + κ + d )O (k ) , the component estimates satisfy with
high probability

max

π ∈Sd
min

i ∈[d]
⟨A−1âi ,A

−1aπ (i )⟩
2 ⩾ 1−δ for δ < (1+ 1

|γ | )·O (C2k2)·ε1−4/k .

(2.6)

The quantity ⟨A−1âi ,A
−1aπ (i )⟩ is closely related to the Maha-

lanobis distance between âi and aπ (i ) with respect to the distribu-

tion {Ax }

Application: learning mixtures of Gaussians. As yet another im-

mediate application of our robust moment estimation algorithm, we

get an outlier-robust algorithm for learning mixtures of spherical

Gaussians. Our algorithm works under the assumption that the

means are linearly independent (and that the size of the sample

grows with their condition number). In return, our algorithm does

not require the means of the Gaussians to be well-separated. Our

algorithm can be viewed as an outlier-robust version of tensor-

decomposition based algorithms for mixtures of Gaussians [15, 37].

Theorem 2.5 (Robust estimation of mixtures of spherical

Gaussians ). Let D be mixtures of N (µi , I ) for i ⩽ q with uniform8

mixture weights. Assume that µi s are linearly independent and, fur-
ther, assume that κ, the smallest non-zero eigenvalue of 1

q
∑
i µi µ

⊤
i is

Ω(1).
Given an ε-corrupted sample of size n ⩾ n0 =

Ω((d log (d ))k/2/ε2), for every k ⩾ 4, there’s a poly(n)dO (k )

time algorithm that recovers µ̂1, µ̂2, . . . µ̂q so that there’s a
permutation π : [q]→ [q] satisfying

max

i
∥ (
1

q

∑
i

µi µ
⊤
i )
−1/2 (µ̂i − µπ (i ) )∥ ⩽ O (qk )ε1/3−1/k .

8
While our algorithm generalizes naturally to arbitrary mixture weights, we restrict

to this situation for simplicity

Diakonikolas et. al. [25] gave an outlier-robust algorithm that

learns mixtures of q gaussians with error ≈ q
√
ε in each of the

recovered means. Their algorithm is polynomial in the dimension

but has an exponential dependence on number of components q in

the running time. Under the additional assumption that the means

are linearly independent, our algorithm (say for k = 8) recovers

similar error guarantees as theirs but runs in time polynomial in

both q and d . The key difference is the power of our algorithm to

recover a multiplicative approximation to the 4th moment tensor

which allows us to apply blackbox tensor decomposition based

methods and run in fixed polynomial time [39].

2.3 Distribution-Agnostic Robust Clustering
Specifically, we show that for any γ > 0, given a balanced mixture

of k Poincaré distributions with means separated by Ω(kγ ), we can

successfully cluster n samples from this mixture in nO (1/γ )
time

(by using O (1/γ ) levels of the sum-of-squares hierarchy). Similarly,

given samples from a Poincaré distribution with an ε fraction of

adversarial corruptions, we can estimate its mean up to an error of

O (ε1−γ ) in nO (1/γ )
time. In fact, we will see below that we get both

at once: a robust clustering algorithm that can learn well-separated

mixtures even in the presence of arbitrary outliers.

To our knowledge such a result was not previously known even

in the second-moment case (Charikar et al. [20] and Steinhardt et al.

[61] study this setting but only obtain results in the list-decodable
learning model). Our result only relies on the SOS-certifiability of

the moment tensor, and holds for any deterministic point set for

which such a sum-of-squares certificate exists.

Despite their generality, our results are strong enough to yield

new bounds even in very specific settings such as learning bal-

anced mixtures of k spherical Gaussians with separation Ω(kγ ).

Our algorithm allows recovering the true means in nO (1/γ )
time

and partially resolves an open problem posed in the recent work of

Regev and Vijayaraghavan [59].

Certifying injective norms of moment tensors appears to be a

useful primitive and could help enable further applications of the

sum of squares method in machine learning. Indeed, [43] studies

the problem of robust estimation of higher moments of distribu-

tions that satisfy a bounded-moment condition closely related to

approximating injective norms. Their relaxation and the analysis

are significantly different from the present work; nevertheless, our

result for Poincaré distributions immediately implies that the robust

moment estimation algorithm of [43] succeeds for a large class of

Poincaré distributions.

Our first main result regards efficient upper bounds on the injec-

tive norm of the moment tensor of any Poincaré distribution. Let

x1,x2, . . . ,xn ∈ �
d
be n i.i.d. samples from a Poincaré distribution

with mean µ, and let M2t =
1

n
∑n
i=1 (xi − µ )⊗2t be the empirical

estimate of the 2tth moment tensor. We are interested in upper-

bounding the injective norm, which can be equivalently expressed
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in terms of the moment tensor as

sup

∥v ∥2⩽1

1

n

n∑
i=1
⟨xi − µ,v⟩

2t = sup

∥v ∥2⩽1
⟨M2t ,v

⊗2t ⟩. (2.7)

Standard results yield dimension-free upper bounds on (2.7) for all

Poincaré distributions. Our first result is a “sum-of-squares proof”

of this fact giving an efficient method to certify dimension-free

upper bounds on (2.7) for samples from any Poincaré distribution.

Specifically, let the sum of squares norm of M2t , denoted by

∥M2t ∥sos2t , be the degree-2t sum-of-squares relaxation of (2.7) (we

discuss such norms and the sum-of-squares method in more detail

in the full version) for now the important fact is that ∥M2t ∥sos2t can

be computed in time (nd )O (t )
). We show that for a large enough

sample from a distribution that satisfies the Poincaré inequality,

the sum-of-squares norm of the moment tensor is upper bounded

by a dimension-free constant.

Theorem 2.6. Let p be a σ -Poincaré distribution over �d with
mean µ. Let x1, . . . ,xn ∼ p with n ⩾ (2d log(dt/δ ))t . Then, for some
constant Ct (depending only on t ) with probability at least 1 − δ we
have ∥M2t ∥sos2t ⩽ Ctσ , whereM2t =

1

n
∑n
i=1 (xi − µ )

⊗2t .

As noted above, previous sum-of-squares bounds worked for

specialized cases such as product distributions. Theorem 2.6 is key

to our applications that crucially rely on 1) going beyond product

distributions and 2) using sos2t norms as a proxy for injective norms

for higher moment tensors.

Outlier-Robust Agnostic Clustering. Our second main result is an

efficient algorithm for outlier-robust agnostic clustering whenever

the “ground-truth” clusters have moment tensors with bounded

sum-of-squares norms.

Concretely, the input is data points x1, . . . ,xn of n points in �d ,

a (1 − ε ) fraction of which admit a (unknown) partition into sets

I1, . . . , Ik each having bounded sum-of-squares norm around their

corresponding means µ1, . . . , µk . The remaining ε fraction can be

arbitrary outliers. Observe that in this setting, we do not make any

explicit distributional assumptions.

We will be able to obtain strong estimation guarantees in this

setting so long as the clusters are well-separated and the fraction ε

of outliers is not more than α/8, where α is the fraction of points in

the smallest cluster. We define the separation as ∆ = mini,j ∥µi −

µ j ∥2. A lower bound on ∆ is information theoretically necessary

even in the special case of learning mixtures of identity-covariance

gaussians without any outliers (see [59]).

Theorem 2.7. Suppose points x1, . . . ,xn ∈ �d can be partitioned
into sets I1, . . . , Ik and out, where the Ij are the clusters and out is a
set of outliers of size εn. Suppose Ij has size α jn and mean µ j , and that
its 2t th moment M2t (Ij ) satisfies ∥M2t (Ij )∥sos2t ⩽ B. Also suppose
that ε ⩽ α/8 for α = min

k
j=1 α j .

Finally, suppose the separation ∆ ⩾ Csep ·B/α
1/t , withCsep ⩾ C0

(for a universal constant C0). Then there is an algorithm running

in time (nd )O (t ) and outputting means µ̂1, . . . , µ̂k such that ∥µ̂ j −
µ j ∥2 ⩽ O (B (ε/α +C−2tsep )

1−1/2t ) for all j.

The parameter B specifies a bound on the variation in each

cluster. The separation condition says that the distance between

cluster means must be slightly larger (by a α−1/t factor) than this

variation. The error in recovering the cluster means depends on

two terms—the fraction of outliers ε , and the separation Csep .

To understand the guarantees of the theorem, let’s start with the

case where ε = 0 (no outliers) and α = 1/k (all clusters have the

same size). In this case, the separation requirement between the

clusters is B · k1/t where B is the bound on the moment tensor of

order 2t . The theorem guarantees a recovery of the means up to an

error in Euclidean norm of O (B). By taking t larger (and spending

the correspondingly larger running time), our clustering algorithm

works with separation kγ for any constant γ . This is the first result

that goes beyond the separation requirement of k1/2 in the agnostic
clustering setting—i.e., without making distributional assumptions

on the clusters.

It is important to note that even in 1 dimension, it is information

theoretically impossible to recover cluster means to an error≪ B

when relying only on 2tth moment bounds. A simple example to

illustrate this is obtained by taking a mixture of two distributions

on the real line with bounded 2tth moments but small overlap

in the tails. In this case, it is impossible to correctly classify the

points that come from the the overlapping part. Thus, a fraction

of points in the tail always end up misclassified, shifting the true

means. The recovery error of our algorithm does indeed drop as the

separation (controlled by Csep ) between the true means increases

(making the overlapping parts of the tail smaller). We note that

for the specific case of spherical gaussians, we can exploit their

parametric structure to get arbitrarily accurate estimates even for

fixed separation; see Corollary 2.9.

Next, let’s consider ε , 0. In this case, if ε ≪ α , we recover the

means up to an error of O (B) again (for Csep ⩾ C0). It is intuitive

that the recovery error for the means should grow with the number

of outliers, and the condition ε ⩽ α/8 is necessary, as if ε ⩾ α then

the outliers could form an entirely new cluster making recovery of

the means information-theoretically impossible.

We also note that in the degenerate case where k = 1 (a single

cluster), Theorem 2.7 yields results for robust mean estimation

of a set of points corrupted by an ε fraction of outliers. In this

case we are able to estimate the mean to error ε
2t−1
2t ; when t = 1

this is

√
ε , which matches the error obtained by methods based

on second moments [24, 46, 61]. For t = 2 we get error ε3/4, for

t = 3 we get error ε5/6, and so on, approaching an error of ε as

t → ∞. In particular, this pleasingly approaches the rate Õ (ε )

obtained by much more bespoke methods that rely strongly on

specific distributional assumptions [23, 46].

Note that we could not hope to do better than ε
2t−1
2t , as that is

the information-theoretically optimal error for distributions with
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bounded 2t th moments (even in one dimension), and degree-2t SOS

only “knows about” moments up to 2t .

Finally, we can obtain results even for clusters that are not well-

separated, and for fractions of outliers that could exceed α . In

this case we no longer output exactly k means, and must instead

consider the list-decodable model Balcan et al. [8], Charikar et al.

[20], where we output a list of O (1/α ) means of which the true

means are a sublist.

Applications. Putting together Theorem 2.6 and Theorem 2.7

immediately yields corollaries for learning mixtures of Poincaré

distributions, and in particular mixtures of Gaussians.

Corollary 2.8 (Disentangling Mixtures of Arbitrary

Poincaré Distributions). Suppose that we are given a dataset
of n points x1, . . . ,xn , such that at least (1 − ε )n points are drawn
from a mixture α1p1 + · · · + αkpk of k distributions, where pj is σ -
Poincaré with mean µ j (the remaining εn points may be arbitrary).
Let α = min

k
j=1 α j . Also suppose that the separation ∆ is at least

Csep ·Ctσ/α
1/t , for some constantCt depending only on t and some

Csep ⩾ 1.
Then, assuming that ε ⩽ α

10
, for somen = O ((2d log(tkd/δ ))t /α+

d log(k/δ )/αε2), there is an algorithm running in nO (t ) time which
with probability 1 − δ outputs candidate means µ̂1, . . . , µ̂k such that
∥µ̂ j − µ j ∥2 ⩽ C ′tσ (ε/α +C

−2t
sep )

2t−1
2t for all j (where C ′t is a different

universal constant).

The 1/α factor in the sample complexity is so that we have

enough samples from every single cluster for Theorem 2.6 to hold.

The extra term of d log(k/δ )/ε2 in the sample complexity is so that

the empirical means of each cluster concentrate to the true means.

Corollary 2.8 is one of the strongest results on learning mix-

tures that one could hope for. If the mixture weights α are all at

least 1/ poly(k ), then Corollary 2.8 implies that we can cluster the

points as long as the separation ∆ = Ω(kγ ) for any γ > 0. Even

for spherical Gaussians the best previously known algorithms re-

quired separation Ω(k1/4). On the other hand, Corollary 2.8 applies

to a large family of distributions including arbitrary strongly log-

concave distributions. Moreover, while the Poincaré inequality does

not directly hold for discrete distributions, a large class of discrete

distributions, including product distributions over bounded do-

mains, will satisfy the Poincaré inequality after adding zero-mean

Gaussian noise.

For mixtures of Gaussians in particular, we can do better, and in

fact achieve vanishing error independent of the separation:

Corollary 2.9 (Learning Mixtures of Gaussians). Suppose
that x1, . . . ,xn ∈ �d are drawn from a mixture of k Gaussians:
p =

∑k
j=1 α jN (µ j , I ), where α j ⩾ 1/ poly(k ) for all j. Then for

any γ > 0, there is a separation ∆0 = O (kγ ) such that given n ⩾

poly(d1/γ ,k, 1/ε ) log(k/δ ) samples from p, if the separation ∆ ⩾

∆0, then with probability 1 − δ we obtain estimates µ̂1, . . . , µ̂k with
∥µ̂ j − µ j ∥2 ⩽ ε for all j.

Remark 2.10. This partially resolves an open question of Regev and

Vijayaraghavan [59], who ask whether it is possible to efficiently

learn mixtures of Gaussians with separation

√
logk .

The error now goes to 0 as n → ∞, which is not true in the more

general Corollary 2.8. This requires invoking Theorem IV.1 of Regev

and Vijayaraghavan [59], which, given a sufficiently good initial

estimate of the means of a mixture of Gaussians, shows how to get

an arbitrarily accurate estimate. As discussed before, such a result is

specific to Gaussians and in particular is information-theoretically

impossible for mixtures of general Poincaré distributions.

Proof Sketch and Technical Contributions. We next sketch the

proofs of our two main theorems (Theorem 2.6 and Theorem 2.7)

while indicating which parts involve new technical ideas.

2.3.1 Sketch of Theorem 2.6. For simplicity, we will only focus

on SOS-certifiability in the infinite-data limit, i.e. on showing that

SOS can certify an upper bound �x∼p [⟨x − µ,v⟩
2t
] ⩽ Ctσ

2t ∥v ∥2t
2
.

(In full version, we will show that finite-sample concentration fol-

lows due to the matrix Rosenthal inequality [50].)

We make extensive use of a result of Adamczak and Wolff [2];

it is a very general result on bounding non-Lipschitz functions

of Poincaré distributions, but in our context the important conse-

quence is the following:

If f (x ) is a degree-t polynomial such that

�p [∇
j f (x )] = 0 for j = 0, . . . , t − 1, then

�p [f (x )
2
] ⩽ Ctσ

2t ∥∇t f (x )∥2F for a constant Ct ,

assuming p is σ -Poincaré. (Note that ∇t f (x ) is a

constant since f is degree-t .)

Here ∥A∥2F denotes the Frobenius norm of the tensor A, i.e. the

ℓ2-norm of A if it were flattened into a dt -element vector.

We can already see why this sort of bound might be useful for

t = 1. Then if we let fv (x ) = ⟨x − µ,v⟩, we have �[fv (x )] = 0 and

hence �p [⟨x − µ,v⟩2] ⩽ C1σ
2∥v ∥2

2
. This exactly says that p has

bounded covariance.

More interesting is the case t = 2. Here we will let fA (x ) =

⟨(x−µ ) (x−µ )⊤−Σ,A⟩, where µ is the mean and Σ is the covariance

of p. It is easy to see that both �[fA (x )] = 0 and �[∇fA (x )] = 0.

Therefore, we have �[⟨(x − µ ) (x − µ )⊤ − Σ,A⟩2] ⩽ C2σ
4∥A∥2F .

Why is this bound useful? It says that if we unroll (x − µ ) (x −

µ )⊤ − Σ to a d2-dimensional vector, then this vector has bounded

covariance (since if we project along any directionAwith ∥A∥F = 1,

the variance is at most C2σ
4
). This is useful because it turns out

sum-of-squares “knows about” such covariance bounds; indeed, this

type of covariance bound is exactly the property used in Barak et al.

[9] to certify 4th moment tensors over the hypercube. In our case it

yields a sum-of-squares proof that �[⟨(x − µ )⊗4 − Σ⊗2,v⊗4⟩] ⪯sos
C2σ

4∥v ∥4
2
, which can then be used to bound the 4th moment�[⟨x−

µ,v⟩4] = �[⟨(x − µ )⊗4,v⊗4⟩].

Motivated by this, it is natural to try the same idea of “subtracting

off the mean and squaring” with t = 4. Perhaps we could define

fA (x ) = ⟨((x − µ )
⊗2 − Σ)⊗2 − �[((x − µ )⊗2 − Σ)⊗2],A⟩?
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Alas, this does not work—while there is a suitable polynomial

fA (x ) for t = 4 that yields sum-of-squares bounds, it is somewhat

more subtle. For simplicity we will write the polynomial for t = 3.

It is the following: fA (x ) = ⟨(x−µ )
⊗3−3(x−µ )⊗Σ−M3,A⟩, where

M3 = �[(x − µ )⊗3] is the third-moment tensor of p. By checking

that �[fA (x )] = �[∇fA (x )] = �[∇
2 fA (x )] = 0, we obtain that the

tensor F3 (x ) = (x − µ )⊗3 − 3(x − µ ) ⊗ Σ −M3, when unrolled to a

d3-dimensional vector, has bounded covariance, which means that

sum-of-squares knows that �[⟨F3 (x )
⊗2,v⊗6⟩] is bounded for all

∥v ∥2 ⩽ 1.

However, this is not quite what we want—we wanted to show

that �[⟨(x − µ )⊗6,v⊗6⟩] is bounded. Fortunately, the leading term

of F3 (x )
⊗2

is indeed (x − µ )⊗6, and all the remaining terms are

lower-order. So, we can subtract off F3 (x ) and recursively bound

all of the lower-order terms to get a sum-of-squares bound on

�[⟨(x − µ )⊗6,v⊗6⟩]. The case of general t follows similarly, by

carefully constructing a tensor Ft (x ) whose first t − 1 derivatives

are all zero in expectation.

There are a couple contributions here beyond what was known

before. The first is identifying appropriate tensors Ft (x ) whose

covariances are actually bounded so that sum-of-squares can make

use of them. For t = 1, 2 (the cases that had previously been studied)

the appropriate tensor is in some sense the “obvious” one (x−µ )⊗2−

Σ, but even for t = 3 we end up with the fairly non-obvious tensor

(x − µ )⊗3 − 3(x − µ ) ⊗ Σ −M3. (For t = 4 it is (x − µ )⊗4 − 6(x −

µ )⊗2 ⊗ Σ − 4(x − µ ) ⊗ M3 − M4 + 6Σ ⊗ Σ.) While these tensors

may seem mysterious a priori, they are actually the unique tensor

polynomials with leading term x ⊗t such that all derivatives of order

j < t have mean zero. Even beyond Poincaré distributions, these

seem like useful building blocks for sum-of-squares proofs.

The second contribution is making the connection between

Poincaré distributions and the above polynomial inequalities. The

well known work of Latała Latała [48] establishes non-trivial esti-

mates of upper bounds on themoments of polynomials of Gaussians,

of which the inequalities used here are a special case. Adamczak

and Wolff [2] show that these inequalities also hold for Poincaré

distributions. However, it is not a priori obvious that these inequal-

ities should lead to sum-of-squares proofs, and it requires a careful

invocation of the general inequalities to get the desired results in

the present setting.

2.3.2 Sketch of Theorem 2.7. We next establish our result on

robust clustering. In fact we will establish a robust mean estimation

result which will lead to the clustering result—specifically, we will

show that if a set of points x1, . . . ,xn contains a subset {xi }i ∈I
of size αn that is SOS-certifiable, then the mean (of the points in

I ) can be estimated regardless of the remaining points. There are

two parts: if α ≈ 1 we want to show error going to 0 as α → 1,

while if α ≪ 1 we want to show error that does not grow too fast

as α → 0. In the latter case we will output O (1/α ) candidates for

the mean and show that at least one of them is close to the true

mean (think of these candidates as accounting for O (1/α ) possible

clusters in the data). We will later prune down to exactly k means

for well-separated clusters.

For t = 1 (which corresponds to bounded covariance), the α → 0

case is studied in Charikar et al. [20]. A careful analysis of the

proof there reveals that all of the relevant inequalities are sum-of-

squares inequalities, so there is a sum-of-squares generalization of

the algorithm in Charikar et al. [20] that should give bounds for

SOS-certifiable distributions. While this would likely lead to some

robust clutering result, we note the bounds we achieve here are

stronger than those in Charikar et al. [20], as Charikar et al. [20]

do not achieve tight results when the clusters are well-separated.

Moreover, the proof in Charikar et al. [20] is complex and would be

somewhat tedious to extend in full to the sum-of-squares setting.

We combine and simplify ideas from both Charikar et al. [20]

and Steinhardt et al. [61] to obtain a relatively clean algorithm. In

fact, we will see that a certain mysterious constraint appearing

in Charikar et al. [20] is actually the natural constraint from a

sum-of-squares perspective.

Our algorithm is based on the following optimization. Given

points x1, . . . ,xn , we will try to find points w1, . . . ,wn such that

1

n
∑n
i=1 �̃ξ (v )[⟨xi −wi ,v⟩

2t
] is small for all pseudodistributions ξ

over the sphere. This is natural because we know that for the good

points xi and the true mean µ, ⟨xi − µ,v⟩2t is small (by the SOS-

certifiability assumption). However, without further constraints this

is not a very good idea because the trivial optimum is to setwi = xi .

We would somehow like to ensure that the wi cannot overfit too

much to the xi ; it turns out that the natural way to measure this

degree of overfitting is via the quantity

∑
i ∈I ⟨wi − µ,wi ⟩

2t
.

Of course, this quantity is not known because we do not know

µ. But we do know that

∑
i ∈I �̃ξ (v )[⟨wi − µ,v⟩2t ] is small for all

pseudodistributions (because the corresponding quantity is small

for xi −µ andwi −xi , and hence also forwi −µ = (wi −xi )+ (xi −µ )

by Minkowski’s inequality). Therefore, we impose the following

constraint:whenever z1, . . . , zn are such that
∑n
i=1 �̃ξ [⟨zi ,v⟩

2t
] ⩽ 1

for all ξ , it is also the case that
∑n
i=1⟨zi ,wi ⟩

2t is small. This con-
straint is not efficiently imposable, but it does have a simple sum-

of-squares relaxation. Namely, we require that

∑n
i=1⟨Zi ,w

⊗2t
i ⟩ is

small whenever Z1, . . . ,Zn are pseudomoment tensors satisfying∑n
i=1 Zi ⪯sos I .

Together, this leads to seekingw1, . . . ,wn such that

n∑
i=1
�̃
ξ
[⟨xi −wi ,v⟩

2t
] is small for all ξ , and

n∑
i=1
⟨Zi ,w

⊗2t
i ⟩ is small whenever

∑
i
Zi ⪯sos I . (2.8)

If we succeed in this, we can show that we end up with a good

estimate of the mean (more specifically, thewi are clustered into a

small number of clusters, such that one of them is centered near

µ). The above is a convex program, and thus, if this is impossible,

by duality there must exist specific ξ and Z1, . . . ,Zn such that the

above quantities cannot be small for any w1, . . . ,wn . But for fixed
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ξ and Z1:n , the differentwi are independent of each other, and in

particular it should be possible to make both sums small at least

for the terms coming from the good set I . This gives us a way of

performing outlier removal: look for terms where minw �̃ξ [⟨xi −

w,v⟩2t ] or minw ⟨Zi ,w⟩ is large, and remove those from the set of

points. We can show that after a finite number of iterations this

will have successfully removed many outliers and few good points,

so that eventually we must succeed in making both sums small and

thus get a successful clustering.

Up to this point the proof structure is similar to Steinhardt et al.

[61]; the main innovation is the constraint involving the zi , which

bounds the degree of overfitting. In fact, when t = 1 this constraint

is the dual form of one appearing in Charikar et al. [20], which

asks that w⊗2i ⪯ Y for all i , for some matrix Y of small trace. In

Charikar et al. [20], the matrix Y couples all of the variables, which

complicates the analysis. In the form given here, we avoid the

coupling and also see why the constraint is the natural one for

controlling overfitting.

To finish the proof, it is also necessary to iteratively re-cluster

the wi and re-run the algorithm on each cluster. This is due to

issues where we might have, say, 3 clusters, where the first two

are relatively close together but very far from the third one. In this

case our algorithm would resolve the third cluster from the first

two, but needs to be run a second time to then resolve the first two

clusters from each other.

Charikar et al. [20] also use this re-clustering idea, but their re-

clustering algorithmmakes use of a sophisticated metric embedding

technique and is relatively complex. Here we avoid this complexity

by making use of resilient sets, an idea introduced in Steinhardt

et al. [61]. A resilient set is a set such that all large subsets have

mean close to the mean of the original set; it can be shown that

any set with bounded moment tensor is resilient, and by finding

such resilient sets we can robustly cluster in a much more direct

manner than before. In particular, in the well-separated case we

show that after enough rounds of re-clustering, every resilient set

has almost all of its points coming from a single cluster, leading to

substantially improved error bounds in that case.
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