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What is complexity theory? 



problems resources 

3SAT 
={satisfiable 3CNF formulas} 

LP 
={feasible linear programs} 

How do resource limitations impact 
our ability to solve problems? 

upper bounds 
(algorithms) 

lower bounds 
(impossibility results) 

P 
={poly-time Turing  

machines} 

L 
={log-space Turing 

machines} 



problems resources 

3SAT 
={satisfiable 3CNF formulas} 

LP 
={feasible linear programs} 

Which problems are  
easier than others? 

reductions 

P 
={poly-time Turing  

machines} 

L 
={log-space Turing 

machines} 



problems resources 

3SAT 
={satisfiable 3CNF formulas} 

LP 
={feasible linear programs} P 

={poly-time Turing  
machines} 

L 
={log-space Turing 

machines} 

What resources are more  
powerful than others? 

simulations 



problems resources 

decision problems (simplest, default) 

search problems (most general) 

promise problems (very useful case between decision and search) 

distributional problems (average-case complexity, later in course) 



problems resources 

decision problems 

𝑓: 0,1 ∗ → 0,1   or 𝐿 ⊆ 0,1 ∗      

(YES/NO answer for each input) (set of YES inputs) 

Example 

3SAT = {satisfiable 3CNF formulas 𝜙} 

(simplest, default) 



problems resources 

search problems 

relation 𝑅 = 𝑥, 𝑦 | output y is acceptable on input 𝑥   

for every input 𝑥, there is a set of acceptable outputs 𝑦 

Examples 

Max3SATs = { 𝜙, 𝑧  | assignment z satisfies as many clauses  
   as possible in 3CNF formula 𝜙} 

3SATs = { 𝜙, 𝑧  | assignment z satisfies 3CNF formula 𝜙} 

(most general) 



problems resources 

promise problems 

partition into YES inputs, NO inputs, and DON’T-CARE inputs 

for every input 𝑥, there is a set of acceptable outputs 𝑦 ∈ {0,1}  

Example 

Max3SAT(𝛼) 

(very useful case between decision and search) 

YES: satisfiable 3CNF formula 

NO: at most 𝛼 fraction of clauses satisfiable 



problems resources 

model measure 

Turing machine time and space 

non-determinism, alternation 

randomness 

advice 

circuits size and depth 

protocols communication cost 

resolution proofs length 

linear program number of constraints (facets) 



Reductions 

Turing/Cook 

Karp 

Levin 

problem A problem B 
reduces to 

 
 

solve A using an algorithm for B as a subroutine  
(use B as an oracle) 

map instances of A to instances of B such that  
answer is preserved (for decision & promise problems) 

map A-instances to B-instances such that any answer  
to B-instance can be pulled back (for search problems) 



Reductions 

problem A problem B 

Shows: 

reduces to 
 
 

B is harder than A 

meaningful if A is hard (plausibly) 

A is easier than B 

meaningful if B is easy (plausibly) 

Example: LP relaxations 
 (reduction to LP) 

Example: NP-hardness reductions 

Warning: 
3UNSAT is NP-hard w.r.t. 

Cook reductions but not w.r.t. 
Karp reductions (unless NP=coNP) 

rounding algorithm is pull-back 
from LP to original problem  

(constructive Levin reduction) 
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