
CS 6810 – Theory of Computing

Lecture 1: Introduction & Review

David Steurer

August 23, 2012

What is complexity theory?

problems resources

3SAT
={satisfiable 3CNF formulas}

LP
={feasible linear programs}

How do resource limitations impact
our ability to solve problems?

upper bounds
(algorithms)

lower bounds
(impossibility results)

P
={poly-time Turing

machines}

L
={log-space Turing

machines}

problems resources

3SAT
={satisfiable 3CNF formulas}

LP
={feasible linear programs}

Which problems are
easier than others?

reductions

P
={poly-time Turing

machines}

L
={log-space Turing

machines}

problems resources

3SAT
={satisfiable 3CNF formulas}

LP
={feasible linear programs} P

={poly-time Turing
machines}

L
={log-space Turing

machines}

What resources are more
powerful than others?

simulations

problems resources

decision problems (simplest, default)

search problems (most general)

promise problems (very useful case between decision and search)

distributional problems (average-case complexity, later in course)

problems resources

decision problems

𝑓: 0,1 ∗ → 0,1 or 𝐿 ⊆ 0,1 ∗

(YES/NO answer for each input) (set of YES inputs)

Example

3SAT = {satisfiable 3CNF formulas 𝜙}

(simplest, default)

problems resources

search problems

relation 𝑅 = 𝑥, 𝑦 | output y is acceptable on input 𝑥

for every input 𝑥, there is a set of acceptable outputs 𝑦

Examples

Max3SATs = { 𝜙, 𝑧 | assignment z satisfies as many clauses
 as possible in 3CNF formula 𝜙}

3SATs = { 𝜙, 𝑧 | assignment z satisfies 3CNF formula 𝜙}

(most general)

problems resources

promise problems

partition into YES inputs, NO inputs, and DON’T-CARE inputs

for every input 𝑥, there is a set of acceptable outputs 𝑦 ∈ {0,1}

Example

Max3SAT(𝛼)

(very useful case between decision and search)

YES: satisfiable 3CNF formula

NO: at most 𝛼 fraction of clauses satisfiable

problems resources

model measure

Turing machine time and space

non-determinism, alternation

randomness

advice

circuits size and depth

protocols communication cost

resolution proofs length

linear program number of constraints (facets)

Reductions

Turing/Cook

Karp

Levin

problem A problem B
reduces to

solve A using an algorithm for B as a subroutine
(use B as an oracle)

map instances of A to instances of B such that
answer is preserved (for decision & promise problems)

map A-instances to B-instances such that any answer
to B-instance can be pulled back (for search problems)

Reductions

problem A problem B

Shows:

reduces to

B is harder than A

meaningful if A is hard (plausibly)

A is easier than B

meaningful if B is easy (plausibly)

Example: LP relaxations
 (reduction to LP)

Example: NP-hardness reductions

Warning:
3UNSAT is NP-hard w.r.t.

Cook reductions but not w.r.t.
Karp reductions (unless NP=coNP)

rounding algorithm is pull-back
from LP to original problem

(constructive Levin reduction)

Machine with Concrete

Arthur Ganson

