
1 Basic Resources, Turing Machines,
Circuits

CS 6810 – Theory of Computing, Fall 2012
Instructor: David Steurer
Scribe: Sujay Jayakar (dsj36)
Date: 08/23/2012

1.1 What is Complexity Theory?

The heart of complexity theory lies in problems, resources, and studying the
interaction between them when we impose constraints. In other words, how do
resource constraints affect our ability to solve problems? There are two facets
to this question: First, we can devise algorithms to get upper bounds on the
resources needed to solve a problem, or we could prove impossibility results to
establish a lower bound on the necessary resources.

Additionally, complexity theory explores the relationships within problems
and resources. If solving one problem A amounts to solving another problem B,
we may say that A is easier than B or A reduces to B. In a similar nature, one class
A of resources may be more powerful than another B if computation in A can
simulate computation in B.

1.1.1 Problems

Problems can take many forms, but the one we will study most is the decision
problem. Formally, a decision problem is a subset (or language) L ⊆ {0, 1}∗, and
solving the problem amounts to telling whether a string x ∈ {0, 1}∗ is in L. One
common example of a decision problem is 3SAT, where L is the set of satisfiable
3CNF formulas.

A more general class of problems are search problems. Intuitively, given an
input x ∈ {0, 1}∗, there is a set of acceptable outputs A(x). This problem, then, is a
relation on {0, 1}∗, where

R = {(x, y) : y is acceptable for x}.

Given an input x, solving the problem involves finding a y such that (x, y) ∈ R.
A middle ground between the two previous varieties of problems are promise

problems. The set {0, 1}∗ has two disjoint subsets LYES and LNO. On input x, a
solution must input 1 if x ∈ LYES, 0 if x ∈ LNO, and anything if x is in neither.
The term promise comes from the observation that the problem is equivalent
to a decision problem when the algorithm is promised that the input lives in
LYES ∪ LNO.

1

CS 6810, Fall 2012, Lecture 1 Scribe: Sujay Jayakar

1.1.2 Resources

For each possible type of computational model, there are a variety of resources
that we would like to measure and restrict. Here, we outline common models
and their measures.

– Turing machines: time (number of operations), space (maximum number
of tape cells used), randomness, advice

– Circuits: size (number of vertices), depth (longest path through circuit)

– Protocols: communication cost

– Resolution proofs: length

– Linear programs: number of constraints (number of facets of polytope
domain)

1.1.3 Reductions

In general, we say that a problem A reduces to a problem B if we can solve
problem A using some knowledge of how to solve problem B. We can formalize
this notion in several ways.

– Turing/Cook reductions: Solve problem A using a solution to problem B as
a subroutine.

– Karp reductions: Map instances of the decision problem A into instances
of decision problem B such that answers are preserved. (This also makes
sense for promise problems.)

– Levin reductions: Map instances of A into B such that solutions of B can be
efficiently pulled back into A. (This makes sense for search problems.)

The existence of a reduction from A to B establishes that B is hard if A is hard
and that A is easy if B is easy. The first approach is used for NP-hard reductions,
and the second is used for linear programming relaxations, where the rounding
algorithm is the component of the Levin reduction that recovers solutions to the
original problem.

1.2 Turing Machines

When coming up with a model of computation, we would like to restrict the
description of functions from inputs x to outputs y. Turing observed that two
restrictions yielded a useful formalism: The functions must be finitely describable,
and the function must be decomposable into “local” steps.

2

CS 6810, Fall 2012, Lecture 1 Scribe: Sujay Jayakar

1.2.1 Description

We will begin describing Turing machines by outlining their state at a given point
of time, or their configuration. Turing machines have k semi-infinite tapes, each
blank except for finitely many cells. Each nonempty cell contains a symbol from
a finite alphabet Σ, so we may view the state of the tapes as an element of (Σ∗)k.
Each tape has a head that reads a particular cell, and the head may only be in a
single position at each point in time. Therefore, the state of the heads may be
described by an element ofNk. In addition, we fix a finite set of states Q, and the
machine is in any single state q at any given time.

The remainder of a Turing machine’s description is the transition function
from one configuration to another. Here, we restrict the function to be local. That
is, it may only depend on the cell under each of the k tape heads and the current
state q. Furthermore, the tape heads may only write to the current cell and move
by at most one cell in either direction. This locality directly guarantees us a finite
description.

Input can be done by placing the input string on one of the tapes, and the
machine can output a result by writing it on a particular tape and entering a
distinguished halt state. Note that Turing machines need not halt. For a Turing
machine M, set M(x) to be the machine’s output y if it halts and ⊥ if it does not.

1.2.2 Complexity

We can relate Turing machines to decision problems by saying that a machine M
solves L if M(x) = 1 if and only if x ∈ L. We say that M is t-timebounded if for
all inputs x, M halts in time t(|x|), where |x| is the length of x. Space bounds are
defined in a similar way.

Given a function t :N −→N, we can define the class TIME(t) to be the set of
all languages solved by a t-timebounded Turing machine. Our familiar class of
“efficient” polynomial time computation is then P =

⋃
c>1 TIME(nc).

1.2.3 Universal Computation

Since a Turing machine’s description is finite, we can write it down as a bitstring.
Therefore, it is a natural question to consider whether there is a Turing machine
that takes another’s description M as input, simulates M, and outputs its result.
In the case where M uses no more than k tapes, simulation is easy. We simply use
k + 2 tapes, k of them for M’s tapes, one for M’s description, and the final one for
its state.

If we would like to simulate Turing machines with arbitrarily many tapes,
simulation is more involved. Instead of using many tapes, we can store the
configuration of the machine on a single tape and sweep through it, remembering
the symbols at the heads. After our first sweep, we decide what changes to make
and make another sweep to alter the state. The drawback of this approach is that

3

CS 6810, Fall 2012, Lecture 1 Scribe: Sujay Jayakar

it requires two passes per step of M, simulating T steps in T2 time. A clever trick
can bring this slowdown to T log T – see section 1.7 in the textbook.

1.3 Circuits

Circuits are an alternate model of computation. In general, a circuit is a labeled
directed acyclic graph where every vertex has indegree less than or equal to two.
In addition, there are three types of vertex labels.

– Sources: Indegree 0, labeled with input variable

– Sinks: Outdegree 0, labeled with output variable

– Gates: Labeled with Boolean operator (∧, ∨, or ¬)

If a circuit C has sinks x = x1 . . . xn and sinks y = y1 . . . ym, we set C(x) = y,
where y is the result of evaluating C on input x. To handle inputs of arbitrary
size, we may consider a sequence of circuits {Cn}, where C(x) is defined to be C|x|.

1.3.1 Resource Bounds

Define the size of a circuit to be its number of vertices. Then given a function s,
consider the class of problems SIZE(s) to be the languages L computed by circuits
of size no more than s(n). As before, define PSIZE to be

⋃
c>1 SIZE(nc).

Theorem 1.1. There exists f : {0, 1}n −→ {0, 1} such that f < SIZE(2n/n).

Proof. We can show the existence of f by a counting argument of sorts. The
number of all functions from {0, 1}n to {0, 1} is 22n

. We can upper bound the
number of circuits of size s by considering how many bits it would take to describe
them. Each node must have at most two parent indices, each taking log s bits,
and an annotation in {¬,∧,∨, input/output}, yielding two more bits. Therefore,
the number of circuits is at most 2s(2 log s+2), so to represent every function, we
need a size of at least s∗, where s∗(2 log s∗ + 2) = 2n. Solving for s∗ gives us s∗

roughly equal to 2n/2n. �

4

	What is Complexity Theory?
	Problems
	Resources
	Reductions

	Turing Machines
	Description
	Complexity
	Universal Computation

	Circuits
	Resource Bounds

