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principal component analysis (PCA)

vanilla PCA

2-wise correlation data
= matrix

o basic data analysis technique

o given noisy pairwise correlation data A € R™", find
direction of maximum empirical variance

maximize (x, Ax) over all unit vectors x € R"

o computationally efficient (take x to be top eigenvector of A)

_ 3-wise correlation data
variants of PCA = 3-tensor

o restrict to sparse directions (SPARSE PCA) or exploit higher-
order correlation data A € R™*"*™ (TENSOR PCA)

o better statistical properties in important applications; huge body of works

o but: computationally challenging (Np-hard in worse case; unclear
complexity in stochastic setting)



tensor principal component analysis

p
(k, T)-stochastic model [Montanari-Richard]

given k-order tensor A as below, recover v (approximately)
A=1-v® +7e R with Z ~ N(0,1)®k
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signal-to-noise ratio noise: random tensor
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signal: rank-1 tensor of unit vector v € R"

maximum likelihood estimation (MLE)

maximize (4, x®¥*) over all unit vectors x € R"

k = 2: computationally efficient (eigenvalue problem; even in worst case)

k = 3: appears to capture difficulty of general k in stochastic model
(also NP-hard in worst case, but no bearing on stochastic model)
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A=1-v®3 47 €R" withZ ~ N(0,1)®3 i
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MLE: maximize (4, x®3) over all unit vectors x € R™ (*)
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previous results [Montanari-Richard=MR]

information-theoretic recovery

(*) works as long as T > 0(n'/2) (tight)

computational recovery
MR algorithm: reshape A to n?-by-n matrix; output top right singular vector
theoretical guarantee: algorithm works as long as T > 0(n)
empirical performance: algorithm works as longas 7 > 6(1’13/ 4)

tension: theoretical analysis of MR tight in many ways but empirical

performance should be predictive for mathematical truth (average-case
problem & large input sizes)




A=1-v®3+Z e R" withZ ~ N(0,1)®3

MLE: maximize (4, x®3) over all unit vectors x € R™ (*)

this work

techniques: sum-of-squares meta-algorithm & proof system;

powerful general approach to unsupervised learning
[Barak-Kelner-S./12+15,Potechin-Meka-Wigderson’15, Barak-Moitra, Ge-Ma, Ma-Wigderson,...]

recovery guarantee: theoretical analysis matches empirical performance of MR,
T » n3/* — one algorithm very similar to MR

nearly-linear time: informed by theoretical analysis; exploit knowledge about
eigenvalues to speed up eigenvector computation

lower bounds: rule out better recovery guarantees by algorithms based on
broad set of techniques (deg-4 sum-of-squares proof system)
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MLE: maximize (4, x®3) over all unit vectors x € R™ (*)
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relaxation & rounding approach

relaxation: tractable (convex) optimization problem associated with (*);
optimal value gives upper bound on optimal value of (*)

rounding: transform solution for relaxation to solution for (*) with
approximately same objective value

failure of this approach: for n3/* « t « n,
opt. value of MR relaxation (top singular value of A)
is far from opt. value of (*)
but (empirically)
opt. solution of MR relaxation
is close to opt. solution of (*)
—> no rounding analysis possible (in the usual sense)

our explanation (for variant of MR relaxation)
second-order effect in opt. value of relaxation drives recovery




A=1-v®3+ 7 e R" withZ ~ N(0,1)®3

MLE: maximize (4, x®3) over all unit vectors x € R™ (*)

sum-of-squares upper bounds

é R

warm-up: upper bounds for homogeneous n-var. deg.-4 polynomial p(x)

consider affine linear subspace H, ) of matrix representations of p(x)

¢ 2 2
Hy) & {P e R ™| px) = (x®2,Px®2)} Amax(P) = ”m”axl(y, Py)
y =

then, ||m||aX1 p(x) < Amax(P) forevery P € HP(X)
x j—

= find best upper bound Ay, ;4 (P) with P € Hy,(, (semidefinite programming)
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deg-d sum-of-squares upper bounds for general polynomial p(x)

find best upper bound A, (P) with
U different polynomials but same

P € Hp(x)+q(x)-(||x||2—1) & function as p(x) on unit sphere
deg q(x)<d-2

run time n%@ (semidefinite programming)




A=1-v®3+ 7 e R" withZ ~ N(0,1)®3

MLE: maximize (4, x®3) over all unit vectors x € R™ (*)

efficient upper bounds on random polynomials

can show: deg-4 sum-of-squares gives upper bound 7, = ©(n)3/* for
random deg-3 polynomial z(x) = (Z, x®3) over unit sphere

concretely: z(x) + 7,/2 - (J|x]|* — ||x||*) has matrix representation
Wlth /lmax(') < To

approach for recovery: for T >> 1, corresponding matrix representation of A
has top eigenvector determined by signal v (eig.vec. is close to v®?)

where does upper bound for z(x) come from?

reshape Z to n?-by-n matrix so that z(x) = (Zx, x®2)

tempting but poor Cauchy-Schwarz bound: (Zx, x®%) < /|1 Zx||% - ||x||*
Zi = ]Rnxn
i-th slice of Z

tight Cauchy-Schwarz bound: (x, ZTx®2) < \/||x]|? - ||ZTx®2||2

. _ 2

poor matrix representation for || ZTx®?2||": ZZT (only rank-n)
use matrix
best matrix representation for —= Y (x, Z;x)* : ¥, Z; @ Z; € Bernstein



A=1-v®3+Z e R" withZ ~ N(0,1)®3

MLE: maximize (4, x®3) over all unit vectors x € R™ (*)

conclusion

7~

sum-of-squares gives new perspective on spectral algorithms

status quo: focus on spectrum of single matrix associated with problem;
e.g., data matrix (matrix problems), Laplacian (graph problems)

sum-of-squares: associate hierarchy of increasingly rich families of
matrices with single problem = better algorithms

research directions thank you!
faster algorithms via sum-of-squares
challenge: size of matrices increases quickly in the hierarchy (albeit poly.)

upcoming work: techniques to significantly compress matrices in higher
levels of hierarchy (partial traces) [Hopkins-Schramm-Shi-S’15]

deg-0(log n) sum-of-squares enough for T > 0(n)1/%? (info.-theory limit)







