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principal component analysis (PCA)

o basic data analysis technique

o given noisy pairwise correlation data 𝐴 ∈ ℝ𝑛×𝑛, find 
direction of maximum empirical variance

maximize 𝑥, 𝐴𝑥 over all unit vectors 𝑥 ∈ ℝ𝑛

o computationally efficient (take 𝑥 to be top eigenvector of 𝐴)

vanilla PCA

variants of PCA

o restrict to sparse directions (SPARSE PCA) or exploit higher-
order correlation data 𝐴 ∈ ℝ𝑛×𝑛×⋯×𝑛 (TENSOR PCA)

3-wise correlation data 
= 3-tensor

o better statistical properties in important applications; huge body of works

o but: computationally challenging (NP-hard in worse case; unclear 
complexity in stochastic setting)

2-wise correlation data
= matrix



tensor principal component analysis

(𝑘, 𝜏)-stochastic model [Montanari-Richard]

given 𝑘-order tensor 𝐴 as below, recover 𝑣 (approximately)

signal: rank-1 tensor of unit vector 𝑣 ∈ ℝ𝑛

noise: random tensor

𝐴 = 𝜏 ⋅ 𝑣⊗𝑘 + 𝑍 ∈ ℝ𝑛𝑘 with 𝑍 ∼ 𝑁 0,1 ⊗𝑘

signal-to-noise ratio

maximum likelihood estimation (MLE) 

maximize 〈𝐴, 𝑥⊗𝑘〉 over all unit vectors 𝑥 ∈ ℝ𝑛

𝑘 = 2: computationally efficient (eigenvalue problem; even in worst case)

𝑘 = 3: appears to capture difficulty of general 𝑘 in stochastic model 
(also NP-hard in worst case, but no bearing on stochastic model)



𝐴 = 𝜏 ⋅ 𝑣⊗3 + 𝑍 ∈ ℝ𝑛3 with 𝑍 ∼ 𝑁 0,1 ⊗3

information-theoretic recovery

(*) works as long as 𝜏 ≥ ෩O 𝑛1/2 (tight)

computational recovery

MLE: maximize 〈𝐴, 𝑥⊗3〉 over all unit vectors 𝑥 ∈ ℝ𝑛 (*)

MR algorithm: reshape 𝐴 to 𝑛2-by-𝑛 matrix; output top right singular vector

theoretical guarantee: algorithm works as long as 𝜏 ≥ ෩O 𝑛

empirical performance: algorithm works as long as 𝜏 ≥ ෩O 𝑛3/4

tension: theoretical analysis of MR tight in many ways but empirical 
performance should be predictive for mathematical truth (average-case 
problem & large input sizes)

previous results [Montanari-Richard=MR] 3-tensor



this work

techniques: sum-of-squares meta-algorithm & proof system;
powerful general approach to unsupervised learning
[Barak-Kelner-S.’12+15,Potechin-Meka-Wigderson’15, Barak-Moitra, Ge-Ma, Ma-Wigderson,…]

recovery guarantee: theoretical analysis matches empirical performance of MR, 
𝜏 ≫ 𝑛3/4 — one algorithm very similar to MR

nearly-linear time: informed by theoretical analysis; exploit knowledge about 
eigenvalues to speed up eigenvector computation

lower bounds: rule out better recovery guarantees by algorithms based on 
broad set of techniques (deg-4 sum-of-squares proof system)

𝐴 = 𝜏 ⋅ 𝑣⊗3 + 𝑍 ∈ ℝ𝑛3 with 𝑍 ∼ 𝑁 0,1 ⊗3

MLE: maximize 〈𝐴, 𝑥⊗3〉 over all unit vectors 𝑥 ∈ ℝ𝑛 (*)

3-tensor



relaxation & rounding approach

relaxation: tractable (convex) optimization problem associated with (*);
optimal value gives upper bound on optimal value of (*)

rounding: transform solution for relaxation to solution for (*) with 
approximately same objective value

failure of this approach: for 𝑛3/4 ≪ 𝜏 ≪ 𝑛, 
opt. value of MR relaxation (top singular value of 𝐴) 
is far from opt. value of (*) 

but (empirically) 
opt. solution of MR relaxation 
is close to opt. solution of (*)

 no rounding analysis possible (in the usual sense)

our explanation (for variant of MR relaxation)
second-order effect in opt. value of relaxation drives recovery

𝐴 = 𝜏 ⋅ 𝑣⊗3 + 𝑍 ∈ ℝ𝑛3 with 𝑍 ∼ 𝑁 0,1 ⊗3

MLE: maximize 〈𝐴, 𝑥⊗3〉 over all unit vectors 𝑥 ∈ ℝ𝑛 (*)

3-tensor



sum-of-squares upper bounds

warm-up: upper bounds for homogeneous 𝑛-var. deg.-4 polynomial 𝑝(𝑥)

consider affine linear subspace 𝐻𝑝 𝑥 of matrix representations of 𝑝(𝑥)

𝐻𝑝 𝑥 ≝ 𝑃 ∈ ℝ𝑛2×𝑛2 𝑝 𝑥 = 𝑥⊗2, 𝑃𝑥⊗2

𝐴 = 𝜏 ⋅ 𝑣⊗3 + 𝑍 ∈ ℝ𝑛3 with 𝑍 ∼ 𝑁 0,1 ⊗3

MLE: maximize 〈𝐴, 𝑥⊗3〉 over all unit vectors 𝑥 ∈ ℝ𝑛 (*)

3-tensor

then, max
𝑥 =1

𝑝 𝑥 ≤ 𝜆max(𝑃) for every 𝑃 ∈ 𝐻𝑝 𝑥

𝜆max 𝑃 = max
𝑦 =1

𝑦, 𝑃𝑦

 find best upper bound 𝜆max(𝑃) with 𝑃 ∈ 𝐻𝑝 𝑥 (semidefinite programming)

deg-𝑑 sum-of-squares upper bounds for general polynomial 𝑝(𝑥)

find best upper bound 𝜆max 𝑃 with 

𝑃 ∈ ራ

deg 𝑞(𝑥)≤𝑑−2

𝐻𝑝 𝑥 +𝑞 𝑥 ⋅ 𝑥 2−1

run time 𝑛𝑂 𝑑 (semidefinite programming)

different polynomials but same 
function as 𝑝(𝑥) on unit sphere



efficient upper bounds on random polynomials

𝐴 = 𝜏 ⋅ 𝑣⊗3 + 𝑍 ∈ ℝ𝑛3 with 𝑍 ∼ 𝑁 0,1 ⊗3

MLE: maximize 〈𝐴, 𝑥⊗3〉 over all unit vectors 𝑥 ∈ ℝ𝑛 (*)

3-tensor

concretely: 𝑧 𝑥 + 𝜏0/2 ⋅ 𝑥 4 − 𝑥 2 has matrix representation 
with 𝜆max ⋅ ≤ 𝜏0

can show: deg-4 sum-of-squares gives upper bound 𝜏0 = ෩Θ 𝑛 3/4 for 
random deg-3 polynomial  𝑧 𝑥 = 𝑍, 𝑥⊗3 over unit sphere

approach for recovery: for 𝜏 ≫ 𝜏0, corresponding matrix representation of 𝐴
has top eigenvector determined by signal 𝑣 (eig.vec. is close to 𝑣⊗2)

where does upper bound for 𝒛 𝒙 come from?

reshape 𝑍 to 𝑛2-by-𝑛 matrix so that 𝑧 𝑥 = 𝑍𝑥, 𝑥⊗2

tempting but poor Cauchy-Schwarz bound: 𝑍𝑥, 𝑥⊗2 ≤ 𝑍𝑥 2 ⋅ 𝑥 4

tight Cauchy-Schwarz bound: 𝑥, 𝑍⊤𝑥⊗2 ≤ 𝑥 2 ⋅ 𝑍⊤𝑥⊗2 2

poor matrix representation for 𝑍⊤𝑥⊗2 2
: 𝑍𝑍⊤ (only rank-𝑛)

best matrix representation for —= σ𝑖 𝑥, 𝑍𝑖𝑥
2 : σ𝑖 𝑍𝑖 ⊗𝑍𝑖

𝑍𝑖 ∈ ℝ
𝑛×𝑛

𝑖-th slice of 𝑍

use matrix 
Bernstein



conclusion

𝐴 = 𝜏 ⋅ 𝑣⊗3 + 𝑍 ∈ ℝ𝑛3 with 𝑍 ∼ 𝑁 0,1 ⊗3

MLE: maximize 〈𝐴, 𝑥⊗3〉 over all unit vectors 𝑥 ∈ ℝ𝑛 (*)

3-tensor

sum-of-squares gives new perspective on spectral algorithms

status quo: focus on spectrum of single matrix associated with problem;
e.g., data matrix (matrix problems), Laplacian (graph problems)

sum-of-squares: associate hierarchy of increasingly rich families of 
matrices with single problem  better algorithms

research directions

faster algorithms via sum-of-squares

challenge: size of matrices increases quickly in the hierarchy (albeit poly.)

upcoming work: techniques to significantly compress matrices in higher 
levels of hierarchy (partial traces) [Hopkins-Schramm-Shi-S.’15] 

deg-𝑶 𝐥𝐨𝐠𝒏 sum-of-squares enough for 𝝉 ≥ ෩𝑶 𝒏 𝟏/𝟐? (info.-theory limit)

thank you!




