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multi-index array of numbers
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natural shape of data
moments of multivariate distributions T = E,..px®?
coefficients of multivariate polynomials T = ;i Tjjx - X% Xy,
states of composite quantum systems [)) EAQ B Q C
_ "deep learning” frameworks: torch / theano / tensorflow )

“tensors are the new matrices” tie together wide range of disciplines

“algorithms for the tensor age” hope to repeat success for matrices



matrix factorization suffers from “rotation problem”
in contrast: tensor decomposition often unique
key challenge
tensor decomposition is NP-hard in worst case
—> cannot hope for same theory as for matrices
but: can still hope for algorithms with strong provable guarantees

tractability appears to go hand in hand with uniqueness

4 N
tensor decomposition (tensor rank)
given 3-tensor T, find as few vectors {a;, b;, ¢;};¢[r] as possible such that
r
T=zai®bi®ci /Zl /2 /R
| 1 |
- =l r BH ) +H s +H 3 y
d ’ .
intuition: explain data in simplest way possible M = ABT
key advantage over matrix rank/factorization M= (AU)(BUTH)!
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given 3-tensor T, find as few vectors {a;, b;, ¢; };¢[»] as possible such that
ﬂ /3 /ﬂ
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poly-time & practical unsupervised learning via tensor decomposition

[Leurgans; Lathauwer,

blind-source separation, independent component analysis castaing, Cardoso07]

Gaussian mixtures [Bhaskara-Charikar-Moitra-Vijayaraghavan’'14]

topic modelling (latent Dirichlet allocation) 7K men (oo g cgiiaetn

phylogenetic tree / hidden Markov model [Chang96; Mossel, Roch]" + 2"
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moment problem for multivariate discrete distributions

hidden: set of vectors ay, ..., a, € R%

n
given: low-degree moments My, ..., M, of M, = lz 4Ok
uniform distribution over aq, ..., a, K N - .
. =
find:  setofvectors = {ay, ..., a,}

(reformulation of tensor decomposition problem)

under what conditions on the vectors and k can
we solve this problem efficiently and robustly?




r N
hidden: set of vectors a, ..., a, € R¢ N
given: low-degree moments My, ..., M, of M = lz Ok
uniform distribution over aq, ..., a, Tl
, i=1
: find:  setofvectors = {ay, ..., a,} )
linearly independent vectors (thus, n < d)
. . 1 —
wlog aq, ..., a,, orthonormal (apply linear transformation \/—ﬁ]\/[2 1/ 2)
spectral algorithm for k = 3 (matrix diagonalization) Uennrich via Harshman'70;

Leurgans-Ross-Abel’93;
rediscovered many times]

key challenge: decompose overcomplete tensors, i.e., rank > dimension
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moment problem for multivariate discrete distributions

hidden: set of vectors ay, ..., a,, € R?

n
given: low-degree moments My, ..., M, of M = lz 4Ok
uniform distribution over aq, ..., a, T n = i
. l=
find:  setofvectors = {ay, ..., a,} )
random unit vectors for rankn > d and k = 3 moments
largest rankn running time
spectral algorithm C - d 2C2 . d3 [Anandkumar-Ge-Janzamin’15]
tensor power iteration dle (only local convergence)  [Anandkumar-Ge-Janzamin'15]
1.5 log d [Ge-Ma’15 analysis of Barak-
Sum'Of'SquareS d d & Kelner-S.15 algorithm]

3 poly-time algorithm for rankn = d*°1?




r D
moment problem for multivariate discrete distributions

hidden: set of vectors ay, ..., a, € R%

n
given: low-degree moments My, ..., M, of M, = lz 4Ok
uniform distribution over aq, ..., a, K N - :
. 1=
find:  setofvectors = {ay, ..., a,}
- Y,
random unit vectors for rank n > d and k = 3 moments
largest rankn running time
Spectral algorithm C . d 262 . d3 [Anandkumar-Ge-Janzamin’15]
tensor power iteration dl-s (only local convergence)  [Anandkumar-Ge-Janzamin’15]
1.5 log d [Ge-Ma'15 analysis of Barak-
sum-of-squares d d°8 Kelner-S.15 algorithm]

this talk:




r )
hidden: set of vectors a, ..., a, € R¢ .
given: low-degree moments My, ..., M, of M = 12 4Ok
uniform distribution over a4, ..., a, K™ n g :
3 find: set of vectors = {a4, ..., a,,} .
J
smoothed unit vectors (Spielman-Teng smoothed analysis framework)
assume each vector is independently perturbed by n=°") norm Gaussian
poly-time algorithm for k = 4 up to rankn < d? [Lathauwer, Castaing,
Cardoso’07]
combines large linear system and spectral algorithm (FOOBI)
assumes exact input; not known to tolerate n=?) error
poly-time algorithm for k = 5 up to rankn < d* [Bhaskara-Charikar-Moitra-

Vijayaraghavan'14]
spectral algorithm; tolerates n=%™) error

this talk: same guarantees as FOOBI but tolerate n=°(" error
based on sum-of-squares



hidden: set of vectors a, ..., a, € R¢

n
given: low-degree moments My, ..., M}, of M, = 12 Ok
uniform distribution over a4, ..., a, n i i
. 1=
find:  setofvectors = {a4, ..., a,}
\ J
general unit vectors

for simplicity: isotropic position Y1, a;a; = g Id

quasi-poly time algorithm with accuracy € for k > ¢! log (g) [Barak-Kelner-5.15]

based on sum-of-squares

this talk: poly-time algorithm (in size of input) with same recovery guarantees

corollary: overcomplete dictionary learning with constant
relative sparsity and constant accuracy in polynomial time

previous best: either sparsity n™® or time n?(og™) [Barak-Kelner-S.15]



hidden: set of vectors a, ..., a, € R¢

n
given: low-degree moments My, ..., M, of M = lz Ok
uniform distribution over a4, ..., a, K™ n g :
. l=
find:  setofvectors = {ay, ..., a,}

\.

Jennrich’s algorithm on 3™ moments

assume {a, ..., a, } orthonormal

letg ~ NV (0,1d,) be standard Gaussian vector

then, (1d ® Id ® g M5 ==3(g,a;) - a;a]

—> every a; is eigenvector with value (g, a;)/n;
Whp all eigenvalues distinct “random contraction

: s of one mode”
—> eigendecomposition recovers ay, ..., ,

challenge: what can we do when n >> d (overcomplete case)?



approach for random overcomplete 3-tensors

let ay, ..., a,, be random unit vectors for n « d*

, 6" moments of ay, ..., a,
= 34 moments of a®* o

|
M3=zai®3 masie M6=zai®6
: box i
(lifts 37 moments ennrich’s
to 6™ moments) J . {G?Z, . (11?2}
algorithm

(a?z, . a,‘?z orthogonal enough
for Jennrich’s algorithm)

) ---,an



approach for random overcomplete 3-tensors

let ay, ..., a,, be random unit vectors for n « d*

“ideal implementation”
(ignore efficiency for now)

M3 :Zagas M=y " Eypu®°

i i

Jennrich's 02 @2
find distribution D over unit sphere 1 ith {a7% . a”}
_ o3 algorithm
subjectto E,, _pu®” = M;

(a?z, . a,‘?z orthogonal enough
for Jennrich’s algorithm)




approach for random overcomplete 3-tensors

letaq, ..., a,, be random unit vectdg

“ideal implementation”
(ignore efficiency for now)

M3=Za?3

i

find distribution D over unit sphere
subject to E,,_pu®? = M,

claim: Ep, u®® ~ M,

plot of
i=1{a;, u)

a;

r

proof:
1
(M3, IED(u)u®3 ) = " IED(u) Z’iLl(ai,u)B
1 1+0(1)
(M3,M3) - ﬁzi,je[n]<airaj>3 — 101

> Epy 2imqfapw)® =1+ 0(1) (%)

crucially: with high prob. over a4, ..., a,,

Vu. Y (a;,u)® = max(a;, u)® + o(1)
I€[n]

therefore, () implies
. > 1 — > 1 —
D%I;) {miax(al,u) > 1 0(1)} >1—o0(1)

2 Ep@) Z?:1<ai»u>6 =1+0(1)

> || Mg — Epoyu®|| < o(1) - | Ml




approach for random overcomplete 3-tensors

let ay, ..., a,, be random unit vectors for n « d*

“ideal implementation”
(ignore efficiency for now)

M3=Za?3

i i

Jennrich's 02 @2
find distribution D over unit sphere : {a7% . ay}
| 23 algorithm
subjectto E,, . pu®® = M;

(a?z, . a?z orthogonal enough

for Jennrich's algorithm)

M. = a:; - ]EuNDu®6

l

claim: Ep, u®® ~ M,

r . }
two remaining questions:
1. how to find D efficiently? relax search to sum-of-squares pseudo-distributions

2. can Jennrich tolerate this kind of error?  no, error is too large!
< 1+0(1)
spectral n

—> add maximum entropy constraint ||IEu~Du®4”
-

~\




robust analysis of Jennrich’s algorithm

1

a, ..., a, € R% orthonormal; moments M}, = - Rk

n
i=14;

distribution D over sphere; moments M} = IED(u)u‘X’k

-
suppose || M5 — ]V[3||F < o(1) - |IM5]lF and ||| <0(1)/n.

spectral —

1
no)

then, for most i € [n], with probability over the choice g ~ NV(0,1d,2),

(Id; ® 1d; ® gT)M; has top eigenvector = q;

.

Vg, 9
(ldg ® Idg ® gNM; (g,a;) - a;

=(g,a;)(1dg ® 1dy ® a] ) M5 +(1d; @ Id; ® §7) M5

) \ )
|

H

log

. <
” ”spectral = n

/ D

overwhelms noise with
2
probability e~(logd) > g-o()



probability theory meets complexity theory

* low-complexity events always have nonnegative probability
* high-complexity events may have negative probability

( )
degree-k pseudo-distribution over unit sphere S*~1 ¢ R4

* finitely supported function D: $¢~* - R

Y., D(u) =1 (sum is only over support of D)

e« Y., D) f(u)? = 0forevery f: S 1 - Rwithdeg f < k/2

. J

notation: Epyf(w) & ¥, D(u) - f(u) — pseudo-expectation of f under D

( )
efficiency of pseudo-distributions [Shor, Parrilo, Lasserre]
set of degree-k pseudo-moments has d?®)-time separation oracle;

key step: check k™ pseudo-moment satisfies Ep ) u®*/? (u®k/2)T =0
L J

generalizes best known poly-time algorithms for wide range of problems



P
degree-k pseudo-distribution over unit sphere $¢-1 ¢ R?¢

» finitely supported function D: $4°! - R

N ZuD(u) =1
e« Y., D) f(u)? = 0forevery f: S ' - Rwithdegf < k

.

notation: Epy f(w) & ¥, D(w) - f(w)

r

degree-k sum-of-squares proof of Vu € S~ 1. f(u) = g(u)
functions h4, ..., h, with degh,, ...,degh, < k/2
vue st f(w)—g) =hW?+ -+ h,.(u)?

-
duality: pseudo-distributions vs sum-of-squares proofs

if f > g has degree-k sos proof, then Ep ) f (1) = Ep(g(w)
for every degree-k pseudo-distribution D

.




lifting moments higher via sum-of-squares

1 .
M; = - "t a?B for random unit vectors ay, ..., a,, € R andn « d*®

theorem: w.h.p. over a4, ..., a,, every degree-12 pseudo-distribution D
with Epyu®? = Mj satisfies ||Ep,yu®® — Mg|| < o(D)|M5lI.




lifting moments higher via sum-of-squares

1 .
M; = - "t a?3 for random unit vectors ay, ..., a,, € R andn « d*®

theorem: w.h.p. over a4, ..., a,, every degree-12 pseudo-distribution D
with Epyu®? = Mj satisfies ||Ep,yu®® — Mg|| < o(D)|M5lI.

enough to show (same as in previous proof for probability distributions):
Epw Ziefapu)®> =1-0(1) = EppyXiifa,u)®=1-o0(1)
w.h.p. over a4, ..., a,,, the following inequality has degree-12 sos proof

vu € $47L ¥ (a;,u)d < Z -+ i2?=1(ai,u)6 + 0(1) [Ge-Ma'15]

key ingredient is to bound spectral norm of random matrix polynomial

||Zi¢j(ai,aj) ca;a; ® ajajT” < o0(1)



prevailing wisdom: sum-of-squares is “strictly theoretical”

sum-of-squares algorithms have nothing to do with practical ones

at odds with tenet of computational complexity that polynomial-time
is a good model for practical algorithms

next:

algorithm to decompose random overcomplete 3-tensor
with close to linear running time (in size of input)
and guarantees close to those of sum-of-squares

general recipe for new kinds of fast spectral algorithms inspired by SOS



approach for fast decomposition of overcomplete 3-tensor

. . 1
random unit vectors a4, ..., a, € R% with n « d*®; moments M, = - L a?k

too slow!

Jennrich’s 02 @2
algorithm (e an”)




approach for fast decomposition of overcomplete 3-tensor

. . 1
random unit vectors a4, ..., a, € R% with n « d*®; moments M, = - L a®k

th; a)Xa;, ai) - (Cli X Clj) 039 (ai X aj) R ay
direct algorithm  v* n
to fool]ennrlch — > + E with E “random-like”

3
and ||E||2 < ;
)/ (huge Frobenius norm)
Jennrich's (0%, %)
algorithm ' b

claim: if n < d'33 then E contributes negligible spectral error for Jennrich

7~

input to Jennrich has “size” d° (computing it takes naively 0(d®) time)

exploit tensor structure to implement Jennrich in time 0(d1*®) < 0(d33+)

Wy




meta result* (* some technical conditions omitted)

sum-of-squares method (based on
semidefinite programming) [Shor, Parrilo, Lasserre]

efficient algorithm to solve polynomial optimization
problems that have only few global optima

7 \

running time poly(#solutions) also need short sum-of-squares
certificate for this fact

previous work: running time n ¢ (108 #solutions)
(quasi-poly time for poly #solutions)
[Barak-Kelner-S STOC'15]
# bad local optima

can be exponential
—> local-search algorithms fail



meta result* (* some technical conditions omitted)

sum-of-squares method (based on |
semidefinite programming) [Shor, Parrilo, Lasserre] Al BN

efficient algorithm to solve polynomial optimization
problems that have only few global optima

7 ~

running time poly(#solutions) also need short sum-of-squares
certificate for this fact

@ )
applications: unsupervised learning problems tend to have this property

identifiability: data uniquely determines parameters of model

our work: notion of constructive identifiability proofs that
implies efficient inference algorithms




conclusions
tensor decomposition / polynomial optimization via sum-of-squares
sum-of-squares proof for approximate uniqueness (identifiability)

use Jennrich’s algorithm (small spectral gaps) as rounding algorithm

fast spectral algorithms via sum-of-squares
fool rounding algorithm by low-degree matrix polynomial of input

exploit tensor structure for fast algebraic operations



conclusions
tensor decomposition / polynomial optimization via sum-of-squares

sum-of-squares proof for approximate uniqueness (identifiability)

use Jennrich’s algorithm (small spectral gaps) as rounding algorithm

fast spectral algorithms via sum-of-squares
fool rounding algorithm by low-degree matrix polynomial of input

exploit tensor structure for fast algebraic operations

questions thank you
!
random 3-tensors beyond rank d'->? very much!

lower bounds? hard to distinguish from completely random 3-tensors?

smoothed analysis for overcomplete 3-tensors?

strong bounds known for 4-tensors [Lathauwer, Castaing, Cardoso’07]









