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tensor multi-index array of numbers (typically ≥ 3 indices/modes)

𝑇 = ෍

𝑖,𝑗,𝑘∈ 𝑑

𝑇𝑖𝑗𝑘 ⋅ 𝑒𝑖 ⊗𝑒𝑗 ⊗𝑒𝑘 ∈ ℝ𝑑 ⊗3

standard basis 𝑒1, … , 𝑒𝑑 ∈ ℝ
𝑑

𝑎 ⊗ 𝑏⊗ 𝑐 = ෍

𝑖,𝑗,𝑘∈ 𝑑

𝑎, 𝑒𝑖 𝑏, 𝑒𝑗 〈𝑐, 𝑒𝑘〉 ⋅ 𝑒𝑖 ⊗𝑒𝑗 ⊗𝑒𝑘
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“tensors are the new matrices”

natural shape of data

"deep learning” frameworks: torch / theano / tensorflow

coefficients of multivariate polynomials 𝑇 = σ𝑖𝑗𝑘 𝑇𝑖𝑗𝑘 ⋅ 𝑥𝑖𝑥𝑗𝑥𝑘

moments of multivariate distributions 𝑇 = 𝔼𝑥∼𝐷𝑥
⊗3

states of composite quantum systems 𝜓 ∈ 𝐴⊗𝐵⊗𝐶

“algorithms for the tensor age”

tie together wide range of disciplines

hope to repeat success for matrices



tensor decomposition (tensor rank)

given 3-tensor 𝑇, find as few vectors 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 𝑖∈[𝑟] as possible such that

𝑇 =෍

𝑖=1

𝑟

𝑎𝑖 ⊗𝑏𝑖 ⊗ 𝑐𝑖

𝑇

tensor decomposition is NP-hard in worst case

 cannot hope for same theory as for matrices

but: can still hope for algorithms with strong provable guarantees

key advantage over matrix rank/factorization

intuition: explain data in simplest way possible

in contrast: tensor decomposition often unique

tractability appears to go hand in hand with uniqueness

matrix factorization suffers from “rotation problem”

key challenge

𝑀 = 𝐴𝐵⊤

⇔𝑀 = 𝐴𝑈 𝐵𝑈−1 ⊤



tensor decomposition (tensor rank)

given 3-tensor 𝑇, find as few vectors 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 𝑖∈[𝑟] as possible such that

𝑇 =෍

𝑖=1

𝑟

𝑎𝑖 ⊗𝑏𝑖 ⊗ 𝑐𝑖

𝑇

poly-time & practical unsupervised learning via tensor decomposition

Gaussian mixtures

topic modelling (latent Dirichlet allocation)

phylogenetic tree / hidden Markov model

blind-source separation, independent component analysis

[Chang’96; Mossel, Roch]

[Leurgans; Lathauwer, 
Castaing, Cardoso’07]

[Anandkumar, Ge, Hsu, 
Kakade, Telgarsky’14]

[Bhaskara-Charikar-Moitra-Vijayaraghavan’14]



moment problem for multivariate discrete distributions

hidden: set of vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑑

given: low-degree moments ℳ1, … ,ℳ𝑘 of 
uniform distribution over 𝑎1, … , 𝑎𝑛

find: set of vectors ≈ 𝑎1, … , 𝑎𝑛

under what conditions on the vectors and 𝒌 can 
we solve this problem efficiently and robustly?

(reformulation of tensor decomposition problem) 

ℳ𝑘 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑎𝑖
⊗𝑘



linearly independent vectors (thus, 𝑛 ≤ 𝑑)

spectral algorithm for 𝑘 = 3 (matrix diagonalization) [Jennrich via Harshman’70; 
Leurgans-Ross-Abel’93; 
rediscovered many times]

wlog 𝑎1, … , 𝑎𝑛 orthonormal (apply linear transformation 
1

𝑛
ℳ2

−1/2
)

moment problem for multivariate discrete distributions

hidden: set of vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑑

given: low-degree moments ℳ1, … ,ℳ𝑘 of 
uniform distribution over 𝑎1, … , 𝑎𝑛

find: set of vectors ≈ 𝑎1, … , 𝑎𝑛

ℳ𝑘 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑎𝑖
⊗𝑘

key challenge: decompose overcomplete tensors, i.e., rank ≫ dimension



∃ poly-time algorithm for rank 𝒏 = 𝒅𝟏.𝟎𝟏?

moment problem for multivariate discrete distributions

hidden: set of vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑑

given: low-degree moments ℳ1, … ,ℳ𝑘 of 
uniform distribution over 𝑎1, … , 𝑎𝑛

find: set of vectors ≈ 𝑎1, … , 𝑎𝑛

ℳ𝑘 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑎𝑖
⊗𝑘

random unit vectors for rank 𝒏 ≫ 𝒅 and 𝒌 = 𝟑 moments

[Anandkumar-Ge-Janzamin’15]

[Ge-Ma’15 analysis of Barak-
Kelner-S.’15 algorithm]

2𝐶
2
⋅ 𝑑3

𝑑log 𝑑

𝐶 ⋅ 𝑑

𝑑1.5

𝑑1.5 [Anandkumar-Ge-Janzamin’15](only local convergence)tensor power iteration

sum-of-squares

spectral algorithm

largest rank 𝒏 running time



[Hopkins-Schramm-Shi-S’16]

[Ma-Shi-S’16+]

𝑑1+𝜔 ≤ 𝑑3.33
𝑑𝑂 1

𝑑1.33
𝑑1.5

this talk:

SOS-flavored spectral

sum-of-squares

moment problem for multivariate discrete distributions

hidden: set of vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑑
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find: set of vectors ≈ 𝑎1, … , 𝑎𝑛

ℳ𝑘 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑎𝑖
⊗𝑘

random unit vectors for rank 𝒏 ≫ 𝒅 and 𝒌 = 𝟑 moments

[Anandkumar-Ge-Janzamin’15]

[Ge-Ma’15 analysis of Barak-
Kelner-S.’15 algorithm]

2𝐶
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𝑑log 𝑑

𝐶 ⋅ 𝑑

𝑑1.5

𝑑1.5 [Anandkumar-Ge-Janzamin’15](only local convergence)tensor power iteration

sum-of-squares

spectral algorithm

largest rank 𝒏 running time



smoothed unit vectors (Spielman–Teng smoothed analysis framework)

assume each vector is independently perturbed by 𝑛−𝑂 1 norm Gaussian

combines large linear system and spectral algorithm (FOOBI)

assumes exact input; not known to tolerate 𝑛−𝑂 1 error

spectral algorithm; tolerates 𝑛−𝑂 1 error

this talk:

moment problem for multivariate discrete distributions

hidden: set of vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑑

given: low-degree moments ℳ1, … ,ℳ𝑘 of 
uniform distribution over 𝑎1, … , 𝑎𝑛

find: set of vectors ≈ 𝑎1, … , 𝑎𝑛

ℳ𝑘 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑎𝑖
⊗𝑘

[Lathauwer, Castaing, 
Cardoso’07]

poly-time algorithm for 𝑘 = 4 up to rank 𝑛 ≤ 𝑑2

poly-time algorithm for 𝑘 = 5 up to rank 𝑛 ≤ 𝑑2 [Bhaskara-Charikar-Moitra-
Vijayaraghavan’14]

same guarantees as FOOBI but tolerate 𝑛−𝑂 1 error
based on sum-of-squares



general unit vectors

for simplicity: isotropic position σ𝑖=1
𝑛 𝑎𝑖𝑎𝑖

⊤ =
𝑛

𝑑
Id

quasi-poly time algorithm with accuracy 𝜀 for 𝑘 ≥ 𝜀−1 log
𝑛

𝑑

based on sum-of-squares

corollary: overcomplete dictionary learning with constant 
relative sparsity and constant accuracy in polynomial time

previous best: either sparsity 𝑛−Ω 1 or time 𝑛𝑂(log 𝑛)

this talk: poly-time algorithm (in size of input) with same recovery guarantees

moment problem for multivariate discrete distributions

hidden: set of vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑑

given: low-degree moments ℳ1, … ,ℳ𝑘 of 
uniform distribution over 𝑎1, … , 𝑎𝑛

find: set of vectors ≈ 𝑎1, … , 𝑎𝑛

ℳ𝑘 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑎𝑖
⊗𝑘

[Barak-Kelner-S.’15]

[Barak-Kelner-S.’15]



moment problem for multivariate discrete distributions

hidden: set of vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑑

given: low-degree moments ℳ1, … ,ℳ𝑘 of 
uniform distribution over 𝑎1, … , 𝑎𝑛

find: set of vectors ≈ 𝑎1, … , 𝑎𝑛

ℳ𝑘 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑎𝑖
⊗𝑘

𝑔

ℳ3

Jennrich’s algorithm on 3rd moments

assume 𝑎1, … , 𝑎𝑛 orthonormal

let 𝑔 ∼ 𝒩(0, Id𝑑) be standard Gaussian vector

then, Id ⊗ Id⊗ 𝑔⊤ ℳ3 =
1

𝑛
σ𝑖 𝑔, 𝑎𝑖 ⋅ 𝑎𝑖𝑎𝑖

⊤

 every 𝑎𝑖 is eigenvector with value 𝑔, 𝑎𝑖 /𝑛;
w.h.p. all eigenvalues distinct

 eigendecomposition recovers 𝑎1, … , 𝑎𝑛

“random contraction 
of one mode”

challenge: what can we do when 𝒏 ≫ 𝒅 (overcomplete case)?



approach for random overcomplete 3-tensors

(lifts 3rd moments 
to 6th moments)

magic 
box

Jennrich’s
algorithm

𝑎1
⊗2, … , 𝑎𝑛

⊗2

(𝑎1
⊗2, … , 𝑎𝑛

⊗2 orthogonal enough
for Jennrich’s algorithm)

6th moments of 𝑎1, … , 𝑎𝑛
= 3rd moments of 𝑎1

⊗2, … , 𝑎𝑛
⊗2?

let 𝑎1, … , 𝑎𝑛 be random unit vectors for 𝑛 ≪ 𝑑1.5

ℳ3 =෍

𝑖

𝑎𝑖
⊗3 ℳ6 =෍

𝑖

𝑎𝑖
⊗6



approach for random overcomplete 3-tensors

ℳ3 =෍

𝑖

𝑎𝑖
⊗3 ℳ6 =෍

𝑖

𝑎𝑖
⊗6magic 

box

Jennrich’s
algorithm

𝑎1
⊗2, … , 𝑎𝑛

⊗2

(𝑎1
⊗2, … , 𝑎𝑛

⊗2 orthogonal enough
for Jennrich’s algorithm)

let 𝑎1, … , 𝑎𝑛 be random unit vectors for 𝑛 ≪ 𝑑1.5

“ideal implementation”
(ignore efficiency for now)

find distribution 𝐷 over unit sphere 

subject to 𝔼𝑢∼𝐷𝑢
⊗3 =ℳ3

𝔼𝑢∼𝐷𝑢
⊗6



approach for random overcomplete 3-tensors

ℳ3 =෍

𝑖
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𝑖
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box

Jennrich’s
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⊗2, … , 𝑎𝑛

⊗2

(𝑎1
⊗2, … , 𝑎𝑛

⊗2 orthogonal enough
for Jennrich’s algorithm)

let 𝑎1, … , 𝑎𝑛 be random unit vectors for 𝑛 ≪ 𝑑1.5

“ideal implementation”
(ignore efficiency for now)

find distribution 𝐷 over unit sphere 

subject to 𝔼𝑢∼𝐷𝑢
⊗3 =ℳ3

𝔼𝑢∼𝐷𝑢
⊗6

claim: 𝔼𝐷 𝑢 𝑢
⊗6 ≈ℳ6

ℳ3, 𝔼𝐷 𝑢 𝑢
⊗3 =

1

𝑛
𝔼𝐷 𝑢 σ𝑖=1

𝑛 𝑎𝑖 , 𝑢
3

ℳ3,ℳ3 =
1

𝑛2
σ𝑖,𝑗∈ 𝑛 𝑎𝑖 , 𝑎𝑗

3 =
1±𝑜 1

𝑛

 𝔼𝐷 𝑢 σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

3 = 1 ± 𝑜 1 (∗)

crucially: with high prob. over 𝑎1, … , 𝑎𝑛, 

∀𝑢. σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

3 = max
𝑖∈[𝑛]

𝑎𝑖 , 𝑢
3 ± 𝑜(1)

therefore, ∗ implies

Pr
𝐷 𝑢

max
𝑖

𝑎𝑖 , 𝑢 ≥ 1 − 𝑜 1 ≥ 1 − 𝑜 1

 𝔼𝐷 𝑢 σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

6 = 1 ± 𝑜 1

 ℳ6 − 𝔼𝐷 𝑢 𝑢
⊗6 ≤ 𝑜 1 ⋅ ℳ6

…

proof:

𝑎6

𝑎2
𝑎3𝑎4𝑎5

𝑎1

plot of 
σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

3



approach for random overcomplete 3-tensors

ℳ3 =෍

𝑖

𝑎𝑖
⊗3 ℳ6 =෍

𝑖

𝑎𝑖
⊗6magic 

box

Jennrich’s
algorithm

𝑎1
⊗2, … , 𝑎𝑛

⊗2

(𝑎1
⊗2, … , 𝑎𝑛

⊗2 orthogonal enough
for Jennrich’s algorithm)

let 𝑎1, … , 𝑎𝑛 be random unit vectors for 𝑛 ≪ 𝑑1.5

“ideal implementation”
(ignore efficiency for now)

find distribution 𝐷 over unit sphere 

subject to 𝔼𝑢∼𝐷𝑢
⊗3 =ℳ3

𝔼𝑢∼𝐷𝑢
⊗6

claim: 𝔼𝐷 𝑢 𝑢
⊗6 ≈ℳ6

two remaining questions:

1. how to find 𝐷 efficiently?

2. can Jennrich tolerate this kind of error?

relax search to sum-of-squares pseudo-distributions

no, error is too large!

 add maximum entropy constraint 𝔼𝑢∼𝐷𝑢
⊗4

spectral
≤

1+𝑜(1)

𝑛



suppose ෩ℳ3 −ℳ3 𝐹
≤ 𝑜 1 ⋅ ℳ3 𝐹 and  ෩ℳ2 spectral

≤ 𝑂 1 /𝑛.

𝑎1, … , 𝑎𝑛 ∈ ℝ
𝑑 orthonormal; moments ℳ𝑘 =

1

𝑛
σ𝑖=1
𝑛 𝑎𝑖

⊗𝑘

distribution 𝐷 over sphere; moments ෩ℳ𝑘 = 𝔼𝐷 𝑢 𝑢
⊗𝑘

then, for most 𝑖 ∈ [𝑛], with probability 
1

𝑛𝑂 1 over the choice 𝑔 ∼ 𝒩 0, Id𝑑2 ,

Id𝑑 ⊗ Id𝑑 ⊗𝑔⊤ ෩ℳ3 has top eigenvector ≈ 𝑎𝑖

robust analysis of Jennrich’s algorithm

+ Id𝑑 ⊗ Id𝑑 ⊗ ො𝑔⊤ ෩ℳ3

𝑔, 𝑎𝑖 ⋅ 𝑎𝑖
𝑔

ො𝑔
= 𝑔, 𝑎𝑖 Id𝑑 ⊗ Id𝑑 ⊗𝑎𝑖

⊤ ෩ℳ3

Id𝑑 ⊗ Id𝑑 ⊗𝑔⊤ ෩ℳ3

≈
1

𝑛
𝑎𝑖𝑎𝑖

⊤
‖ ⋅ ‖spectral ≤

log𝑑

𝑛

overwhelms noise with 

probability 𝑒− 𝑙𝑜𝑔 𝑑
2

≥ 𝑑−𝑂 1

□



degree-𝒌 pseudo-distribution over unit sphere 𝕊𝑑−1 ⊆ ℝ𝑑

• finitely supported function 𝐷: 𝕊𝑑−1 → ℝ
• σ𝑢𝐷 𝑢 = 1 (sum is only over support of 𝐷)

• σ𝑢𝐷 𝑢 ⋅ 𝑓 𝑢 2 ≥ 0 for every 𝑓: 𝕊𝑑−1 → ℝ with deg 𝑓 ≤ 𝑘/2

notation: ෩𝔼𝐷 𝑢 𝑓 𝑢 ≝ σ𝑢𝐷 𝑢 ⋅ 𝑓 𝑢

probability theory meets complexity theory

efficiency of pseudo-distributions [Shor, Parrilo, Lasserre]

deg∞

deg 𝑑

deg2

deg6

set of degree-𝑘 pseudo-moments has 𝑑𝑂(𝑘)-time separation oracle;

key step: check 𝑘th pseudo-moment satisfies ෩𝔼𝐷 𝑢 𝑢
⊗𝑘/2 𝑢⊗𝑘/2 ⊤

≽ 0

• low-complexity events always have nonnegative probability
• high-complexity events may have negative probability 

— pseudo-expectation of 𝑓 under 𝐷

generalizes best known poly-time algorithms for wide range of problems



degree-𝒌 pseudo-distribution over unit sphere 𝕊𝒅−𝟏 ⊆ ℝ𝒅

• finitely supported function 𝐷: 𝕊𝑑−1 → ℝ
• σ𝑢𝐷 𝑢 = 1 (sum is only over support of 𝐷)

• σ𝑢𝐷 𝑢 ⋅ 𝑓 𝑢 2 ≥ 0 for every 𝑓: 𝕊𝑑−1 → ℝ with deg 𝑓 ≤ 𝑘

notation: ෩𝔼𝐷 𝑢 𝑓 𝑢 ≝ σ𝑢𝐷 𝑢 ⋅ 𝑓 𝑢

degree-𝒌 sum-of-squares proof of ∀𝑢 ∈ 𝕊𝑑−1. 𝑓 𝑢 ≥ 𝑔(𝑢)

functions ℎ1, … , ℎ𝑟 with deg ℎ1 , … , deg ℎ𝑟 ≤ 𝑘/2

∀𝑢 ∈ 𝕊𝑑−1. 𝑓 𝑢 − 𝑔 𝑢 = ℎ1 𝑢 2 +⋯+ ℎ𝑟 𝑢 2

if 𝑓 ≥ 𝑔 has degree-𝑘 sos proof, then ෩𝔼𝐷 𝑢 𝑓 𝑢 ≥ ෩𝔼𝐷 𝑢 𝑔 𝑢

for every degree-𝑘 pseudo-distribution 𝐷

duality: pseudo-distributions vs sum-of-squares proofs



lifting moments higher via sum-of-squares

ℳ3 =
1

𝑛
σ𝑖=1
𝑛 𝑎𝑖

⊗3 for random unit vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ
𝑑 and 𝑛 ≪ 𝑑1.5

theorem: w.h.p. over 𝑎1, … , 𝑎𝑛, every degree-12 pseudo-distribution 𝐷

with ෩𝔼𝐷 𝑢 𝑢
⊗3 = ℳ3 satisfies ෩𝔼𝐷 𝑢 𝑢

⊗6 −ℳ6 ≤ 𝑜 1 ℳ6 .



lifting moments higher via sum-of-squares

ℳ3 =
1

𝑛
σ𝑖=1
𝑛 𝑎𝑖

⊗3 for random unit vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ
𝑑 and 𝑛 ≪ 𝑑1.5

theorem: w.h.p. over 𝑎1, … , 𝑎𝑛, every degree-12 pseudo-distribution 𝐷

with ෩𝔼𝐷 𝑢 𝑢
⊗3 = ℳ3 satisfies ෩𝔼𝐷 𝑢 𝑢

⊗6 −ℳ6 ≤ 𝑜 1 ℳ6 .

enough to show (same as in previous proof for probability distributions):

෩𝔼𝐷 𝑢 σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

3 ≥ 1 − 𝑜 1 ෩𝔼𝐷 𝑢 σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

6 ≥ 1 − 𝑜 1⇒

w.h.p. over 𝑎1, … , 𝑎𝑛, the following inequality has degree-12 sos proof

∀𝑢 ∈ 𝕊𝑑−1. σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

3 ≤
3

4
+

1

4
σ𝑖=1
𝑛 𝑎𝑖 , 𝑢

6 + 𝑜 1

key ingredient is to bound spectral norm of random matrix polynomial

[Ge–Ma’15]

σ𝑖≠𝑗 𝑎𝑖 , 𝑎𝑗 ⋅ 𝑎𝑖𝑎𝑖
⊤⊗𝑎𝑗𝑎𝑗

⊤ ≤ 𝑜 1



prevailing wisdom: sum-of-squares is “strictly theoretical”

sum-of-squares algorithms have nothing to do with practical ones

at odds with tenet of computational complexity that polynomial-time 
is a good model for practical algorithms

next:

algorithm to decompose random overcomplete 3-tensor
with close to linear running time (in size of input)
and guarantees close to those of sum-of-squares

general recipe for new kinds of fast spectral algorithms inspired by SOS



ℳ3
෩ℳ6SOS

Jennrich’s
algorithm

𝑎1
⊗2, … , 𝑎𝑛

⊗2

random unit vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ
𝑑 with 𝑛 ≪ 𝑑1.5 ; moments ℳ𝑘 =

1

𝑛
σ𝑖=1
𝑛 𝑎𝑖

⊗𝑘

approach for fast decomposition of overcomplete 3-tensor

too slow!



ℳ3
෩ℳ6SOS

Jennrich’s
algorithm

𝑎1
⊗2, … , 𝑎𝑛

⊗2

random unit vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ
𝑑 with 𝑛 ≪ 𝑑1.5 ; moments ℳ𝑘 =

1

𝑛
σ𝑖=1
𝑛 𝑎𝑖

⊗𝑘

approach for fast decomposition of overcomplete 3-tensor

direct algorithm
to fool Jennrich

෍

𝑖𝑗𝑘

𝑎𝑖 , 𝑎𝑘 〈𝑎𝑗 , 𝑎𝑘〉 ⋅ 𝑎𝑖 ⊗𝑎𝑗 ⊗ 𝑎𝑖 ⊗𝑎𝑗 ⊗𝑎𝑘

=෍
𝑖=1

𝑛

𝑎𝑖
⊗5 + 𝐸 with 𝐸 “random-like”

and 𝐸 𝐹
2 ≤

𝑛3

𝑑2

claim: if 𝑛 ≪ 𝑑1.33 then 𝐸 contributes negligible spectral error for Jennrich

(huge Frobenius norm)

input to Jennrich has “size” 𝑑5 (computing it takes naively O 𝑑6 time)

exploit tensor structure to implement Jennrich in time 𝑂 𝑑1+𝜔 ≤ 𝑂 𝑑3.3…



meta result* (* some technical conditions omitted)

efficient algorithm to solve polynomial optimization 
problems that have only few global optima

sum-of-squares method (based on 
semidefinite programming) [Shor, Parrilo, Lasserre]

running time poly #solutions also need short sum-of-squares 
certificate for this fact

previous work: running time 𝑛𝑂 log #solutions

(quasi-poly time for poly #solutions)

[Barak-Kelner-S STOC’15]

# bad local optima
can be exponential 

 local-search algorithms fail



meta result* (* some technical conditions omitted)

efficient algorithm to solve polynomial optimization 
problems that have only few global optima

sum-of-squares method (based on 
semidefinite programming) [Shor, Parrilo, Lasserre]

running time poly #solutions also need short sum-of-squares 
certificate for this fact

applications: unsupervised learning problems tend to have this property

identifiability: data uniquely determines parameters of model

our work: notion of constructive identifiability proofs that 
implies efficient inference algorithms



tensor decomposition / polynomial optimization via sum-of-squares

use Jennrich’s algorithm (small spectral gaps) as rounding algorithm

fast spectral algorithms via sum-of-squares

fool rounding algorithm by low-degree matrix polynomial of input

sum-of-squares proof for approximate uniqueness (identifiability)

exploit tensor structure for fast algebraic operations

conclusions



tensor decomposition / polynomial optimization via sum-of-squares

use Jennrich’s algorithm (small spectral gaps) as rounding algorithm

fast spectral algorithms via sum-of-squares

fool rounding algorithm by low-degree matrix polynomial of input

sum-of-squares proof for approximate uniqueness (identifiability)

exploit tensor structure for fast algebraic operations

conclusions

thank you
very much!random 3-tensors beyond rank 𝒅𝟏.𝟓?

lower bounds? hard to distinguish from completely random 3-tensors?

smoothed analysis for overcomplete 3-tensors?

strong bounds known for 4-tensors [Lathauwer, Castaing, Cardoso’07]

questions






