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UNIQUE GAMES 

Input: list of constraints of form 𝑥𝑖 − 𝑥𝑗 = 𝑐 mod 𝑘 

Goal: satisfy as many constraints as possible 

𝑘  𝑘  

𝑥𝑗  𝑥𝑖  



UNIQUE GAMES 

Input: list of constraints of form 𝑥𝑖 − 𝑥𝑗 = 𝑐 mod 𝑘 

Goal: satisfy as many constraints as possible 

Input: UNIQUE GAMES instance with 𝑘 ≪ log𝑛 (say) 

Goal:  Distinguish two cases 

YES:  more than 1 − 𝜀 of constraints satisfiable 

NO:    less than 𝜀 of constraints satisfiable 

Unique Games Conjecture (UGC)    [Khot’02] 

For every 𝜀 > 0, the following is NP-hard: 

UG(𝜀) 



Implications of UGC 

For many basic optimization problems,  
it is NP-hard to beat current algorithms  
(based on simple LP or SDP relaxations) 

Examples: 

VERTEX COVER [Khot-Regev’03],  
MAX CUT [Khot-Kindler-Mossel-O’Donnell’04,  

 Mossel-O’Donnell-Oleszkiewicz’05], 
every MAX CSP [Raghavendra’08], … 



Implications of UGC 

For many basic optimization problems,  
it is NP-hard to beat current algorithms  
(based on simple LP or SDP relaxations) 

Unique Games Barrier 

Example:  (𝛼GW+𝜀)-approximation for MAX CUT 
 at least as hard as UG(𝜀′) 

UNIQUE GAMES is common barrier for  
improving current algorithms of  

many basic problems 

𝛼GW = 0.878… 
Goemans–Williamson  

bound for MAX CUT 



Subexponential Algorithm for Unique Games 

Input: UNIQUE GAMES instance with alphabet size k 

 such that 1 − 𝜀 of constraints are satisfiable, 

Output: assignment satisfying 1 − 𝐶 𝜀   of constraints  

Time: exp 𝑘 𝑛1 𝐶2 3   

UG(𝜀) in time exp 𝑛𝜀1 3  

Time vs Approximation Trade-off 



Analog of UGC with subconstant 𝜀 (say 𝜀 = 1 log log 𝑛 ) is false   (*) 

(contrast: subconstant hardness for LABEL COVER [Moshkovitz-Raz’08]) 

NP-hardness reduction for UG 𝜀  must have blow-up 𝑛1 𝜀1 3   (*) 

 rules out certain classes of reductions for proving UGC 

(*) assuming 3-SAT does not have subexponential algorithms, exp 𝑛𝑜 1  

UGC-based hardness does not rule out subexponential algorithms, 
 Possibility: exp 𝑛𝜀 -time algorithm for MAX CUT(𝛼GW + 𝜀) ? 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Consequences 



poly 𝑛  exp (𝑛) 

2-SAT 

MAX 3-SAT(7 8 ) 

MAX CUT(𝛼𝐺𝑊) 

3-SAT        (*) 

FACTORING 

exp (𝑛1 2 ) exp (𝑛1 3 ) exp 𝑛𝜀1 3 
 

UG 𝜀  

MAX 3-SAT(7 8 + 𝜀) 

LABEL COVER(𝜀)  

[Moshkovitz-Raz’08 
+ Håstad’97] MAX CUT(𝛼GW + 𝜀)? 

(*) assuming Exponential Time Hypothesis [Impagliazzo-Paturi-Zane’01] 

( 3-SAT has no 2𝑜(𝑛) algorithm ) 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

GRAPH ISOMORPHISM 



Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Interlude: Graph Expansion 

𝑉 

𝑆 

expansion(𝑆) =  
# edges leaving 𝑆 

𝑑 |𝑆| 

𝑥 = normalized indicator vector 

𝑑-regular graph 𝐺 

𝐺 = normalized adjacency matrix (stochastic) 

expansion(𝑆) = 𝜀      ⇔      𝑥, 𝐺𝑥 = 1 − 𝜀 



Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Easy graphs for UNIQUE GAMES 

Constraint Graph  

variable    vertex 
constraint    edge 𝑖 

𝑗 

𝑥𝑖 − 𝑥𝑗 = 𝑐 
 mod 𝑘 

Expanding constraint graph 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 



Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Eigenvalues 

𝜆𝑚+1 

1 − 100𝜀 

𝜆1 𝜆2 

1 0 

normalized adjacency matrix 

𝜆𝑚   …  

quasi-expander 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 



Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 

Subspace Enumeration [Kolla-Tulsiani’07] 

exhaustive search over certain subspace 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Question: Dimension of this subspace? 

quasi-expander 



[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 

quasi-expander 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Decomposition 

By removing 1% of edges, decompose constraint graph 
into components for which UG 𝜀  is “easy” 

Approach [Trevisan’05, Arora-Impagliazzo-Matthews-S.’10] 

hard 
constraint graph 

remove 1%  
of edges 

easy 

easy 
easy 

easy easy 

easy 

easy 



By removing 1% of edges, decompose constraint graph 
into components for which UG 𝜀  is “easy” 

Approach [Trevisan’05, Arora-Impagliazzo-Matthews-S.’10] 

quasi-expander 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 100𝜀 

Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

[Kolla-Tulsiani’07, Kolla’10, here] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Decomposition UG(𝜀):   Given UG instance, distinguish 

  YES: opt > 1 − 𝜀  
  NO: opt < 𝜀  

YES: 
opt > 1 − 𝜀/4 

opt>1-𝜀 

opt>1-𝜀 opt>1-𝜀 

opt>1-𝜀 

opt>1-𝜀 



By removing 1% of edges, decompose constraint graph 
into components for which UG 𝜀  is “easy” 

Approach [Trevisan’05, Arora-Impagliazzo-Matthews-S.’10] 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 100𝜀 

Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

[Kolla-Tulsiani’07, Kolla’10, here] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Decomposition 

YES: 
opt > 1 − 𝜀/4 

? 

YES 
? 

YES YES 

YES 

YES 

UG(𝜀):   Given UG instance, distinguish 

  YES: opt > 1 − 𝜀  
  NO: opt < 𝜀  



By removing 1% of edges, decompose constraint graph 
into components for which UG 𝜀  is “easy” 

Approach [Trevisan’05, Arora-Impagliazzo-Matthews-S.’10] 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 100𝜀 

Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

[Kolla-Tulsiani’07, Kolla’10, here] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Decomposition UG(𝜀):   Given UG instance, distinguish 

  YES: opt > 1 − 𝜀  
  NO: opt < 𝜀  

NO: 
opt < 𝜀/4 

opt<𝜀 

opt<𝜀 opt<𝜀 

opt<𝜀 

opt<𝜀 



By removing 1% of edges, decompose constraint graph 
into components for which UG 𝜀  is “easy” 

Approach [Trevisan’05, Arora-Impagliazzo-Matthews-S.’10] 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 100𝜀 

Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

[Kolla-Tulsiani’07, Kolla’10, here] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Decomposition 

NO: 
opt < 𝜀/4 

NO 

NO 
? 

NO NO 

NO 

? 

UG(𝜀):   Given UG instance, distinguish 

  YES: opt > 1 − 𝜀  
  NO: opt < 𝜀  



[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 

quasi-expander 

Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Decomposition 

By removing 1% of edges, every graph can be decomposed  
into components with 

Classical 

at most 𝑛𝑂(𝜀1 3 ) eigenvalues > 1 − 100𝜀 

Here 
[Leighton-Rao’88, Goldreich-Ron’98, Spielman-Teng’04, Trevisan’05] 

eigenvalue gap 1 polylog 𝑛   

Idea: quasi-expander  
≈ small-set expander 



Idea: quasi-expander  
≈ small-set expander 

Expanding constraint graph 

Constraint graph with few large eigenvalues 

Easy graphs for UNIQUE GAMES 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

UG(𝜀) in time poly(𝑛) if eigenvalue gap > 100𝜀 

[Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’08] 

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Graph Decomposition 

By removing 1% of edges, every graph can be decomposed  
into components with 

Classical 

at most 𝑛𝑂(𝜀1 3 ) eigenvalues > 1 − 100𝜀 

Here 

eigenvalue gap 1 polylog 𝑛   

quasi-expander 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 



Constraint graph with few large eigenvalues 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 
 

label-extended graph 𝐺  constraint graph 𝐺 

cloud 𝑗 

cloud 𝑖 

𝑖, 𝑎 ∼ (𝑗, 𝑏) 
if a-b=c mod k 

assignment satisfying 
1 − 𝜀 of constraints 

vertex set of size 𝑛 
and expansion ≤ 𝜀 

𝑖 
𝑗 

𝑥𝑖 − 𝑥𝑗 = 𝑐 
 mod 𝑘 

Assume: label-extended graph  has at most 𝑚 eigenvalues > 1 − 100𝜀 

2 



Constraint graph with few large eigenvalues 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 
 

label-extended graph 𝐺  constraint graph 𝐺 

assignment satisfying 
90% of constraints 

99% of indicator vector lies in 
span of top m eigenvectors  

Assume: label-extended graph  has at most 𝑚 eigenvalues > 1 − 100𝜀 

enumerate  
subspace 

2 

vertex set of size 𝑛 
and expansion ≤ 𝜀 

assignment satisfying 
1 − 𝜀 of constraints 



Constraint graph with few large eigenvalues 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 
 

label-extended graph 𝐺  

assignment satisfying 
90% of constraints 

99% of indicator vector lies in 
span of top m eigenvectors  

Assume: label-extended graph  has at most 𝑚 eigenvalues > 1 − 100𝜀 

vertex set of size 𝑛 
and expansion ≤ 𝜀 

enumerate  
subspace 

assignment satisfying 
1 − 𝜀 of constraints 

Compare: Fourier-based learning 

2 

constraint graph 𝐺 
𝑥 = normalized indicator vector 

Suppose: > 1% of 𝑥 is orthogonal to span 

𝑥, 𝐺 𝑥 < 0.99 𝜆1 + 0.01 𝜆𝑚+1 ≤ 1 − 𝜀  

⟹ expansion > 𝜀 



Constraint graph with few large eigenvalues 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 
 



Idea: quasi-expander  
≈ small-set expander 

Easy graphs for UNIQUE GAMES 

Constraint graph with few large eigenvalues 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 

Graph Decomposition 

By removing 1% of edges, every graph can be decomposed  
into components with 

Classical 

at most 𝑛𝑂(𝜀1 3 ) eigenvalues > 1 − 𝜀 

Here 

eigenvalue gap 1 polylog 𝑛   

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  



Constraint graph with few large eigenvalues 

UG(𝜀) in time exp(𝑚) if at most 𝑚 eigenvalues > 1 − 100𝜀 

[Kolla-Tulsiani’07, Kolla’10, here, 
 Barak-Raghavendra-S.’11] 

Easy graphs for UNIQUE GAMES 

Graph Decomposition 

By removing 1% of edges, every graph can be decomposed  
into components with 

Classical 

at most 𝑛𝑂(𝜀1 3 ) eigenvalues > 1 − 𝜀 

Here 

eigenvalue gap 1 polylog 𝑛   

Subexponential Algorithm for Unique Games 

UG 𝜀  in time exp 𝑛𝜀1 3  

Idea: quasi-expander  
≈ small-set expander 



non-expanding set 𝑆 

Graph Decomposition 

By removing 1% of edges, every graph can be decomposed  
into components with at most 𝑛𝑂(𝜀1 3 ) eigenvalues > 1 − 𝜀 

For 𝜀 = 1 polylog 𝑛 , 

follows from Cheeger bound [Cheeger’70, Alon-Milman’85, Alon’86] 

V 
eigenvalue gap < 𝜀 

S 

Assume graph is d-regular 

expansion(𝑆) < 𝜀 

𝑆 < 𝑉 /2 

⇒ 



at most 𝑛𝑂(𝜀1 3 ) eigenvalues > 1 − 𝜀 

For 𝜀 = 1 polylog 𝑛 , 

Graph Decomposition 

By removing 1% of edges, every graph can be decomposed  
into components with 

Assume graph is d-regular 

follows from Cheeger bound 

V 
⇒ 

S 

“higher-order Cheeger bound”   [here] 

general 𝜀 > 0 

𝑛𝑂(𝛽)   
eigenvalues > 1 − 𝜀 

small non-expanding set 𝑆 

|𝑉|  <  𝑛 

𝑆 < 𝑉 /𝒏𝜷 

expansion(𝑆) < 𝜀/𝛽 



“higher-order Cheeger bound” 

eigenvalues > 1 − 𝜀 

|𝑉|  <  𝑛 

𝑛𝑂(𝛽)  
⇒ 

𝑆 < 𝑉 /𝑛𝛽 

expansion(𝑆) < 𝜀/𝛽 



“higher-order Cheeger bound” 

eigenvalues > 1 − 𝜀 

|𝑉|  <  𝑛 

𝑛𝑂(𝛽)  ⇒ 
𝑆 < 𝑉 /𝑛𝛽 

expansion(𝑆) < 𝜀/𝛽 



“higher-order Cheeger bound” 

eigenvalues > 1 − 𝜀 

|𝑉|  <  𝑛 

𝑛𝑂(𝛽)  

𝑆 < 𝑉 /𝑛𝛽 

expansion(𝑆) < 𝜀/𝛽 

Idea 

⇒ 



“higher-order Cheeger bound” 

eigenvalues > 1 − 𝜀 

|𝑉|  <  𝑛 

𝑛𝑂(𝛽)  

𝑆 < 𝑉 /𝑛𝛽 

expansion(𝑆) < 𝜀/𝛽 

⇒ volume growth < 1 + 𝜀
𝛽  in intermediate step 𝑠 <  𝑡 

⇒ Ball(𝑖, 𝑠) has expansion < 𝑂 𝜀
𝛽  

( for degree 𝑑 = 𝑂(1) ) It would suffice to show: 

∃ vertex 𝑖 such that Ball 𝑖, 𝑡 < 𝑉 𝑛𝛽   for 𝑡 = 𝛽
𝜀 log 𝑛 

⇒ 



“higher-order Cheeger bound” 

eigenvalues > 1 − 𝜀 

|𝑉|  <  𝑛 

𝑛𝑂(𝛽)  

𝑆 < 𝑉 /𝑛𝛽 

expansion(𝑆) < 𝜀/𝛽 

It would suffice to show: 

∃ vertex 𝑖 such that Ball 𝑖, 𝑡 < 𝑉 𝑛𝛽   for 𝑡 = 𝛽
𝜀 log 𝑛 

⇒ collision probability decay < 1 + 𝜀
𝛽  in intermediate step 𝑠 <  𝑡 

⇒ level set of 𝐺𝑠𝑒𝑖  has expansion < 𝜀 𝛽  and size < 𝑉 /𝑛𝛽 

𝐺𝑡𝑒𝑖
2 > 𝑛𝛽 𝑉  

Heuristic: 

collision probability  

  ≈
1

truncated support
   

⇒ 

collision probability of t-step  
random walk from i 

Suffices 

local 
Cheeger  

bound 



Heuristic: 

collision probability  

  ≈
1

truncated support
   

⇒ collision probability decay < 1 + 𝛽
𝜀  in intermediate step  s < t 

“higher-order Cheeger bound” 

eigenvalues > 1 − 𝜀 

|𝑉|  <  𝑛 

𝑛𝑂(𝛽)  

𝑆 < 𝑉 /𝑛𝛽 

expansion(𝑆) < 𝜀/𝛽 

It would suffice to show: 

∃ vertex 𝑖 such that Ball 𝑖, 𝑡 < 𝑉 𝑛𝛽   for 𝑡 = 𝛽
𝜀 log 𝑛 

⇒ level set of 𝐺𝑠𝑒𝑖  has expansion < 𝜀 𝛽  and size < 𝑉 /𝑛𝛽 

𝐺𝑡𝑒𝑖
2 > 𝑛𝛽 𝑉  

=  〈𝑒𝑖 , 𝐺
2𝑡𝑒𝑖〉 𝑖   = Trace 𝐺2𝑡     > 𝑛𝑂 𝛽 1 − 𝜀 2𝑡 > 𝑛𝛽  𝐺𝑡𝑒𝑖

2
𝑖   

“A Markov chain with many large eigenvalues cannot mix locally everywhere” 

⇒ 

collision probability of t-step  
random walk from i 

Suffices 



Heuristic: 

collision probability  

  ≈
1

truncated support
   

⇒ collision probability decay < 1 + 𝛽
𝜀  in intermediate step  s < t 

“higher-order Cheeger bound” 

eigenvalues > 1 − 𝜀 

|𝑉|  <  𝑛 

𝑛𝑂(𝛽)  

𝑆 < 𝑉 /𝑛𝛽 

expansion(𝑆) < 𝜀/𝛽 

It would suffice to show: 

∃ vertex 𝑖 such that Ball 𝑖, 𝑡 < 𝑉 𝑛𝛽   for 𝑡 = 𝛽
𝜀 log 𝑛 

⇒ level set of 𝐺𝑠𝑒𝑖  has expansion < 𝜀 𝛽  and size < 𝑉 /𝑛𝛽 

𝐺𝑡𝑒𝑖
2 > 𝑛𝛽 𝑉  

“A Markov chain with many large eigenvalues cannot mix locally everywhere” 

⇒ 

collision probability of t-step  
random walk from i 

Suffices 

vertex indicators 𝑒𝑖  

span 𝑈 of 𝑛𝑂 𝛽  eigenvectors 
with eigenvalue > 1 − 𝜀 

⇒ ∃ vertex 𝑖.   

𝑒𝑖 , Proj𝑈𝑒𝑖 ≥
𝑛𝑂 𝛽

𝑉
 



Improved approximations for d-TO-1 GAMES ( Khot’s d-to-1 Conjecture)   [S.’10]  

Better approximations for MAX CUT and VERTEX COVER on small-set expanders 

Open Questions 

Example: 𝑓(𝜀)-approximation for SPARSEST CUT in time exp (𝑛𝜀)? 

How many large eigenvalues can a small-set expander have? 

Is Boolean noise graph the worst case?    (polylog(𝑛) large eigenvalues) 

Thank you! Questions? 

More Subexponential Algorithms 

Similar approximation for MULTI CUT and SMALL SET EXPANSION 

What else can be done in subexponential time? 

Towards refuting the Unique Games Conjecture 

Better approximations for MAX CUT or VERTEX COVER on general instances? 








