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Xi Xj
UNIQUE GAMES
Input:  list of constraints of form x; — x; = c mod k

Goal:  satisfy as many constraints as possible



UG(g) -

Input: list of constraints of form

Goal:  satisfy as many constraints as possible

Unique Games Conjecture (UGC) [Khot'02]

For every € > 0, the following is NP-hard:
Input:  UNIQUE GAMES instance with k << logn (say)
Goal:  Distinguish two cases
YES: morethan 1 — ¢ of constraints satisfiable

NO: lessthan € of constraints satisfiable



Implications of UGC

For many basic optimization problems,
it is NP-hard to beat current algorithms
(based on simple LP or SDP relaxations)

Examples:

VERTEX COVER [Khot-RegeVv'03],

MAX CUT [Khot-Kindler-Mossel-O’Donnell’og,
Mossel-O’Donnell-Oleszkiewicz'os],

every MAX CsP [Raghavendra’o8], ...



Implications of UGC

For many basic optimization problemes,
it is NP-hard to beat current algorithms
(based on simple LP or SDP relaxations)

Unique Games Barrier

Example: (agw+¢)-approximation for MAX Cut

at least as hard as UG(¢g")
aAgw = 0.878 ...

UNIQUE GAMES is common barrier for Goemans-Williamson

improving current algorithms of TRl S el
many basic problems




Subexponential Algorithm for Unique Games

UG(¢) intime exp (ngl/s)

Time vs Approximation Trade-off

Input: ~ UNIQUE GAMES instance with alphabet size k
such that 1 — € of constraints are satisfiable,

Output: assignment satisfying 1 — C+/€ of constraints
Time:  exp (k nl/cz/g)



Subexponential Algorithm for Unique Games

UG(¢g) intime exp (ngl/s)

Consequences

NP-hardness reduction for UG(&) must have blow-up nl/et’?

—> rules out certain classes of reductions for proving UGC

(*)
Analog of UGC with subconstant € (say € = 1/loglogn) is false (*)

(contrast: subconstant hardness for LABEL COVER [Moshkovitz-Raz'08])

UGC-based hardness does not rule out subexponential algorithms,
—> Possibility: exp(n®)-time algorithm for MAX CuT(agy + €) ?

(*) assuming 3-SAT does not have subexponential algorithmes, exp(no(l))



Subexponential Algorithm for Unique Games

UG(e) intime exp (ngl/g)

MAX CUT(a ;)

MAX CuT(agw + €)7

MAX 3-SAT(7/g) - MAX 3-SAT(7 /g + €)
LABEL COVER(¢€)

i FACTORING
GRAPH ISOMORPHISM

2-SAT —

[Moshkovitz-Raz'o8
+ Hastad'qg7]

poly(n) exp (ngl/g) exp(n'/3) exp(n'/?)

exp(n)

(*) assuming Exponential Time Hypothesis [Impagliazzo-Paturi-Zane'o1]

(3-SAT has no 2°(™ algorithm )



Subexponential Algorithm for Unique Games
UG(¢g) intime exp (ngl/g)

Interlude: Graph Expansion

d-regular graph G

# edges leaving S
d |S]|

expansion(S) =

= normalized adjacency matrix (stochastic)

X = normalized indicator vector

expansion(S)=¢ & (x,Gx)=1-¢




Subexponential Algorithm for Unique Games
UG(¢g) intime exp (ngl/g)

Easy graphs for UNIQUE GAMES

Expanding constraint graph  [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi'o8]
UG(¢) in time poly(n) if eigenvalue gap > 100¢

Constraint Graph

variable = vertex
constraint = edge
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UG(¢g) intime exp (ngl/g)

Easy graphs for UNIQUE GAMES

Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’o8]
UG(¢g) intime poly(n) if eigenvalue gap > 100¢

[Kolla-Tulsiani’o7, Kolla'1o, here,
Barak-Raghavendra-S."11]

UG(¢) in time exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues

~ quasi-expander
Graph Eigenvalues
normalized adjacency matrix
Ans1 Am - Ay A4
— I 5 I I +
0 1—100¢ 1
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Easy graphs for UNIQUE GAMES

Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’o8]
UG(¢g) intime poly(n) if eigenvalue gap > 100¢

[Kolla-Tulsiani’o7, Kolla'1o, here,
Barak-Raghavendra-S."11]

UG(¢) in time exp(m) if at most m eigenvalues > 1 — 100¢
ﬁ quasi-expander

(G

Constraint graph with few large eigenvalues

Subspace Enumeration [Kolla-Tulsiani’o7]

exhaustive search over certain subspace

Question: Dimension of this subspace?




Subexponential Algorithm for Unique Games
UG(¢g) intime exp (n51/3)

Easy gran.ln.uEn.laLl.u.l.n.l.l.l'_LA.ul'l‘
Expa

remove 1%
of edges

=

Cons

quasi-expander
Graph Decomposition

Approach [Trevisan’os, Arora-Impagliazzo-Matthews-S."10]

By removing 1% of edges, decompose constraint graph
into components for which UG(¢) is “easy”



Subexponential Algorithm for Unique Games
UG(¢g) intime exp (ngl/g)

Expa

Graph D| UG(&): Given UG instance, distinguish
YES: opt>1—¢
Appr NO: opt<e
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Expa

Graph D| UG(&): Given UG instance, distinguish
YES: opt>1—¢
Appr NO: opt<e
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Easy graphs for UNIQUE GAMES

Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’o8]
UG(¢g) intime poly(n) if eigenvalue gap > 100¢

[Kolla-Tulsiani’o7, Kolla'10, here,
Barak-Raghavendra-S."11]
UG(¢) in time exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues

quasi-expander

Graph Decomposition
p P on

Idea: quasi-expander
Here _ Il-set d
Etassteat [Leighton-Raol 7~ SMali-S€t expander |,on_Teng'os, Trevisan'os]
By removing 1% of edges, every graph can be decomposed

into components with eigervatse-gapt/potrtostn)

at most n°¢"*) eigenvalues > 1 — 100¢
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Easy graphs for UNIQUE GAMES

Expanding constraint graph [Arora-Khot-Kolla-S.-Tulsiani-Vishnoi’o8]
UG(¢g) intime poly(n) if eigenvalue gap > 100¢

[Kolla-Tulsiani’o7, Kolla'1o, here,
Barak-Raghavendra-S."11]

UG(¢) in time exp(m) if at most m eigenvalues > 1 — 100¢

~ .
] quasi-expander

Constraint graph with few large eigenvalues

Graph Decomposition
Here Idea: quasi-expander

ol | ~ small-set expander

By removing 1% of edges, every graph can be decomposed

into components with eigenvatse-gaptrpotrtostn

at most n®¢"* eigenvalues > 1 — 100¢




[Kolla-Tulsiani’o7, Kolla1o, here,
Barak-Raghavendra-S."11]

UG(¢g) in time exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues

Assume: |label-extended graph has at most m eigenvalues > 1 — 100¢

constraint graph G label-extended graph G

j cloud j
i e cloud i /\
X;—Xj=¢ ‘/-/\.

mod k @
(i,a) ~ (j,b)
if a-b=c mod k

assignment satisfying ~ vertex set of sizen
1 — € of constraints and expansion < ¢



[Kolla-Tulsiani’o7, Kolla1o, here,
Barak-Raghavendra-S."11]

UG(¢g) in time exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues

Assume: label-extended graph has at most m eigenvalues > 1 — 100¢

constraint graph G label-extended graph G

: cloudj
io—”’Lo cloudi

xi—xj=c

mod k

00000

apoq

(i,a) ~ (j,b)
if a-b=c mod k

assignment satisfying — vertex set of size n

1 — € of constraints and expansion < ¢

enumerate ;

assignment satisfying subspace
<=

99% of indicator vector lies in
90% of constraints

span of top m eigenvectors




[Kolla-Tulsiani’o7, Kolla1o, here,
Barak-Raghavendra-S."11]

UG(¢g) in time exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues

Assume: label-extended graph has at most m eigenvalues > 1 — 100¢

label-extended graph G
x = normalized indicator vector

cloudj
cloudi

Suppose: > 1% of x is orthogonal to span

0000V

apoq

(x,Gx) <0991, +0.01 4., <1—¢ (i,a) ~ (j,b)

if a-b=c mod k

vertex set of sizen

— expansion > ¢ :
P and expansion < ¢

enumerate ;

subspace % of indi e
) < 99% of Indicator vector lies In
90% of constraints span of top m eigenvectors

@ Compare: Fourier-based learning

assignment satisfying




[Kolla-Tulsiani’o7, Kolla1o, here,
Barak-Raghavendra-S."11]

UG(¢g) intime exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues
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Easy graphs for UNIQUE GAMES

[Kolla-Tulsiani‘o7, Kolla'1o, here,
Barak-Raghavendra-S."11]
UG(¢) in time exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues

Graph Decomposition _
Idea: quasi-expander
Here

ol | ~ small-set expander

By removing 1% of edges, every graph can be decomposed

into components with eigervatve-gaptrpotyteostn

O(e

1/3) )
at mostn elgenva|UeS >1—¢
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Easy graphs for UNIQUE GAMES

[Kolla-Tulsiani’o7, Kolla'10, here,
Barak-Raghavendra-S."11]
UG(¢g) intime exp(m) if at most m eigenvalues > 1 — 100¢

Constraint graph with few large eigenvalues

Graph Decomposition
P P on

Here Idea: quasi-expander
Classiea] ~ small-set expander

By removing 1% of edges, every graph can be decomposed

into components with eigervatse-gapt/potrtostn)

O(e

1/3) .
at mostn eigenvalues > 1 — ¢



Graph Decomposition

By removing 1% of edges, every gral%h can be decomposed
into components with at most n0E ") eigenvalues > 1 —¢

Assume graph is d-regular

Fore = 1/polylogn,
follows from Cheeger bound [Cheeger'7o, Alon-Milman’8s, Alon’86]

=

non-expanding set S

expansion(S) < /e
S| < [V]/2




Graph Decomposition

By removing 1% of edges, every grap3h can be decomposed
into components with at most nO(?) eigenvalues > 1 — ¢

Assume graph is d-regular

generale > 0
e—t/peiytogn; | .
For “higher-order Cheeger bound” [here]

follows from €hreegerbound-

& D

small non-expanding set S

expansion(S) < ./&/f
S| < [V|/nf




“higher-order Cheeger bound”

no®
eigenvalues > 1 — ¢

=

V| < n

expansion(S) < /&/f
S| < |VI|/nP



“higher-order Cheeger bound”

n®Peigenvalues > 1 — ¢ — expansion(S) < ./&/p
vl <n S] < [Vi/nf




“higher-order Cheeger bound”

n%Peigenvalues > 1 — ¢ — expansion(5) < /&/p
V| < n IS| < |V|/nP

|dea




“higher-order Cheeger bound”

n%Peigenvalues > 1 — ¢ — expansion(5) < /&/p
V| < n IS| < |V|/nP

It would suffice to show:  (fordegreed = 0(1))

3 vertex i such that |Ball(i, t)| < |V|/n” fort = (ﬂ/g) logn

= volume growth < 1 + (S/B) inintermediatesteps < t
= Ball(i, s) has expansion < O(S/B)




“higher-order Cheeger bound”

n%Peigenvalues > 1 — ¢ — expansion(S) < ./&/p
V| < n IS| < |V|/nP

Suffices collision probability of t-step

-H-woutdsuffice to show: J random walk from i

1Gte;]l? > nP /|V]
3 vertex i such that 1Bt tt~<HH-Al=for t = (ﬂ/g) logn

Heuristic:

collision probability
- 1
- |truncated support]

local
Cheeger

bound P = level set of G ° e; has expansion < \/¢/f and size < |V|/n

= collision probability decay < 1 + (8/3) inintermediate steps < t




“higher-order Cheeger bound”

n%Peigenvalues > 1 — ¢ = expansion(S) < ./&/p
VI <n S| < [VI/nf

Suffices collision probability of t-step

-H-woutdsuffice to show: J random walk from i

1Ge;|I? > nP/|V|
3 vertex i such that tBeft—<HA4d-fort = (ﬂ/g) logn

"A Markov chain with many large eigenvalues cannot mix locally everywhere”

Y |Gte |2 = Yi(e;, G2te;) = Trace(G2t) > noB) (1 — )2t > pb




V| < n

SUfﬁces_ collision probability of t-step
“Hwoutd-suffice to show: random walk from i
1Gte;|l* > nF/|V]

3 vertex i such that tBeft—<HA4d-fort = ('B/g) logn

"A Markov chain with many large eigenvalues cannot mix locally everywhere”

span U of n9F) eigenvectors

. with eigenvalue > 1 — ¢
vertex indicators e;

= 3 »
vertex i no(ﬁ)

(e;, Proj;e;) =
l Ju€i |V|



More Subexponential Algorithms

Similar approximation for MULTI CUT and SMALL SET EXPANSION
Better approximations for MAX CuT and VERTEX COVER on small-set expanders

Improved approximations for d-To-1 GAMES (= Khot's d-to-1 Conjecture) [S.'10]

Open Questions

What else can be done in subexponential time?
Better approximations for MAX CUT or VERTEX COVER on general instances?

Example: f (¢)-approximation for SPARSEST CUT in time exp(n®)?

Towards refuting the Unique Games Conjecture
How many large eigenvalues can a small-set expander have?

Is Boolean noise graph the worst case? (polylog(n) large eigenvalues)

Thank you! Questions?












