
STOC, New York, June 2014

Rounding 

SUM-OF-SQUARES
Relaxations

David Steurer
Cornell

Boaz Barak
MSR

Jonathan Kelner
MIT

joint work with



bird’s eye view: sum-of-squares (SOS) method

conceptually simple meta algorithm studied by many disciplines

applies to wide range of problems in unified way

contrast: problem-specific methods, 
very general algorithmic techniques (like LP/SDP)

what do we lose? surprisingly little

captures best-known algorithms in most cases

prediction of Unique Games Conjecture (UGC):
very restricted special case of SOS gives 
best-possible approximations for many problems

what do we gain?

only few limitations known

(even problem-specific ones)

potentially a lot

for “all known instances,” better approx. than predicted by UGC in worst-case

[Khot]

[Khot-Regev,
Khot-Kindler-Mossel-O’Donnell,
…, Raghavendra, …]

[Shor, Nesterov, 
Parrilo, Lasserre]

this talk: first general framework for proving guarantees of SOS;
better guarantees for various problems (related to small-set expansion, 
unsupervised learning, quantum information)

[Grigoriev, Schoenebeck] [Barak-Brandao-Harrow
-Kelner-S.-Zhou]



results: polynomial optimization over unit sphere

given: low-degree 𝑛-variate polynomial 𝑃 with only nonneg. coefficients 
find: 𝑃 ≝ max

𝑥 =1
𝑃 𝑥 within error 𝜀 ⋅ 𝑃 spectral

naïve upper bound on 𝑃 : 
minimum 𝑣 ∈ ℝ s.t.
𝑣 − 𝑃 is sum of squares

this paper: SOS runs in quasi−poly 𝑛 time

open: general instead of nonneg. coefficients? 
 could solve major open problem in quantum; QMA vs QMA[2]

open: remove both restrictions?
 refute Small-Set Expansion Hypothesis—relative of UGC

follow-up: LOCC-1 polynomial instead of nonneg. coefficients [Brandao-Harrow’13]

 greatly simplifies quantum breakthrough [Brandao-Christiandl-Yard’11]

open: replace 𝑃 spectral by 𝑃 ? 

 could solve small-set expansion on 𝔽2
𝑛-Cayley graphs



results: sparse vectors in subspaces

given: 𝑑-dim. linear subspace 𝑊 of ℝ𝑛 that contains 𝑘-sparse vector 𝑣0
find: vector 𝑣 ∈ 𝑊 with ℓ4/ℓ2-sparsity 𝐶 ⋅ 𝑘

this paper: SOS runs in poly 𝑛 time for 𝐶 = 𝑑1/3 in worst case
“ for 𝐶 = 𝑂 1 in average case

worst case: connection to small-set expansion / Unique Games Conjecture

average case: connection to learning (sparse coding & over-complete dictionaries)

solve small-set expansion for very small sets (beating other algorithms)

𝐶 = 𝑂(1) in worst case would refute SSE hypothesis 

previous methods: work only for sparsity 
𝑘

𝑛
≤ 1/ 𝑑

[Spielman-Wang-Wright,
Demanet-Hand]`

upcoming work: SOS learns over-complete dictionaries 

previous methods: assume strong incoherence and sparsity [Arora-Ge-Moitra
Anankumar et al.]

[Barak-Kelner-S.]



multivariate polynomials
𝑃1, … , 𝑃𝑚 ∈ ℝ 𝑥1, … , 𝑥𝑛

system of equations
ℰ = 𝑃1 = 0,… , 𝑃𝑚 = 0

when is 𝓔 unsatisfiable over ℝ𝒏?

Real Nullstellensatz
every polynomial system is either satisfiable over ℝ𝑛 or SOS refutable 

idea: derive “obviously 
unsatisfiable equation” from ℰ

linear case: Gaussian 
elimination, Farkas lemma

SOS method: 𝑛𝑂 𝑘 -time algorithm to find SOS refutation 
with degrees ≤ 𝑘 if one exists (uses SDP)

[Shor, Nesterov, 
Parrilo, Lasserre]

[Artin, Krivine, Stengle]

𝑄1 ⋅ 𝑃1 +⋯+ 𝑄𝑚 ⋅ 𝑃𝑚
= 1 + 𝑅1

2 +⋯+ 𝑅𝑡
2

vanishes on ℰ

positive over ℝ𝑛

sum-of-squares (SOS) refutation of ℰ

intuitive proof system: many common inequalities have proofs in this form, 
e.g., Cauchy-Schwarz, Hölder, ℓ𝑝-triangle inequalities



𝑣-vs-𝑣′ approximation: given: sat. system 𝑃0 = 𝑣, 𝑃1 = 0,… , 𝑃𝑚 = 0
find: solution to 𝑃0 = 𝑣′, 𝑃1 = 0,… , 𝑃𝑚 = 0

maximize 𝑃0 over 𝑃1 = 0,… , 𝑃𝑚 = 0optimization (e.g., MAX CUT)

claim: SOS reduces approximation in time 𝑛𝑂 𝑘 to “deg.-𝑘 combining”

subset 𝒳 of solutions to 
𝑃0 ≥ 𝑣, 𝑃1 = 0,… , 𝑃𝑚 = 0

single solution to 
𝑃0 ≥ 𝑣′, 𝑃1 = 0,… , 𝑃𝑚 = 0

represented by all degree-𝑘
moments of 𝒳, e.g., 𝔼𝒳𝑥1⋯𝑥𝑘

use only properties of moments / 
solutions with degree-𝑘 SOS proofs

“proof:” obstructions to degree-k SOS refutations indistinguishable 
from deg.-k moments with respect to deg.-𝑘 SOS arguments

pseudo-moments



planted sparse vector recovery

one 𝑘-sparse vector 
among 𝑑 random vectors

arbitrary / random basis
of span 𝑊 of these vectors

𝑎0 =
1

𝑘
(0, … , 0, ±1,… ,±1) ∈ ℝ𝑛

𝑎1 =
1

𝑛
(±1,… ,±1)

⋮

𝑎𝑑 =
1

𝑛
(±1,… ,±1)

𝑘 non-zeros

𝑦0 = ±1,… , ±1 ∈ ℝ𝑛

𝑦1 = ±1,… ,±1

𝑦𝑑 = ±1,… ,±1

⋮

goal: given 𝑦0, … , 𝑦𝑑 , recover vector 𝑎∗ ≈ ±𝑎0

idealized inference problem; subproblem for dictionary learning

[Demanet-Hand’13]



proxy for sparsity: if vector 𝑥 is 𝑘-sparse then 
𝑥 ∞

𝑥 1
≥

1

𝑘
and 

𝑥 4
4

𝑥 2
4 ≥

1

𝑘

[Spielman-Wang-Wright,
Demanet-Hand]

previous best algorithm

find vector 𝑥 ∈ 𝑊 with maximum ℓ∞/ℓ1 ratio
(exact using linear programming) 

recovers 𝑥 ≈ ±𝑎0 if and only if 
𝑘

𝑛
≪ 1/ 𝑑

idea: use ℓ4/ℓ2 ratio instead

good: better proxy for sparsity (𝑑 ≪ 𝑛); system of polynomial equations

bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)

𝑥 4
4 =

1

𝑘
, 𝑥 2

2 = 1, 𝑥 ∈ 𝑊

here: SOS works for this problem (exploit randomness in 𝑊)



claim: set 𝒳 concentrated around planted vector (up to sign)

ℓ4 triangle inequality

ℓ4/ℓ2 ratio bound for random subspaces for 𝑑 ≪ 𝑛

arguments used in analysis

combiner: sample Gaussian distr. 𝛾𝒳 with same deg.-2 moments as 𝒳

𝔼𝛾𝒳𝑥𝑥
⊤ = 𝔼𝒳𝑥𝑥

⊤ ≈ 𝑎0𝑎0
⊤
 random sample from 𝛾𝑋 is close to ±𝑎0

deg.-2 SOS proof that Cov 𝑋 ≽ 0

deg.-4 SOS proofs

combining problem: given 𝒳 ⊆ 𝑥 4
4 =

1

𝑘
, 𝑥 2

2 = 1, 𝑥 ∈ 𝑊 , find 𝑥∗ ≈ ±𝑎0

[Barak-Brandao-Harrow
-Kelner-S.-Zhou]

 get algorithm via SOS



conclusions

low-degree combiner: general way to make proofs into algorithms

unsupervised learning: higher-degree SOS gives better guarantees 
for recovering hidden structures

polynomial optimization: often easy when global optima unique
(occurs naturally for recovery problems)

thank you!


