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bird’s eye view: sum-of-squares (SOS) method
conceptually simple{meta algorithmystudied by many disciplines
applies to wide range of problems in unified way

contrast: problem-specific methods,
very general algorithmic techniques

what do we lose? surprisingly little
captures best-known algorithms in most cases

prediction of Unique Games Conjecture (UGC):
very restricted special case of SOS gives
best-possible approximations for many problems

what do we gain?  potentially a lot

only few limitations known [Grigoriev, Schoenebeck] [Barak-Brandao-Harrow
-Kelner-S.-Zhou]

for “all known instances,” better approx. than predicted by UGC in worst-case

this talk: first general framework for proving guarantees of SOS;

better guarantees for various problems (related to small-set expansion,
unsupervised learning, quantum information)



results: polynomial optimization over unit sphere

given: low-degree n-variate polynomial P with only nonneg. coefficients

find: |P|| & ”Hl”61X1|P(X)| within error ¢ - ”P”spectral
x =

naive upper bound on ||P||:

minimum v € R s.t.

this paper: SOS runs in quasi-poly(n) time
v — P is sum of squares

follow-up: LOCC-1 polynomial instead of nonneg. coefficients [Brandao-Harrow’13]
—> greatly simplifies quantum breakthrough [Brandao-Christiandl-Yard’11]

open: general instead of nonneg. coefficients?
—> could solve major open problem in quantum; QMA vs QMA|2]

open: replace ”P”spectral by [|P[|?
—> could solve small-set expansion on F%-Cayley graphs

open: remove both restrictions?
- refute Small-Set Expansion Hypothesis—relative of UGC



results: sparse vectors in subspaces

given: d-dim. linear subspace W of R" that contains k-sparse vector v,
find:  vectorv € W with £, /€,-sparsity C - k

this paper: SOS runs in poly(n) time for C = d*/3 in worst case
: for C = O(1) in average case

worst case: connection to small-set expansion / Unique Games Conjecture
solve small-set expansion for very small sets (beating other algorithms)

C = 0(1) in worst case would refute SSE hypothesis

average case: connection to learning (sparse coding & over-complete dictionaries)

. .k [Spielman-Wang-Wright,
previous methods: work only for sparsity - <1/ Vd Demanet-Hand]

upcoming work: SOS learns over-complete dictionaries [Barak-Kelner-S.]

previous methods: assume strong incoherence and sparsity [Arora-Ge-Moitra
Anankumar et al.]



multivariate polynomials system of equations
Pl,...,PmER[xl,...,xn] gz{P]_:O,,sz()}

when is € unsatisfiable over R"? idea: derive “obviously
unsatisfiable equation” from &

sum-of-squares (SOS) refutation of €

vanisheson € == Q- Py + -+ Q- Py
=1+Rf + -+ R <+— positive over R"

intuitive proof system:  many common inequalities have proofs in this form,
e.g., Cauchy-Schwarz, Holder, £, -triangle inequalities

linear case: Gaussian
Real Nullstellensatz elimination, Farkas lemma [Artin, Krivine, Stengle]

every polynomial system is either satisfiable over R™ or SOS refutable

SOS method: n°U)_time algorithm to find SOS refutation [Shor, Nesterov,
with degrees < k if one exists (uses SDP) Parrilo, Lasserre]




optimization (e.g., MAX CUT) maximize Py over {P; =0, ..., B,, = 0}

v-vs-v' approximation: given: sat.system{P, =v,P; =0,...,B,, = 0}
find:  solutionto {Py =v,P;, =0, ..., B, = 0}

claim: SOS reduces approximation in time n°® to “deg.-k combining”

r N
subset X of solutions to ~_
{Py =2v,P,=0,..,B, =0} represented by all degree-k
0 0000000000000 momentso{:xle'g"[Exxl...xk

combiner

use only properties of moments /
solutions with degree-k SOS proofs

“____ v

single solution to

{Pp =v',P,=0,..,P, =0}
\ pseudo-moments ——

“proof:” obstructions to degree-k SOS refutations indistinguishable
from deg.-k moments with respect to deg.-k SOS arguments



planted sparse vector recovery

one k-sparse vector arbitrary / random basis
among d random vectors » of span W of these vectors

k non-zeros

ay = %(0, 0,41, ..., +1) ER" yo = (£1,...,+1) € R™

goal:  given y,, ..., Y4, recover vector a* = +a;, [Demanet-Hand'13]

idealized inference problem; subproblem for dictionary learning



Il [E4l:
lIxlls k 1113 k

proxy for sparsity:  if vector x is k-sparse then

previous best algorithm

find vector x € W with maximum £, /£ ratio  [Spielman-Wang-Wright,
. . ! Demanet-Hand]
(exact using linear programming)

recovers x = ta, if and only if% & 1/\d

idea: use ¥, /¢, ratio instead {lellﬁ{ = %, Ix|l5=1,x € W}
good:  better proxy for sparsity (d <« /n); system of polynomial equations
bad: NP-hard to solve exactly; somewhat hard to approximate (SSE-hard)

here:  SOS works for this problem (exploit randomness in W)



. . 1 . .
combining problem: given X € {||x||2 =7 lx|l5 =1,x € W}, find x* = +a,
claim: set X concentrated around planted vector (up to sign)

X
.3
-7 \
\ d
\\ al
5 a
AY
\ as

. [Barak-Brandao-Harrow
£,/ ratio bound for random subspaces for d «< \n e S A

arguments used in analysis a eg.-4 SOS proofs

£, triangle inequality

combiner: sample Gaussian distr. y, with same deg.-2 moments as X

E, . xx" = Exxx" ~ ayay = random sample from yy is close to +a,

deg.-2 SOS proof that Cov(X) > 0
- get algorithm via SOS



conclusions

low-degree combiner: ~ general way to make proofs into algorithms

unsupervised learning:  higher-degree SOS gives better guarantees
for recovering hidden structures

polynomial optimization: often easy when global optima unique
(occurs naturally for recovery problems)

thank you!



