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results: overview

efficient algorithm to solve polynomial optimization 
problems that have only few global optima

sum-of-squares method (based on 
semidefinite programming) [Shor, Parrilo, Lasserre]

running time 𝑛𝑂 log #solutions

(quasi-poly time for poly #solutions)
also need short sum-of-squares 
certificate for this fact

applications: unsupervised learning problems tend to have this property

identifiability: data uniquely determines parameters of model

our work: notion of constructive identifiability proofs that 
implies efficient inference algorithms

# bad local optima can be exponential  local-search algorithms fail



results: tensor decomposition

for all constants 𝜎 ≥ 1 and 𝜀 > 0, exist constants 𝑑 ≥ 1 and 𝜏 > 0

given tensor 𝑇 ∈ ℝ𝑛𝑑 of the form 𝑇 = σ𝑖=1
𝑚 𝑎𝑖

⊗𝑑 + 𝑍 with 𝑎𝑖 = 1

can recover set ≈𝜀 ±𝑎1, … , ±𝑎𝑚 in time 𝑛𝑂 log 𝑛 ,

whenever σ𝑖 𝑎𝑖𝑎𝑖
⊤

spectral
≤ 𝜎 and 𝑍 spectral ≤ 𝜏

pros:

no restrictions on vectors (before: incoherence or similar)

tolerate constant spectral error (before: inverse polynomial error)

cons:

running time (but: techniques help for faster alg’s [Hopkins-Schramm-Shi-S.’15+])

only constant accuracy (but: could combine with local search)

comparison to previous algorithms [Jennrich’70, Bhaskara-

Charikar-Moitra-Vijayaraghavan’13, Anandkumar-Ge-Hsu-Kakade’12]



results: tensor decomposition

for all constants 𝜎 ≥ 1 and 𝜀 > 0, exist constants 𝑑 ≥ 1 and 𝜏 > 0

given tensor 𝑇 ∈ ℝ𝑛𝑑 of the form 𝑇 = σ𝑖=1
𝑚 𝑎𝑖

⊗𝑑 + 𝑍 with 𝑎𝑖 = 1

can recover set ≈𝜀 ±𝑎1, … , ±𝑎𝑚 in time 𝑛𝑂 log 𝑛 ,

whenever σ𝑖 𝑎𝑖𝑎𝑖
⊤

spectral
≤ 𝜎 and 𝑍 spectral ≤ 𝜏

connection to polynomial optimization

global optima of polynomial 𝑇, 𝑥⊗𝑑 = σ𝑖=1
𝑚 𝑎𝑖 , 𝑥

𝑑 + 𝑍, 𝑥⊗𝑑

over unit sphere ≈𝜀 ±𝑎1, … , ±𝑎𝑚

also: ∃ short sum-of-squares certificate for this fact

but: local behavior controlled by error 𝑍
 local search algorithms fail 
(also simultaneous diagonalization fails)



results: dictionary learning (aka sparse coding)

A

data vectors

sparse vectors

example: dictionary 
for natural images

linear transformation
“dictionary”

= ×

𝑦1 𝑦𝑇 𝑥1 𝑥𝑇

goal: given data vectors 𝑦1, … , 𝑦𝑇 , reconstruct 𝐴

application: machine learning (feature extraction)
neuroscience (model for visual cortex)

𝑎1 𝑎𝑚

𝑎1, … . , 𝑎𝑚 unknown unit vectors in isotropic position
𝑥1, … , 𝑥𝑡 are i.i.d. samples from unknown “nice” distr. over sparse vectors 

(only small correlations between coord’s)

[Olshausen-Fields’96]

reduces to tensor decomposition with spectral error controlled by sparsity

previous methods (local search): only very sparse vectors, up to 𝑛 non-zeros
[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon]
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linear transformation
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= ×

𝑦1 𝑦𝑇 𝑥1 𝑥𝑇

goal: given data vectors 𝑦1, … , 𝑦𝑇 , reconstruct 𝐴

application: machine learning (feature extraction)
neuroscience (model for visual cortex)

𝑎1 𝑎𝑚

𝑎1, … . , 𝑎𝑚 unknown unit vectors in isotropic position
𝑥1, … , 𝑥𝑡 are i.i.d. samples from unknown “nice” distr. over sparse vectors 

(only small correlations between coord’s)

[Olshausen-Fields’96]

sum-of-squares method: full sparsity range, up to constant fraction non-zeros
(quasipolynomial-time for sparsity 𝑜(1); polynomial-time for 𝑛−𝜀)

previous methods (local search): only very sparse vectors, up to 𝑛 non-zeros
[Arora-Ge-Moitra, Agarwal-Anandkumar-Jain-Netrapalli-Tandon]

[this work]



deg-𝒌 sum-of-squares algorithm

given tensor 𝑇 = 𝑍 + σ𝑖 𝑎𝑖
⊗3, maximize polynomial 𝑇, 𝑥⊗3

over unit sphere 𝑆𝑛−1 ⊆ ℝ𝑛

computes “pseudo distribution 𝐷: 𝑆𝑛−1 → ℝ” in time 𝑛𝑂 𝑘

want: rounding algorithm

approach:

𝑎1, … , 𝑎𝑛 ∈ ℝ𝑛 orthonormal, 𝑍 ∈ ℝ𝑛3 with 𝑍 spectral ≤ 𝜀

simplified problem

𝑎6

𝑎2
𝑎3𝑎4𝑎5

𝑎1

behaves like deg-𝒌 part of density of distribution

supported on solutions to 𝒞 = 𝑇, 𝑥⊗3 ≥ 1 − 𝜀, 𝑥 2 = 1

𝑇, 𝑥⊗3 ≈𝜀

max
𝑖
〈𝑎𝑖 , 𝑥〉

i.e., 𝐷 passes all tests derivable from 𝒞 by deg-𝑘 SOS proof system

concretely, ׬𝑆𝑛−1𝐷 ⋅ 𝑃2 ⋅ 𝑇, 𝑥⊗3 − 1 − 𝜀 + 𝑄2 ≥ 0 whenever deg𝑃 , deg𝑄 ≤ 𝑘

given pseudo-distribution 𝐷, compute solution to constraints 𝒞

first analyze algorithm when 𝐷 is deg-𝑑 part of actual distribution

[Barak-Kelner-S.’14]



𝑤, 𝑥 𝑘

property of Gaussian distribution: with probability ≥ 1/𝑛𝑂 1

𝑤, 𝑎1
2 ≥ 2 ⋅ max

𝑖>1
𝑤, 𝑎𝑖

2

 increase probability mass on 𝑎1by factor 2𝑘 relative to other spikes

 for 𝑘 = log𝑛, almost all mass on 𝑎1 can recover 𝑎1 from covar. matrix

× =
𝑎1

𝑤
𝑎1

given tensor 𝑇 = 𝑍 + σ𝑖 𝑎𝑖
⊗3, solve 𝒞 = 𝑇, 𝑥⊗3 ≥ 1 − 𝜀, 𝑥 2 = 1

𝑎1, … , 𝑎𝑛 ∈ ℝ𝑛 orthonormal, 𝑍 ∈ ℝ𝑛3 with 𝑍 spectral ≤ 𝜀

simplified problem

𝐷 𝐷′ 𝑥 = 𝐷 𝑥 ⋅ 𝑤, 𝑥 𝑘

assume: 𝐷 is deg-𝑘 part of density supported on solutions to 𝒞

algorithm: (1) reweigh 𝐷 by 𝑤, 𝑥 𝑘 for 𝑘 ≈ log𝑛 and random unit vector 𝑤
(2) output top eigenvector of resulting covariance matrix

analysis



given tensor 𝑇 = 𝑍 + σ𝑖 𝑎𝑖
⊗3, solve 𝒞 = 𝑇, 𝑥⊗3 ≥ 1 − 𝜀, 𝑥 2 = 1

𝑎1, … , 𝑎𝑛 ∈ ℝ𝑛 orthonormal, 𝑍 ∈ ℝ𝑛3 with 𝑍 spectral ≤ 𝜀

simplified problem

derive inequality σ𝑖 𝑎𝑖 , 𝑥
𝑘 ≥ 1 − 2𝜀 𝑘 for 𝑘 = log 𝑛

from constraints 𝒞 in deg-𝒌 SOS proof system

from
𝑥 2 = 1

𝑇, 𝑥⊗3 ≥ 1 − 𝜀
derive σ𝑖 𝑎𝑖 , 𝑥

3 ≥ 1 − 2𝜀

using 𝑇 − σ𝑖 𝑎𝑖
⊗𝑑

spectral
≤ 𝜀 (SOS captures eigenvalue bounds)

what does it mean to efficiently certify that 𝓒 has only few solutions?

soft-max 

σ𝑖 𝑦𝑖
𝑘 1/𝑘

≈ max
𝑖

𝑦𝑖

derivation sketch

from
𝑥 2 = 1

σ𝑖 𝑎𝑖 , 𝑥
3 ≥ 1 − 2𝜀

derive σ𝑖 𝑎𝑖 , 𝑥
𝑘 ≥ 1 − 2𝜀 𝑘 for all 𝑘 ≥ 𝑑

using σ𝑖 𝑦𝑖
𝑘 ⋅ σ𝑖 𝑦𝑖

2 𝑘
− σ𝑖 𝑦𝑖

3 𝑘
is sum of squares,

choosing 𝑦𝑖 = 𝑎𝑖 , 𝑥 , and using σ𝑖 𝑎𝑖 , 𝑥
2 = 𝑥 2



summary

polynomial optimization is easy if we can certify
that there are only few good solutions

(derive constraint of form  σ𝑖 𝑎𝑖 , 𝑥
𝑘 for 𝑘 > log#solutions)

open questions / subsequent work

sum of squares useful for other machine learning problems?

tensor prediction [Barak-Moitra]

overcomplete average-case 3-tensor decomposition [Ge-Ma]

can sum of squares lead to fast algorithms?

tensor principal component analysis [Hopkins-Shi-S.]

planted sparse vector [Hopkins-Schramm-Shi-S.]

overcomplete average-case 3-tensor decomp. [Hopkins-Schramm-Shi-S.]

Thank you!




