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unconditional computational lower bounds

for classical combinatorial optimization problems

o examples: MAX CUT, TRAVELING SALESMAN

in restricted but powerful model of computation

o generalizes best known algorithms

o all possible linear and semidefinite relaxations

o first super-polynomial lower bound in this model

settle open question about semidefinite lifts of polytopes and 
positive semidefinite rank

connection to optimization / convex geometry

[see survey Fazwi, Gouveia, Parrilo, Robinson, Thomas]

general program goes back to [Yannakakis’88] for refuting flawed P=NP proofs

overview of results



overview of results

proof strategy for lower bounds

optimal approximation algorithm in this model

concrete algorithm: sum-of-squares (aka Lasserre) hierarchy

wide-range of problems: every constraint satisfaction problem 

achieves best possible approximation guarantees 
among all poly-time algorithms in this model

derive lower bounds for general model from known counterexamples 
(integrality gaps) for sum-of-squares algorithm

[Grigoriev, Schoenebeck, Tulsiani, Barak-Chan-Kothari]

[Shor’87, Parrilo’00, Lasserre’00]



mathematical programming relaxations: powerful general 
approach for approximating NP-hard optimization problems

three flavors:

intriguing connection to hardness reductions (e.g., Unique Games Conjecture)

spectral

edge expanders

linear (LP)

(A)TSP

semidefinite (SDP)
MAX CUT, CSP, SPARSEST CUT

plausibly optimal polynomial-time algorithms



Yannakakis’s model

formalizes intuitive notion of LP relaxations for problem

extends to SDP relaxations (but LP lower bound techniques break down)

enough structure for unconditional lower bounds (indep. of P vs. NP)

motivated by flawed P=NP proofs [Yannakakis’88]

Fiorini-Massar-Pokutta-Tiwary-de Wolf’12, Braun-Pokutta-S., 
Braverman-Moitra, Chan-Lee-Raghavendra-S., Rothvoß

testing computational complexity conjectures 

approximation / PCP: UNIQUE GAMES, sliding scale conjecture

average-case: RANDOM 3 SAT, PLANTED CLIQUE

mathematical programming relaxations: powerful general 
approach for approximating NP-hard optimization problems

[Fiorini-Massar-Pokutta-Tiwary-de Wolf, Gouveia-Parrilo-Thomas]



LP formulations of MAX CUT

find bipartition in given 𝑛-vertex graph 𝐺
to cut as many edges as possible

maximize 𝑓𝐺 𝑥 = σ𝑖𝑗∈𝐸 𝐺 𝑥𝑖 − 𝑥𝑗
2
/4 over 𝑥 ∈ −1,1 𝑛 (hypercube)

equivalently: maximize σ𝑖𝑗∈𝐸 𝐺 (1 − 𝑋𝑖𝑗)/2 over cut polytope

#facets is exponential no small direct LP formulation

CUT𝑛 = convex hull of 𝑥𝑥⊤ ∣ 𝑥 ∈ −1,1 𝑛

𝑥𝑖 = −1

𝑥𝑖 = 1



general size-𝒏𝒅 LP formulation of MAX CUT [Yannakakis’88]

polytope 𝑃 ⊆ ℝ𝑛𝑑 defined by ≤ 𝑛𝑑 linear inequalities that projects to CUT𝑛

often exponential savings: ℓ1-norm unit ball, Held-Karp TSP

relaxation, LP/SDP hierarchies

size lower bounds for LP formulations of MAX CUT? (implied by NP ≠ P/poly)
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general size-𝒏𝒅 LP formulation of MAX CUT [Yannakakis’88]

polytope 𝑃 ⊆ ℝ𝑛𝑑 defined by ≤ 𝑛𝑑 linear inequalities that projects to CUT𝑛

often exponential savings: ℓ1-norm unit ball, Held-Karp TSP

relaxation, LP/SDP hierarchies

size lower bounds for LP formulations of MAX CUT? (implied by NP ≠ P/poly)

example: poly-size LP formulation for ℓ𝟏-norm ball

−𝑦 ≤ 𝑥 ≤ 𝑦
σ𝑖 𝑦𝑖 ≤ 1

𝑥, 𝑦 ∈ ℝ𝑛

2𝑛 linear inequalities

project on 𝑥 variables

2𝑛 + 1 linear inequalities

exponential savings

σ𝑖 𝑥𝑖 ≤ 1

𝑥 ∈ ℝ𝑛

ℓ1-unit ball



general size-𝒏𝒅 LP formulation of MAX CUT

polytope 𝑃 ⊆ ℝ𝑛𝑑 defined by ≤ 𝑛𝑑 linear inequalities that projects to CUT𝑛

size lower bounds for LP formulations of MAX CUT

exponential lower bound: 𝑑 ≥ ෩Ω(𝑛) [Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

approx. ratio > ½ requires superpolynomial size [Chan-Lee-Raghavendra-S.’13]

but: best known MAX CUT algorithms based on semidefinite programming



size lower bounds for LP formulations of MAX CUT

general size-𝒏𝒅 LP formulation of MAX CUT

polytope 𝑃 ⊆ ℝ𝑛𝑑 defined by ≤ 𝑛𝑑 linear inequalities that projects to CUT𝑛
spectrahedron 𝑃 ⊆ ℝ𝑛𝑑×𝑛𝑑 defined by intersecting 
some affine linear subspace with psd cone

SDP

SDP
(artistic freedom)

exponential lower bound: 𝑑 ≥ Ω 𝑛0.1

[Lee-Raghavendra-S.’15]

approx. ratio > 0.99 requires super polynomial size (match NP-hardness for CSPs)

best approx. ratio by 𝑛𝑑-size SDP no better than 𝑂(𝑑)-deg. sum-of-squares

 sum-of-squares is optimal SDP approximation algorithm for CSPs

?



upper bound certificates

approx. ratio 𝛼 ⇒ algorithm certifies 𝑓𝐺 ≤ 𝑐 for some 𝑐 ≤ OPT𝐺/𝛼

algorithm with approx. guarantee must 
certify upper bounds on objective function 𝑓𝐺

recall MAX CUT: maximize 𝑓𝐺 𝑥 = σ𝑖𝑗∈𝐸 𝐺 𝑥𝑖 − 𝑥𝑗
2
/4 over 𝑥 ∈ −1,1 𝑛

can characterize LP/SDP algorithms by their certificates

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑

deg-𝟏 sum-of-squares captures Goemans-Williamson MAX CUT 0.878-approx. 

for every graph 𝐺, OPT𝐺 − 0.878 ⋅ 𝑓𝐺 = σ𝑖 𝑔𝑖
2 with deg𝑔𝑖 ≤ 1

captures best known algorithms for wide range of problems

certificates of deg-𝒅 sum-of-squares algorithm (𝒏𝒅-size SDP example)

equal as f’ns on hypercube



certificates of deg-𝒅 sum-of-squares algorithm (𝒏𝒅-size SDP example)
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certificates of deg-𝒅 sum-of-squares algorithm (𝒏𝒅-size SDP example)

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑

deg-𝟏 sum-of-squares captures Goemans-Williamson MAX CUT 0.878-approx. 

for every graph 𝐺, OPT𝐺 − 0.878 ⋅ 𝑓𝐺 = σ𝑖 𝑔𝑖
2 with deg𝑔𝑖 ≤ 1

equal as f’ns on hypercube
captures best known algorithms for wide range of problems

does larger degree help?

yes: if 𝑓 ≥ 0, then 𝑓 = 𝑔2 for some function 𝑔 with deg𝑔 ≤ 𝑛 (but 2𝑛-size SDP)
(tight: ½ − σ𝑖 𝑥𝑖

2 − ¼ ≥ 0 has no deg-𝑜(𝑛) s.o.s. certificate) 

best candidate algorithm to refute UGC: deg- ෨𝑂 1 sum of squares
enough to show: ∃𝑑. ∀𝐺. OPT𝐺 − 0.87𝟗 ⋅ 𝑓𝐺 = σ𝑖 𝑔𝑖

2 with deg𝑔𝑖 ≤ 𝑑

connection to Unique Games Conjecture

recall MAX CUT: maximize 𝑓𝐺 𝑥 = σ𝑖𝑗∈𝐸 𝐺 𝑥𝑖 − 𝑥𝑗
2
/4 over 𝑥 ∈ −1,1 𝑛



certificates of deg-𝒅 sum-of-squares algorithm (𝒏𝒅-size SDP example)

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑

deg-𝟏 sum-of-squares captures Goemans-Williamson MAX CUT 0.878-approx. 

for every graph 𝐺, OPT𝐺 − 0.878 ⋅ 𝑓𝐺 = σ𝑖 𝑔𝑖
2 with deg𝑔𝑖 ≤ 1

equal as f’ns on hypercube
captures best known algorithms for wide range of problems

where are the vectors? 𝑓𝐺 − 𝑐

σ𝑖 𝑔𝑖
2 ∣ deg 𝑔𝑖 ≤ 𝑑

ℝ ±1 𝑛

𝐷
suppose: no deg-𝑑 sos certificate for 𝑓𝐺 ≥ 𝑐
 separating hyperplane 𝐷: ±1 𝑛 → ℝ

σ𝑥𝐷 𝑥 ⋅ 𝑔 𝑥 2 ≥ 0 whenever deg𝑔 ≤ 𝑑
σ𝑥𝐷(𝑥) ⋅ 1 = 1
σ𝑥𝐷 𝑥 ⋅ 𝑓𝐺 𝑥 > 𝑐

 𝑀 = σ𝑥𝐷 𝑥 ⋅ 𝑥𝑥⊤ is usual SDP solution
(in particular 𝑀 ≽ 0 and 𝑀𝑖𝑖 = 1)

 ∃ vectors 𝑣𝑖 with 𝑀𝑖𝑗 = 𝑣𝑖 , 𝑣𝑗



certificates of deg-𝒅 sum-of-squares algorithm (𝒏𝒅-size SDP example)

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑

deg-𝟏 sum-of-squares captures Goemans-Williamson MAX CUT 0.878-approx. 

for every graph 𝐺, OPT𝐺 − 0.878 ⋅ 𝑓𝐺 = σ𝑖 𝑔𝑖
2 with deg𝑔𝑖 ≤ 1

equal as f’ns on hypercube
captures best known algorithms for wide range of problems

where are the vectors? 𝑓𝐺 − 𝑐

σ𝑖 𝑔𝑖
2 ∣ deg 𝑔𝑖 ≤ 𝑑

ℝ ±1 𝑛

𝐷
suppose: no deg-𝑑 sos certificate for 𝑓𝐺 ≥ 𝑐
 separating hyperplane 𝐷: ±1 𝑛 → ℝ

σ𝑥𝐷 𝑥 ⋅ 𝑔 𝑥 2 ≥ 0 whenever deg𝑔 ≤ 𝑑
σ𝑥𝐷(𝑥) ⋅ 1 = 1
σ𝑥𝐷 𝑥 ⋅ 𝑓𝐺 𝑥 > 𝑐

 𝑀 = σ𝑥𝐷 𝑥 ⋅ 𝑥𝑥⊤ is usual SDP solution
(in particular 𝑀 ≽ 0 and 𝑀𝑖𝑖 = 1)

 ∃ vectors 𝑣𝑖 with 𝑀𝑖𝑗 = 𝑣𝑖 , 𝑣𝑗

𝐷 behaves like probability 
distribution over MAX CUT

solutions with expected value > 𝑐
 pseudo-distribution: useful 
way to think about LP/SDP

relaxations in general



certificates of general 𝒏𝒅-size SDP algorithm

characterized by psd-matrix valued function 𝑄: ±1 𝑛 → ℝ𝑛𝑑×𝑛𝑑

certify 𝑓 ≥ 0 iff ∃𝑃 ≽ 0. ∀𝑥 ∈ ±1 𝑛. 𝑓 𝑥 = Tr 𝑃𝑄(x) = 𝑃 𝑄 𝑥
𝐹

2

example: deg-𝒅 sum-of-squares SDP algorithm,𝑄 𝑥 = 𝑥⊗𝑑 𝑥⊗𝑑 ⊤

general SDP Q captured by deg-𝒅 sum-of-squares if deg 𝑄 𝑥 ≤ 𝑑

certificates of deg-𝒅 sum-of-squares SDP algorithm

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑



certificates of general 𝒏𝒅-size SDP algorithm

characterized by psd-matrix valued function 𝑄: ±1 𝑛 → ℝ𝑛𝑑×𝑛𝑑

certify 𝑓 ≥ 0 iff ∃𝑃 ≽ 0. ∀𝑥 ∈ ±1 𝑛. 𝑓 𝑥 = Tr 𝑃𝑄(x) = 𝑃 𝑄 𝑥
𝐹

2

example: deg-𝒅 sum-of-squares SDP algorithm,𝑄 𝑥 = 𝑥⊗𝑑 𝑥⊗𝑑 ⊤

general SDP Q captured by deg-𝒅 sum-of-squares if deg 𝑄 𝑥 ≤ 𝑑

certificates of deg-𝒅 sum-of-squares SDP algorithm

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑

where does 𝑸 come from? general spectrahedron: S = 𝑧 ∈ ℝ𝑛𝑑 σ𝑖 𝑧𝑖𝐴𝑖 ≽ 𝐵

SDP relax. for MAX CUT: ∃ cost functions 𝑦𝐺 and feasible solutions 𝑧𝑥 ⊆ 𝑆
with 𝑦𝐺 , 𝑧𝑥 = 𝑓𝐺 𝑥 (obj. value of cut 𝑥 in graph 𝐺)

duality: max
𝑧∈𝑆

𝑦𝐺 , 𝑧 ≤ 𝑐 iff ∃𝑃 ≽ 0. c − 𝑦𝐺 , 𝑧 = Tr 𝑃 ⋅ 𝐵 − σ𝑖 𝑧𝑖𝐴𝑖

choose 𝑄 with 𝑄 𝑥 = 𝐵 − σ𝑖 𝑧𝑥,𝑖𝐴𝑖 (slack of constraint at 𝑧𝑥 ∈ 𝑆)

 𝑐 − 𝑓𝐺 𝑥 = Tr 𝑃 ⋅ 𝑄 𝑥 for all 𝑥



certificates of general 𝒏𝒅-size SDP algorithm

characterized by psd-matrix valued function 𝑄: ±1 𝑛 → ℝ𝑛𝑑×𝑛𝑑

certify 𝑓 ≥ 0 iff ∃𝑃 ≽ 0. ∀𝑥 ∈ ±1 𝑛. 𝑓 𝑥 = Tr 𝑃𝑄(x) = 𝑃 𝑄 𝑥
𝐹

2

example: deg-𝒅 sum-of-squares SDP algorithm,𝑄 𝑥 = 𝑥⊗𝑑 𝑥⊗𝑑 ⊤

general SDP Q captured by deg-𝒅 sum-of-squares if deg 𝑄 𝑥 ≤ 𝑑

can simulate general 𝒏𝒅-size SDP algorithm by deg-𝑶 𝒅 sum-of-squares

∀ 𝑛𝑑-size SDP algorithm 𝑄.

∃ low-deg SDP algorithm 𝑄′. deg 𝑄′ 𝑥 ≈ log 𝑛𝑑 and 𝑄 ≈ 𝑄′

low-degree

certificates of deg-𝒅 sum-of-squares SDP algorithm

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑

𝐹, 𝑄 ≈ 𝐹, 𝑄′
∀ low-deg matrix-valued function 𝐹.

[Lee-Raghavendra-S.’15]
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can simulate general 𝒏𝒅-size SDP algorithm by deg-𝑶 𝒅 sum-of-squares

∀ 𝑛𝑑-size SDP algorithm 𝑄.

∃ low-deg SDP algorithm 𝑄′. deg 𝑄′ 𝑥 ≈ log 𝑛𝑑 and 𝑄 ≈ 𝑄′

low-degree

certificates of deg-𝒅 sum-of-squares SDP algorithm

certify 𝑓 ≥ 0 for function 𝑓: ±1 𝑛 → ℝ iff 𝑓 = σ𝑖 𝑔𝑖
2 with ∀𝑖. deg𝑔𝑖 ≤ 𝑑

𝐹, 𝑄 ≈ 𝐹, 𝑄′
∀ low-deg matrix-valued function 𝐹.

general phenomenon

in order to approximate an object with respect to a family of tests,
the approximator need not be more complex than the tests

technical challenge

naïve application allows us to bound deg𝑄′ 𝑥 but need to bound deg 𝑄′ 𝑥

in general: 𝐝𝐞𝐠 𝑸′ ≫ 𝐝𝐞𝐠𝑸′ (at the heart of sum-of-squares counterexamples)

[Lee-Raghavendra-S.’15]



approach: learn “simplest” SDP algorithm 𝑄′ that satisfies 𝐹, 𝑄 ≈ 𝐹, 𝑄′

measure of simplicity: quantum entropy (classical entropy of eigenvalues of 𝑄 𝑥 )

closed-form solution: 𝑄′ 𝑥 = 𝑒𝑡⋅𝐹 𝑥 where 𝑡 = entropy-defect 𝑄 ≤ log 𝑛𝑑

matrix multiplicative weights method!

simple square root: 𝑄′ 𝑥 = 𝑒𝑡⋅𝐹(𝑥)/2 ≈ σ𝑘=0
𝑡 1

𝑘!
𝑡 ⋅ Τ𝐹 𝑥 2 𝑘

 degree ≤ deg𝐹 ⋅ 𝑡

can simulate general 𝒏𝒅-size SDP algorithm by deg-𝑶 𝒅 sum-of-squares

∀ 𝑛𝑑-size SDP algorithm 𝑄.

∃ low-deg SDP algorithm 𝑄′. deg 𝑄′ 𝑥 ≈ log 𝑛𝑑 and 𝑄 ≈ 𝑄′

low-degree

𝐹, 𝑄 ≈ 𝐹, 𝑄′
∀ low-deg matrix-valued function 𝐹.



summary

learn simplest SDP / quantum state via matrix
multiplicative weights (maximum entropy)

can simulate general small SDP alg. by low-degree SDP alg.

interpret poly-size SDP algorithm as quantum state with high entropy

rule out 0.999-approximation for TRAVELING SALEMAN by poly-size LP/SDP

rule out 0.999-approximation for MAX CUT by 𝟐𝒏
𝛀 𝟏

-size LP/SDP

rule out 𝟐𝒏
𝟎.𝟗𝟗𝟗

-size SDP for (exact) MAX CUT

approximation beyond CSP and relatives

strong quantitative lower bounds for approximation

stronger quantitative lower bounds for SDP

open questions

Thank you!

latest news: solved by Raghavendra-Meka-Kothari !




