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overview of results

-

unconditional computational lower bounds
for classical combinatorial optimization problems
o examples: MAX CUT, TRAVELING SALESMAN
in restricted but powerful model of computation
o generalizes best known algorithms

o all possible linear and semidefinite relaxations

_ o first super-polynomial lower bound in this model

_/

general program goes back to [Yannakakis'88] for refuting flawed P=NP proofs

connection to optimization / convex geometry

settle open question about semidefinite lifts of polytopes and
positive semidefinite rank

[see survey Fazwi, Gouveia, Parrilo, Robinson, Thomas]



overview of results

proof strategy for lower bounds

-

.

optimal approximation algorithm in this model

achieves best possible approximation guarantees
among all poly-time algorithms in this model

wide-range of problems: every constraint satisfaction problem

concrete algorithm: sum-of-squares (aka Lasserre) hierarchy
[Shor’87, Parrilo’00, Lasserre’00]

_/

derive lower bounds for general model from known counterexamples
(integrality gaps) for sum-of-squares algorithm
[Grigoriev, Schoenebeck, Tulsiani, Barak-Chan-Kothari]



mathematical programming relaxations: powerful general
approach for approximating NP-hard optimization problems

three flavors:

linear (LP) spectral

(A)TsP edge expanders

semidefinite (SDP)
MAX CUT, CSP, SPARSEST CUT

intriguing connection to hardness reductions (e.g., Unique Games Conjecture)

plausibly optimal polynomial-time algorithms



mathematical programming relaxations: powerful general
approach for approximating NP-hard optimization problems

( )

Yannakakis’s model motivated by flawed P=NP proofs [Yannakakis’88]

formalizes intuitive notion of LP relaxations for problem

enough structure for unconditional lower bounds (indep. of P vs. NP)

Fiorini-Massar-Pokutta-Tiwary-de Wolf’12, Braun-Pokutta-S.,
Braverman-Moitra, Chan-Lee-Raghavendra-S., Rothvof3

extends to SDP relaxations (but LP lower bound techniques break down)

[Fiorini-Massar-Pokutta-Tiwary-de Wolf, Gouveia-Parrilo-Thomas]

testing computational complexity conjectures
approximation / PCP: UNIQUE GAMES, sliding scale conjecture

average-case: RANDOM 3 SAT, PLANTED CLIQUE



LP formulations of MAX CUT X =1 e

) — o —_—
find bipartition in given n-vertex graph G i X =1

to cut as many edges as possible ---

maximize f;(x) = ZijEE(G)(xi — xj)2/4 over x € {—1,1}"* (hypercube)

equivalently: maximize ). ;e q)(1 — X;j)/2 over cut polytope
cuT,, = convex hull of {xx" | x € {—1,1}"*}

#facets is exponential = no small direct LP formulation

....................

CUT, =
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find bipartition in given n-vertex graph G —t—s
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general size-n® Lp formulation of MAX cUT [Yannakakis'88]

polytope P C R™ defined by < n¢ linear inequalities that projects to CUT,

often exponential savings: £;-norm unit ball, Held-Karp Tsp
relaxation, LP/SDP hierarchies

size lower bounds for LP formulations of MAX cUT? (implied by Np # P/poly)



example: poly-size LP formulation for £{-norm ball

£, -unit ball project on x variables —y<x<y
{Zilxil Sl} <€ 2iyi =1
x € R" x,y € R"
2™ linear inequalities 21 + 1 linear inequalities

\ /(e),<ponential savings

general size-n® Lp formulation of MAX cUT [Yannakakis'88]

polytope P C R™ defined by < n¢ linear inequalities that projects to CUT,

often exponential savings: £;-norm unit ball, Held-Karp Tsp
relaxation, LP/SDP hierarchies

size lower bounds for LP formulations of MAX cUT? (implied by Np # P/poly)




general size-n® LP formulation of MAX cUT

polytope P C R™ defined by < n¢ linear inequalities that projects to CUT,

PN

P

size lower bounds for LP formulations of MAX cUT

exponential lower bound: d > .Q(TL) [Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]
approx. ratio > %2 requires superpolynomial size  [Chan-Lee-Raghavendra-5.13]

but: best known MAX cUT algorithms based on semidefinite programming



SDP
general size-n%+# formulatlon of MAX cUT

—pel-yte-pe—lLC—H%—d-e-Fmed%yh@%—}mea-ﬁmeqﬁ-ahﬁes that projects to CUT,

——spectrahedron P C R defined by intersecting N
some affine linear subspace with psd cone

CUT,

(artistic freedom)

SDP
(size lower bounds for-+ formulations of MAX cUT ? [Lee—Raghavendra-S.’lS?

exponential lower bound: d > Q(n%1)

approx. ratio > 0.99 requires super polynomial size (match NP-hardness for csps)

best approx. ratio by n%-size SDP no better than 0(d)-deg. sum-of-squares

- sum-of-squares is optimal SDP approximation algorithm for csps
\ J




recall MAX cUT: maximize f;(x) = ZijeE(G)(xi — xj)2/4 over x € {—1,1}"

( )

N

upper bound certificates @ ==Z00000WIU 00l c

algorithm with approx. guarantee must /\/\/\M\fc

certify upper bounds on objective function f

approx. ratio o« = algorithm certifies f; < c for some ¢ < 0PT; /«
. .

can characterize LP/SDP algorithms by their certificates

certificates of deg-d sum-of-squares algorithm (n“-size spp example)

certify f > 0 for function f: {+1}" - Riff f = Y, g7 with Vi.degg; < d

. _ equal as f'ns on hypercube
captures best known algorithms for wide range of problems

deg-1 sum-of-squares captures Goemans-Williamson MAX cUT 0.878-approx.

for every graph G, opT; — 0.878 - f; = ¥; g7 withdegg; < 1
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recall MAX cUT: maximize f;(x) = ZijEE(G)(xi — xj)2/4 over x € {—1,1}"

connection to Unique Games Conjecture

best candidate algorithm to refute UGC: deg-0(1) sum of squares
enough to show: 3d. VG. orT; — 0.879 - f = Y, g7 withdegg; < d

does larger degree help?

yes: if f = 0, then f = g2 for some function g with deg g < n (but 2™-size spp)
(tight: (Y2 — Y.; x;)* — Y4 = 0 has no deg-o(n) s.o.s. certificate)

certificates of deg-d sum-of-squares algorithm (n®-size spp example)

certify f > 0 for function f: {+1}" - Riff f = Y, g7 with Vi.degg; < d

' ' equal as f'ns on hypercube
captures best known algorithms for wide range of problems

deg-1 sum-of-squares captures Goemans-Williamson MAX cUT 0.878-approx.

for every graph G, opT; — 0.878 - f; = ¥; g7 withdegg; < 1



where are the vectors? fo—c!
G P D
o>

suppose: no deg-d sos certificate for f; = ¢

—> separating hyperplane D: {+1}" - R
Y. D(x) - g(x)? > 0whenever degg < d
YxD(x)-1=1 :
2xD(x) - fe(x) >c

> M =Y, D(x) - xx" is usual SDP solution |,
(in particular M > 0 and M;; = 1) ,

(Y97 | degg; < d}

- 3 vectors {v;} with M;; = (v;, v;)

certificates of deg-d sum-of-squares algorithm (n®-size spp example)

certify f > 0 for function f: {+1}" - Riff f = Y, g7 with Vi.degg; < d

' ' equal as f'ns on hypercube
captures best known algorithms for wide range of problems

deg-1 sum-of-squares captures Goemans-Williamson MAX cUT 0.878-approx.

for every graph G, opT; — 0.878 - f; = ¥; g7 withdegg; < 1



where are the vectors? fo—c!
I

D
suppose: no deg-d sos certificate for f; = ¢ ° — ;
—> separating hyperplane D: {+1}" - R ; {97 | degg; < d}

1

Y. D(x) - g(x)? > 0wheneverdegg <d | .
YxD(x)-1=1 D behaves like probability
YD) fe(x) >c distribution over MAX CUT
solutions with expected value > c
- pseudo-distribution: useful
way to think about LpP/SDP

- 3 vectors {v;} with M;; = (v;, v;) relaxations in general

> M =Y,D(x) - xx" is usual SDP solution
(in particular M > 0 and M;; = 1)

certificates of deg-d sum-of-squares algorithm (n®-size spp example)

certify f > 0 for function f: {+1}" - Riff f = Y, g7 with Vi.degg; < d

. . equal as f'ns on hypercube
captures best known algorithms for wide range of problems

deg-1 sum-of-squares captures Goemans-Williamson MAX cUT 0.878-approx.

for every graph G, opT; — 0.878 - f; = ¥; g7 withdegg; < 1



certificates of deg-d sum-of-squares spp algorithm

certify f > 0 for function f: {+1}* - Riff f = Y, g7 with Vi.degg; < d

p
certificates of general n®-size spp algorithm

characterized by psd-matrix valued function Q: {+1}" — R xn

certify f > 0iff 3P > 0.Vx € {£1}™ f(x) = Tr PQ(x) = ||VP\/Q(x) HIZ:

.

example: deg-d sum-of-squares spp algorithm, Q(x) = x®d(x®d)T

general spp Q captured by deg-d sum-of-squares if deg/Q(x) < d



certificates of deg-d sum-of-squares spp algorithm

certify f > 0 for function f: {+1}* - Riff f = Y, g7 with Vi.degg; < d
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certificates of general n®-size spp algorithm

characterized by psd-matrix valued function Q: {+1}" — R xné

certify f 2 0iff3P > 0.vx € (+1)". () = TrPQGo) = [[VAYVQC|

L

example: deg-d sum-of-squares spp algorithm, Q(x) = x®d(x®d)T

general spp Q captured by deg-d sum-of-squares if deg/Q(x) < d

where does Q come from? general spectrahedron: S = {z € ]R”d‘ i ZiA; = B}

SDP relax. for MAX cUT: 3 cost functions {y.} and feasible solutions {z,.} € S
with (y¢, z,.) = f¢(x) (obj. value of cut x in graph G)

choose Q with Q(x) = B — },; z,;A; (slack of constraint at z,, € S)
duality: measx(yG,Z) <ciffaP > 0. c—(y;, z) =TrP - (B —;zA;)
Z
>c—fg(x) =TrP-Q(x)forall x




certificates of deg-d sum-of-squares spp algorithm

certify f > 0 for function f: {+1}* - Riff f = Y, g7 with Vi.degg; < d

é )
certificates of general n®-size spp algorithm

characterized by psd-matrix valued function Q: {+1}" — R xné

certify f 2 0iff3P > 0.vx € (+1)". () = TrPQGo) = [[VAYVQC|

L

example: deg-d sum-of-squares spp algorithm, Q(x) = x®d(x®d)T

general spp Q captured by deg-d sum-of-squares if deg/Q(x) < d

- low-degree 1
can simulate general n®-size spp algorithm by deg-68td> sum-of-squares
V n%-size spp algorithm Q.

V low-deg matrix-valued function F. (F,Q) =~ (F,Q’)
3 low-deg spp algorithm Q. deg+/Q'(x) = logn® and-8——&

. J

[Lee-Raghavendra-S.15]




general phenomenon

in order to approximate an object with respect to a family of tests,
the approximator need not be more complex than the tests

technical challenge

naive application allows us to bound deg Q' (x) but need to bound deg+/Q’(x)
in general: deg \/? > deg Q' (at the heart of sum-of-squares counterexamples)

example: deg-d sum-of-squares spP algorithm, Q(x) = x®d(x®d)T

general sppP Q captured by deg-d sum-of-squares if deg/Q(x) < d

r

low-degree \
can simulate general n®-size spp algorithm b sum-of-squares
g g y q

V n%-size spp algorithm Q.
V low-deg matrix-valued function F. (F,Q) =~ (F,Q’)

3 low-deg spp algorithm Q. deg+/Q'(x) = logn® and-8——&

J

[Lee-Raghavendra-S.15]




r

low-degree ~\
can simulate general n®-size spp algorithm by deg-68td> sum-of-squares

V n-size SDP algorithm Q.
V low-deg matrix-valued function F. (F,Q) = (F,Q")

3 low-deg spp algorithm Q'. deg+/Q'(x) =~ logn® and-8—~&

approach: learn “simplest” spP algorithm Q' that satisfies (F, Q) =~ (F, Q")
measure of simplicity: quantum entropy (classical entropy of eigenvalues of {Q(x)})
closed-form solution: Q'(x) = etF™) where t = entropy-defect(Q) < logn®

- matrix multiplicative weights method!

simple square root: \/ Q' (x) = et F¥)/2 ~ chz(,%(t - F(x)/2)k

- degree < degF -t



summary

rcan simulate general small spp alg. by low-degree spp alg. |

interpret poly-size SDP algorithm as quantum state with high entropy
learn simplest SDP / quantum state via matrix

multiplicative weights (maximum entropy)
L J

open questions
approximation beyond csp and relatives

rule out 0.999-approximation for TRAVELING SALEMAN by poly-size LP/SDP

strong quantitative lower bounds for approximation

. . Q1) .
rule out 0.999-approximation for MAX CUT by 2™~ "-size LP/SDP
latest news: solved by Raghavendra-Meka-Kothari !

stronger quantitative lower bounds for spp

0999 .,
rule out 2™ -size SDP for (exact) MAX CUT Thank you!






