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Max Cut, Traveling Salesman,
best-known (approximation) algorithms for  Sparsest Cut, Steiner Tree, ...

many combinatorial optimization problems:

common core = linear / semidefinite programming (LP/SDP)
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LP / SDP relaxations :

particular kind of reduction from hard problem to LP/SDP
running time: polynomial in size of relaxation

what guarantees are possible
for approximation and running time?



example: basic LP relaxation for Max Cut o

Max Cut: Given a graph, find bipartition x € {+1}"
that cuts as many edges as possible
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Hij + Mik + pj < 2 4nteger linear program
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—7 € 0713 Uij € [0,1] (relax integrality constraint)

0(n3) inequalities approximation guarantee
depend only on instances size optimal value of instance
(but not instance itself) VS.

optimal value of LP relaxation



challenges

many possible relaxations for same problem
small difference syntactically = big difference for guarantees

goal: identify “right” polynomial-size relaxation

hierarchies = systematic ways to generate relaxations
best-known: Sherali-Adams (LP), sum-of-squares/Lasserre (SDP); best possible?
goal: compare hierarchies and general LP relaxations

often: more complicated/larger relaxations = better approximation
P # NP predicts limits of this approach; can we confirm them?
goal: understand computational power of relaxations

Rule out that poly-size LP relaxations show P = NP?



hierarchies [Lovasz-Schrijver, Sherali-Adams, Parrilo / Lasserre]

great variety (sometimes different ways to apply same hierarchy)
current champions: Sherali-Adams (LP) & sum-of-squares / Lasserre (SDP)

connections to proof complexity (Nullstellensatz and Positivstellensatz refutations)

[Mathieu-Fernandez de la Vega

lower bounds
Charikar-Makarychev-Makarychev]

. . . Q1 .
Sherali-Adams requires size 2™ ® to beat ratio % for Max Cut
[Grigoriev, Schoenebeck]

sum-of-squares requires size 221 to beat ratio 7 /g for Max 3-Sat

upper bounds

. . . [Goemans-Williamson,
implicit: many algorithms (e.g., Max Cut and Sparsest Cut) "~ ... rao-vazirani]
[Chlamtac, Arora-Barak-S.,

explicit: Coloring, Unique Games, Max Bisection Barak-Raghavendra-S.,
Raghavendra-Tan]



lower bounds for general LP formulations (extended formulations)

characterization; symmetric formulations for TSP & matching [Yannakakis'88]

. . [Fiorini-Massar-Pokutta
general, exact formulations for TSP & Clique Tiwary-de Wolf'12]

[Braun-Fiorini-Pokutta-S.12

approximate formulations for Clique _
Braverman-Moitra’13]

general, exact formulation for maximum matching [Rothvof'13]

geometric idea: complicated polytopes can be
projections of simple polytopes l
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universality result for LP relaxations of Max CSPs [this talk]

general polynomial-size LP relaxations are no more powerful
than polynomial-size Sherali-Adams relaxations

also holds for almost

quasi-polynomial size

concrete COHSGCIUBHCBS
unconditional lower bound in

confirm non-trivial prediction of P#NP: powerful computational model

poly-size LP relaxations cannot achieve 0.99 approximation
for Max Cut, Max 3-Sat, or Max 2-Sat (NP-hard approximations)

approximability and UGC:
poly-size LP relaxation cannot refute Unique Games Conjecture
(cannot improve current Max CSP approximations)

separation of LP relaxation and SDP relaxation:
poly-size LP relaxations are strictly weaker than SDP relaxations
for Max Cut and Max 2Sat



universality result for LP relaxations of Max CSPs [this talk]

general polynomial-size LP relaxations are no more powerful
than polynomial-size Sherali-Adams relaxations

also holds for almost

quasi-polynomial size

for concreteness: focus on Max Cut

notation: cut;(x) = fraction of edges that bipartition x cutsin G
Max Cut,, = Max Cut instances / graphs on n vertices

compare: general n{!=84_size LP relaxation for Max Cut,,
vs. n%-size Sherali-Adams relaxations for Max Cut,,

—



general LP relaxation for Max Cut,, example linearization
1
Le(n) = EZUEE Uij

(Ux)ij = {

linearization 1, ifx; # x,

0, otherwise.
G » Lg:R™ > Rlinear

such that L;(uy) = cutg(x)
x - U, ER™

polytope of size R

P, € R™, at most R facets,
{.ux}xe{il}" C P

same polytope for all instances of size n
makes sense because solution space
for Max Cut depends only onn



computing with size-R LP relaxation L

input computation output
graph G —>  maximize L; (1) —>  value L(G)
on n vertices subjectto u € B, = rprtleag( Lo ()
poly(R)-time computation always upper-bounds Opt G

how far in the worst-case?

approximation ratio « (c, s)-approximation
L(G) < a-0pt(G) Opt(G) <s=L(G) <c
for all G € Max Cut,, for all G € Max Cut,,

general computational model—how to prove lower bounds?



geometric characterization (a la Yannakakis’'88)

every size-R LP relaxation £ for Max Cut,,
corresponds to
nonnegative functions q, ..., qg: {£1}" — R, such that

L(G)<c iff c—cutg =),A.q-and A4, ..., = 0

forall G € Max Cuty, certifies cut; < c over {+1}"

canonical linear program

of size R
example

2™ standard basis functions correspond to
exact 2™-size LP relaxation for Max Cut,,




geometric characterization (a la Yannakakis’'88)
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every size-R LP relaxation £ for Max Cut,,
corresponds to
nonnegative functions q, ..., qg: {£1}" — R, such that

L(G)<c iff c—cutg =),A.q-and A4, ..., = 0

for all G € Max Cut,

\

intuition: all inequalities for functions on {+1}"
with local proofs

connection to Sherali-Adams hierarchy

n%-size Sherali-Adams relaxation for Max Cut,,
generated by d-junta = function on {+1}"
2y CUNTESEONES n? “base juntas” depends on < d coordinates

nonnegative combinations of nonnegative d-juntas on {£1}"



geometric characterization (a la Yannakakis’'88)
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every size-R LP relaxation £ for Max Cut,,
corresponds to
nonnegative functions q, ..., qg: {£1}" — R, such that

L(G)<c iff c—cutg =),A.q-and A4, ..., = 0

for all G € Max Cut,

.

cone(qy, ...,qR)
— {Zr/erIr | /17‘ = 0}

c — cutg

to rule out (c,s)-approx. by size-R LP relaxation, show:
for every size-R nonnegative cone,

exists G € Max Cut,, with Opt(G) < s

but ¢ — cut; outside of cone



lower-bound for Sherali-Adams relaxations of size n®

d

lower-bounds for size-n“ nonneg. cones with restricted functions

d-juntas —> n®-juntas —> non-spiky —> general

lower-bound for general LP relaxations of size n{1=€)4



from d-juntas to n®-juntas

let q4, ..

want:

let /4, ...

claim:

proof:

.,qg be nonneg. nf-juntas on {+1}" for R = n(1-108)d

subset S € [n] of size m = n®

J1 J a2
where functions behave like d-juntas J2 -
S
,Jr be junta-coordinates of q4, ..., qg [n] /3 Ja

there exists subset S € [n] of size m = n® such that
|J- N S| < d forallr € [R]

choose S at random
S —_— —
P{SNnJ.|>d} < (' | |]r|) _ n-(1-28)d

—> can afford union bound over R junta sets /5, ..., /g



lower-bound for Sherali-Adams relaxations of size n®

d

lower-bounds for size-n“ nonneg. cones with restricted functions

d-juntas —> n®-juntas —> non-spiky —> general

lower-bound for general LP relaxations of size n{1=€)4
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from n®-juntas to non-spiky functions ’

v

let g be a nonnegative function on {+1}"with Eq = 1
non-spiky: max q < 2t

junta structure lemma: small low-degree
can approximate g by no i i ' Fourier coefficients
errorn =q —q' satisfiegliﬁsl2 < td/nffor|S| <d >

proof:

nonnegative function g > probability distribution over {+1}",

+1/-1 rand. variables X3, ..., X, (dependent)
non-spiky - entropy H(Xq, ..., X)) =n—t

want: | € [n] of size n® such that vS c [n] \ J. {XS | X]} ~ uniform, that is,
d
(UST<d)|S| —H( X5 | X;) < B forp ==
construction: start with | = @; as long as bad S exists, update] < JU S

: : . d
analysis: total entropy defect < t = stop afteré iterations 2 [J| < Et =n®



lower-bound for Sherali-Adams relaxations of size n®

d

lower-bounds for size-n“ nonneg. cones with restricted functions

d-juntas —> n®-juntas —> non-spiky —> general

lower-bound for general LP relaxations of size n{1=€)4



from non-spiky functions to general functions

let q4, ..., g be general nonneg. functions on {+1}" for R = n¢

non-spiky
claim: exists nonneg. g1, ..., qr such that and
cone(qy, ..., qgr) = cone(qy, ..., g

proof: truncate functions carefully

intuition: ¢ — cut is non-spiky. Thus, spiky g; don’t help!



lower-bound for Sherali-Adams relaxations of size n®

|

lower-bounds for nonneg. cones of size n with restricted functions

d-juntas —> n®-juntas —> non-spiky —> general

!

lower-bound for general LP relaxations of size n(1=8)4

open problems

1.LP size 2™ 2. beyond CSPs (e.g., TSP) 3. SDPs



lower-bound for Sherali-Adams relaxations of size n®

|

lower-bounds for nonneg. cones of size n with restricted functions

d-juntas —> n®-juntas —> non-spiky —> general

Recent: for symmetric relaxations [Lee-Raghavendra-S.-Tan'13]

open problems Thank you!

1.LP size 2™ 2. beyond CSPs (e.g., TSP) 3. SDPs



