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meta-task

given: functions 𝑓1, … , 𝑓𝑚: ±1
𝑛 → ℝ

find: solution 𝑥 ∈ ±1 𝑛 to 𝑓1 = 0,… , 𝑓𝑚 = 0

encoded as low-degree polynomial in ℝ 𝑥

example: 𝑓(𝑥) =  𝑖,𝑗∈ 𝑛 𝑤𝑖𝑗 ⋅ 𝑥𝑖 − 𝑥𝑗
2

examples: combinatorial optimization problem on graph 𝐺

MAX CUT: 𝐿𝐺 = 1 − 𝜀 over ±1 𝑛

MAX BISECTION: 𝐿𝐺 = 1 − 𝜀,  𝑖 𝑥𝑖 = 0 over ±1 𝑛

where 1 − 𝜀 is guess 
for optimum value

Laplacian 𝐿𝐺 =
1

𝐸 𝐺
 𝑖𝑗∈𝐸 𝐺

1

4
𝑥𝑖 − 𝑥𝑗

2

goal: develop SDP-based algorithms with provable guarantees 
in terms of complexity and approximation

(“on the edge intractability”  need strongest possible relaxations)



price of convexity: individual solutions  distributions over solutions

price of tractability: can only enforce “efficiently checkable knowledge” 
about solutions

individual 
solutions

distributions over solutions

“pseudo-distributions over solutions”
(consistent with efficiently checkable knowledge)

given: functions 𝑓1, … , 𝑓𝑚: ±1
𝑛 → ℝ

find: solution 𝑥 ∈ ±1 𝑛 to 𝑓1 = 0,… , 𝑓𝑚 = 0

meta-task

goal: develop SDP-based algorithms with provable guarantees 
in terms of complexity and approximation



distribution 𝐷 over ±1 𝑛

function 𝐷: ±1 𝑛 → ℝ

non-negativity: 𝐷 𝑥 ≥ 0 for all 𝑥 ∈ ±1 𝑛

normalization:  𝑥∈ ±1 𝐷 𝑥 = 1

distribution 𝐷 satisfies 𝑓1 = 0,… , 𝑓𝑚 = 0 for some 𝑓𝑖: ±1
𝑛 → ℝ

𝔼𝐷𝑓1
2 +⋯+ 𝑓𝑚

2 = 0 (equivalently: ℙ𝐷 ∀𝑖. 𝑓𝑖 ≠ 0 = 0)

examples
uniform distribution: 𝐷 = 2−𝑛

fixed 2-bit parity: 𝐷 𝑥 = (1 + 𝑥1𝑥2)/2
𝑛

examples
fixed 2-bit parity distribution satisfies 𝑥1𝑥2 = 1
uniform distribution does not satisfy 𝑓 = 0 for any 𝑓 ≠ 0

convex: 𝐷,𝐷′ satisfy conditions
 𝐷 + 𝐷′ /2 satisfies conditions

# function values is exponential
 need careful representation

# independent inequalities is exponential
 not efficiently checkable



distribution 𝐷 over ±1 𝑛

function 𝐷: ±1 𝑛 → ℝ

non-negativity: 𝐷 𝑥 ≥ 0 for all 𝑥 ∈ ±1 𝑛

normalization:  𝑥∈ ±1 𝐷 𝑥 = 1

distribution 𝐷 satisfies 𝑓1 = 0,… , 𝑓𝑚 = 0 for some 𝑓𝑖: ±1
𝑛 → ℝ

𝔼𝐷𝑓1
2 +⋯+ 𝑓𝑚

2 = 0 (equivalently: ℙ𝐷 ∀𝑖. 𝑓𝑖 ≠ 0 = 0)

deg.-𝑑 pseudo-distribution 𝐷

 𝑥∈ ±1 𝑛𝐷 𝑥 𝑓 𝑥 2 ≥ 0 for 

every deg.-𝑑/2 polynomial 𝑓

convenient notation:  𝔼𝐷𝑓 ≔  𝑥𝐷 𝑥 𝑓 𝑥
“pseudo-expectation of 𝑓 under 𝐷”

 𝔼𝐷

deg.-2𝑛 pseudo-distributions are actual distributions

(point-indicators 𝟏 𝑥 have deg. 𝑛 𝐷 𝑥 =  𝔼𝐷𝟏 𝑥
2 ≥ 0)

pseudo-



deg.-𝑑 pseudo-distr. 𝐷: ±1 𝑛 → ℝ

non-negativity:  𝔼𝐷𝑓
2 ≥ 0 for every deg.-𝑑/2 poly. 𝑓

normalization:  𝔼𝐷1 = 1

pseudo-distr. 𝐷 satisfies 𝑓1 = 0,… , 𝑓𝑚 = 0 for some 𝑓𝑖: ±1
𝑛 → ℝ

 𝔼𝐷𝑓1
2 +⋯+ 𝑓𝑚

2 = 0 (equivalently:  𝔼𝐷𝑓𝑖 ⋅ 𝑔 = 0 whenever deg 𝑔 ≤ 𝑑 − deg 𝑓𝑖)

notation:  𝔼𝐷𝑓 ≔  𝑥𝐷 𝑥 𝑓 𝑥 , “pseudo-expectation of 𝑓 under 𝐷”



deg.-𝑑 pseudo-distr. 𝐷: ±1 𝑛 → ℝ

non-negativity:  𝔼𝐷𝑓
2 ≥ 0 for every deg.-𝑑/2 poly. 𝑓

normalization:  𝔼𝐷1 = 1

pseudo-distr. 𝐷 satisfies 𝑓1 = 0,… , 𝑓𝑚 = 0 for some 𝑓𝑖: ±1
𝑛 → ℝ

 𝔼𝐷𝑓1
2 +⋯+ 𝑓𝑚

2 = 0 (equivalently:  𝔼𝐷𝑓𝑖 ⋅ 𝑔 = 0 whenever deg 𝑔 ≤ 𝑑 − deg 𝑓𝑖)

notation:  𝔼𝐷𝑓 ≔  𝑥𝐷 𝑥 𝑓 𝑥 , “pseudo-expectation of 𝑓 under 𝐷”

claim: can compute such 𝐷 in time 𝑛𝑂(𝑑) if it exists (otherwise, certify that no 
solution to original problem exists)

(can assume 𝐷 is deg.-𝑑 polynomial  separation problem min
𝑓

 𝔼𝐷𝑓
2 is 𝑛𝑑-

dim. eigenvalue prob.  𝑛𝑂(𝑑)-time via grad. descent / ellipsoid method)

[Shor, Parrilo, Lasserre]



surprising property:  𝔼𝐷𝑓 ≥ 0 for many* low-degree polynomials 𝑓
such that 𝑓 ≥ 0 follows from 𝑓1 = 0,… , 𝑓𝑚 = 0 by “explicit proof”

soon: examples of such properties and how to exploit them

deg.-𝑑 pseudo-distr. 𝐷: ±1 𝑛 → ℝ

non-negativity:  𝔼𝐷𝑓
2 ≥ 0 for every deg.-𝑑/2 poly. 𝑓

normalization:  𝔼𝐷1 = 1

pseudo-distr. 𝐷 satisfies 𝑓1 = 0,… , 𝑓𝑚 = 0 for some 𝑓𝑖: ±1
𝑛 → ℝ

 𝔼𝐷𝑓1
2 +⋯+ 𝑓𝑚

2 = 0 (equivalently:  𝔼𝐷𝑓𝑖 ⋅ 𝑔 = 0 whenever deg 𝑔 ≤ 𝑑 − deg 𝑓𝑖)

notation:  𝔼𝐷𝑓 ≔  𝑥𝐷 𝑥 𝑓 𝑥 , “pseudo-expectation of 𝑓 under 𝐷”



surprising property:  𝔼𝐷𝑓 ≥ 0 for many* low-degree polynomials 𝑓
such that 𝑓 ≥ 0 follows from 𝑓1 = 0,… , 𝑓𝑚 = 0 by “explicit proof”

deg.-𝑑 pseudo-distr. 𝐷: ±1 𝑛 → ℝ

non-negativity:  𝔼𝐷𝑓
2 ≥ 0 for every deg.-𝑑/2 poly. 𝑓

normalization:  𝔼𝐷1 = 1

pseudo-distr. 𝐷 satisfies 𝑓1 = 0,… , 𝑓𝑚 = 0 for some 𝑓𝑖: ±1
𝑛 → ℝ

 𝔼𝐷𝑓1
2 +⋯+ 𝑓𝑚

2 = 0 (equivalently:  𝔼𝐷𝑓𝑖 ⋅ 𝑔 = 0 whenever deg 𝑔 ≤ 𝑑 − deg 𝑓𝑖)

notation:  𝔼𝐷𝑓 ≔  𝑥𝐷 𝑥 𝑓 𝑥 , “pseudo-expectation of 𝑓 under 𝐷”

soon: examples of such properties and how to exploit them

emerging algorithm-design paradigm:
analyze algorithm pretending that underlying actual distribution exists; 
verify only afterwards that low-deg. pseudo-distr.’s satisfy required properties

pseudo-distr. over 
optimal solutions

approximate solution 
(to original problem)

efficient algorithm

deg.-𝑑 part of actual distr. 
over optimal solutions

𝑛𝑜(𝑑)-time algorithms cannot* distinguish 
between deg.-𝑑 pseudo-distributions and 
deg.-𝑑 part of actual distr.’s 



dual view (sum-of-squares proof system)

either
∃ deg.-𝑑 pseudo-distribution 𝐷 over ±1 𝑛 satisfying 𝑓1 = 0,… , 𝑓𝑚 = 0

or 
∃ 𝑔1, … , 𝑔𝑚 and ℎ1, … , ℎ𝑘 such that  𝑖 𝑓𝑖 ⋅ 𝑔𝑖 +  𝑗 ℎ𝑗

2 = −1 over ±1 𝑛

and deg 𝑓𝑖 + deg𝑔𝑖 ≤ 𝑑 and deg ℎ𝑖 ≤ 𝑑/2

derivation of unsatisfiable constraint −1 ≥ 0
from 𝑓1 = 0,… , 𝑓𝑚 = 0 over ±1 𝑛

−1

𝐷𝑓
𝑓1
𝑓2
𝑓𝑚

𝐾𝑑 = 𝑓 =  𝑖 𝑓𝑖 ⋅ 𝑔𝑖 +  𝑗 ℎ𝑗
2

𝐾𝑑

if −1 ∉ 𝐾𝑑 then ∃ separating hyperplane 𝐷
with  𝔼𝐷 − 1 = −1 and  𝔼𝐷𝑓 ≥ 0 for all 𝑓 ∈ 𝐾𝑑



pseudo-distribution satisfies all local properties of ±𝟏 𝒏

claim
suppose 𝑓 ≥ 0 is 𝑑/2-junta over ±1 𝑛 (depends on ≤ 𝑑/2 coordinates)
then,  𝔼𝐷𝑓 ≥ 0

proof: 𝑓 has degree ≤ 𝑑/2  𝔼𝐷𝑓 =  𝔼𝐷 𝑓
2
≥ 0

corollary
for any set 𝑆 of ≤ 𝑑 coordinates, marginal 𝐷′ = 𝑥𝑆 𝐷 is actual distribution

𝐷′ 𝑥𝑆 =  

𝑥 𝑛 ∖𝑆

𝐷 𝑥𝑆, 𝑥 𝑛 ∖𝑆 =  𝔼𝐷𝟏 𝑥𝑆 ≥ 0

𝑑-junta

(also captured by LP methods, e.g., Sherali–Adams hierarchies … )

example: triangle inequalities over ±1 𝑛

 𝔼𝐷 𝑥𝑖 − 𝑥𝑗
2
+ 𝑥𝑗 − 𝑥𝑘

2
− 𝑥𝑖 − 𝑥𝑘

2 ≥ 0



conditioning pseudo-distributions

claim

∀𝑖 ∈ 𝑛 , 𝜎 ∈ ±1 . 𝐷′ = 𝑥 ∣ 𝑥𝑗 = 𝜎
𝐷

is deg.- 𝑑 − 2 pseudo-distr.

proof

𝐷′ 𝑥 =
1

ℙ𝐷 𝑥𝑗=𝜎
𝐷 𝑥 ⋅ 1 𝑥𝑗=𝜎

  𝔼𝐷′𝑓2 ∝  𝔼𝐷1 𝑥𝑗=𝜎
𝑓2 =  𝔼𝐷 1 𝑥𝑗=𝜎

𝑓
2
≥ 0

deg 𝑓 ≤ (𝑑 − 2)/2 deg𝟏 𝑥𝑗=𝜎
𝑓 ≤ 𝑑/2

(also captured by LP methods, e.g., Sherali–Adams hierarchies … )



pseudo-covariances are covariances of distributions over ℝ𝒏

claim
there exists a (Gaussian) distr. 𝜉 over ℝ𝑛 such that

 𝔼𝐷𝑥 = 𝔼 𝜉 and  𝔼𝐷𝑥𝑥
𝑇 = 𝔼 𝜉𝜉𝑇

let 𝜇 =  𝔼𝐷𝑥 and 𝑀 =  𝔼𝐷 𝑥 − 𝜇 𝑥 − 𝜇 𝑇

choose 𝜉 to be Gaussian with mean 𝜇 and covariance 𝑀

matrix 𝑀 p.s.d. because 𝑣𝑇𝑀𝑣 =  𝔼𝐷 𝑣𝑇𝑥 2 ≥ 0 for all 𝑣 ∈ ℝ𝑛

consequence:  𝔼𝐷𝑞 = 𝔼 𝜉 𝑞

for every 𝑞 of deg. 2

square of linear form

proof



claim
for every univariate 𝑝 ≥ 0 over ℝ and every 𝑛-variate polynomial 𝑞
with deg 𝑝 ⋅ deg 𝑞 ≤ 𝑑,

 𝔼𝐷𝑝 𝑞 𝑥 ≥ 0

enough to show: 𝑝 is sum of squares

choose: minimizer 𝛼 of 𝑝

proof by induction on deg 𝑝

squares sum of squares by ind. hyp.

𝛼

𝑝 𝛼 ≥ 0

then: p= 𝑝 𝛼 + 𝑥 − 𝛼 2 ⋅ 𝑝′ for some polynomial 𝑃′ with deg 𝑝′ < deg 𝑝

ℝ

pseudo-distr.’s satisfy (compositions of) low-deg. univariate properties

useful class of non-local 
higher-deg. inequalities

𝑝



MAX CUT

given: deg.-𝑑 pseudo-distr. 𝐷 over ±1 𝑛, satisfies 𝐿𝐺 = 1 − 𝜀

𝐿𝐺 =
1

𝐸 𝐺
 𝑖𝑗∈𝐸 𝐺

1

4
𝑥𝑖 − 𝑥𝑗

2

goal: find 𝑦 ∈ ±1 𝑛 with 𝐿𝐺 𝑦 ≥ 1 − 𝑂 𝜀

algorithm

sample from Gaussian distr. 𝜉 over ℝ𝑛 with 𝔼 𝜉𝜉𝑇 =  𝔼𝐷 𝑥𝑥
𝑇

output 𝑦 = sgn 𝜉

analysis

claim: ℙ𝐷 𝑥𝑖 ≠ 𝑥𝑗 = 1 − 𝜂 ⇒ ℙ 𝑦𝑖 ≠ 𝑦𝑗 ≥ 1 − 𝑂 𝜂

proof: 𝜉𝑖 , 𝜉𝑗 satisfies −𝔼 𝜉𝑖𝜉𝑗 = − 𝔼𝐷𝑥𝑖𝑥𝑗 = 1 − 𝑂 𝜂 and 𝔼𝜉𝑖
2 = 𝔼𝜉𝑗

2 = 1

 (tedious calculation)  ℙ sgn 𝜉𝑖 ≠ sgn 𝜉𝑗 ≥ 1 − 𝑂 𝜂

[Goeman-Williamson]



low global correlation in (pseudo-)distributions

claim
∀𝑟. ∃ deg.- 𝑑 − 2𝑟 pseudo-distribution 𝐷′, obtained by conditioning 𝐷,

Avg𝑖,𝑗∈ 𝑛 𝐼𝐷′ 𝑥𝑖 , 𝑥𝑗 ≤ 1/𝑟

[Barak-Raghavendra-S.,
Raghavendra-Tan]

proof
potential Avg𝑖∈ 𝑛 𝐻 𝑥𝑖 ; greedily condition on variables to maximize 

potential decrease until global correlation is low

mutual information: 𝐼 𝑥, 𝑦 = 𝐻 𝑥 − 𝐻 𝑥 𝑦

potential decrease ≥ Avg𝑖∈ 𝑛 𝐻 𝑥𝑖 − Avg𝑗∈ 𝑛 Avg𝑖∈ 𝑛 𝐻 𝑥𝑖 ∣ 𝑥𝑗
= Avg𝑖,𝑗∈ 𝑛 𝐼𝐷′ 𝑥𝑖 , 𝑥𝑗

how often do we need to condition?

 only need to condition ≤ 𝑟 times



MAX BISECTION

given: deg.-𝑑 pseudo-distr. 𝐷 over ±1 𝑛, satisfies 𝐿𝐺 = 1 − 𝜀,  𝑖 𝑥𝑖 = 0

goal: find 𝑦 ∈ ±1 𝑛 with 𝐿𝐺 𝑦 ≥ 1 − 𝑂 𝜀 and  𝑖 𝑦𝑖 = 0

𝑑 = 1/𝜀𝑂 1

algorithm

let 𝐷′ be conditioning of 𝐷 with global correlation ≤ 𝜀𝑂 1

sample Gaussian 𝜉 with same deg.-2 moments as 𝐷′
output 𝑦 with 𝑦𝑖 = sgn(𝜉𝑖 − 𝑡𝑖) (choose 𝑡𝑖 ∈ ℝ so that 𝔼 𝑦𝑖 =  𝔼𝐷𝑥𝑖)

analysis

almost as before:ℙ𝐷′ 𝑥𝑖 ≠ 𝑥𝑗 ≥ 1 − 𝜂 ⇒ ℙ 𝑦𝑖 ≠ 𝑦𝑗 ≥ 1 − 𝑂 𝜂

(𝑡𝑖 = 0 is worst case  same analysis as MAX CUT)

new: 𝐼 𝑥𝑖 , 𝑥𝑗 ≤ 𝜀𝑂 1 ⇒ 𝔼𝑦𝑖𝑦𝑗 =  𝔼 𝑥𝑖𝑥𝑗 ± 𝜀𝑂(1)

 𝔼  𝑖 𝑦𝑖 ≤ 𝔼  𝑖 𝑦𝑖
2 1/2 =  𝔼  𝑖 𝑥𝑖

2 1/2
+ 𝜀𝑂 1 ⋅ 𝑛 = 𝜀𝑂 1 ⋅ 𝑛

 get bisection 𝑦′ from 𝑦 by correcting 𝜀𝑂(1) fraction of vertices 

[Raghavendra-Tan] 

 𝔼  𝑖 𝑥𝑖
2 = 0
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sparse vector

given: linear subspace 𝑈 ⊆ ℝ𝑛 (represented by some basis), 
parameter 𝑘 ∈ 𝑛

promise: ∃𝑣0 ∈ 𝑈 such that 𝑣0 is 𝑘-sparse (and 𝑣0 ∈ 0,±1 𝑛)
goal: find 𝑘-sparse vector 𝑣 ∈ 𝑈

efficient approximation algorithm for 𝑘 = Ω 𝑛 would be major step 
toward refuting Khot’s Unique Games Conjecture and improved 
guarantees for MAX CUT, VERTEX COVER, …

planted / average-case version (benchmark for unsupervised learning tasks)

subspace 𝑈 spanned by 𝑑 − 1 random vectors and some 𝑘-sparse vector 𝑣0

previous best algorithms only work for very sparse vectors 
𝑘

𝑛
≤ 1/ 𝑑

[Spielman-Wang-Wright, Demanet-Hand]

here: deg.-4 pseudo-distributions work for 
𝑘

𝑛
= Ω 𝑛 up to 𝑑 ≤ 𝑂 𝑛

[Barak-Kelner-S.]



limitations of ℓ∞/ℓ1 (previous best algorithm; exact via linear programming)

limitations of std. SDP relaxation for ℓ2/ℓ1 (best proxy for sparsity)

analytical proxy for sparsity

if vector 𝑣 is 𝑘-sparse then 
𝑣 ∞

𝑣 1
≥

1

𝑘
, 
𝑣 2

2

𝑣 1
2 ≥

1

𝑘
, and 

𝑣 4
4

𝑣 2
4 ≥

1

𝑘

(tight if 𝑣 ∈ 0,±1 𝑛) 

𝑣 = sum of 𝑑 random ±1 vectors with same first coordinate

‖ ‖𝑣 ∞ ≥ 𝑑 ,  ‖ ‖𝑣 1 ≤ 𝑑 + 𝑛 𝑑 ratio ≈
𝑑

𝑛

 ℓ∞/ℓ1 algorithm fails for 
𝑘

𝑛
≥

1

𝑑

“ideal object”: distribution 𝐷 over ℓ2 unit sphere of subspace 𝑈
ℓ1-constraint: 𝔼𝐷 𝑣 1

2 ≤ 𝑘

tractable relaxation:  𝑖,𝑗 𝔼𝐷𝑣𝑖𝑣𝑗 ≤ 𝑘

not a low-deg. polynomial in 𝑣
 unclear how to represent
(also NP-hard in worst-case)

[d'Aspremont-El Ghaoui-Jordan-Lanckriet]

but: for uniform distr. 𝐷 over ℓ2 sphere of 𝑑-dim. rand. subspace

 𝑖,𝑗 𝔼𝐷𝑣𝑖𝑣𝑗 ≈
𝑛

𝑑
 same limitation as ℓ∞/ℓ1



deg.-𝑑 pseudo-distr. 𝐷: 𝑣 ∈ 𝑈; 𝑣 2 = 1 → ℝ over unit ℓ2-sphere of 𝑈

degree-𝒅 SOS relaxation for ℓ4/ℓ2

pseudo-distribution satisfies 𝑣 4
4 = 1/𝑘

notation:  𝔼𝐷𝑓 ≔  𝑣∈𝑈;
𝑣 =1

𝐷 ⋅ 𝑓 (only consider polynomials  easy to integrate)

normalization:  𝔼𝐷1 = 1

non-negativity:  𝔼𝐷ℎ(𝑣)
2 ≥ 0 for every ℎ of deg. ≤ 𝑑/2

orthogonality:  𝔼𝐷 𝑣 4
4 −

1

𝑘
⋅ 𝑔(𝑣) = 0 for every 𝑔 of deg. ≤ 𝑑 − 4



set of deg.-𝑑 pseudo-distributions

= convex set with 𝑛𝑂 𝑑 -time separation oracle

separation problem
given: function 𝐷 (represented as deg.-𝑑 polynomial)

check: quadratic form 𝑓 ↦  𝔼𝐷𝑓
2 is p.s.d. or output 

violated constraint  𝔼𝐷𝑓
2 < 0

how to find pseudo-distributions?

deg.-𝑑 pseudo-distr. 𝐷: 𝑣 ∈ 𝑈; 𝑣 2 = 1 → ℝ over unit ℓ2-sphere of 𝑈

degree-𝒅 SOS relaxation for ℓ4/ℓ2

pseudo-distribution satisfies 𝑣 4
4 = 1/𝑘

notation:  𝔼𝐷𝑓 ≔  𝑣∈𝑈;
𝑣 =1

𝐷 ⋅ 𝑓 (only consider polynomials  easy to integrate)

normalization:  𝔼𝐷1 = 1

non-negativity:  𝔼𝐷ℎ(𝑣)
2 ≥ 0 for every ℎ of deg. ≤ 𝑑/2

orthogonality:  𝔼𝐷 𝑣 4
4 −

1

𝑘
⋅ 𝑔(𝑣) = 0 for every 𝑔 of deg. ≤ 𝑑 − 4



rule of thumb: set of deg.-𝑑 pseudo-moments  𝔼𝐷𝑓 ∣ deg 𝑓 ≤ 𝑑 difficult* 

to distinguish / separate from deg.-𝑑 moments of actual distr. of solutions

(* unless you invest 𝑛Ω 𝑑 time to distinguish)

also: values  𝔼𝐷𝑓 ∣ deg 𝑓 > 𝑑 do not carry additional information 

 no need to look at them

how to use pseudo-distributions?

deg.-𝑑 pseudo-distr. 𝐷: 𝑣 ∈ 𝑈; 𝑣 2 = 1 → ℝ over unit ℓ2-sphere of 𝑈

degree-𝒅 SOS relaxation for ℓ4/ℓ2

pseudo-distribution satisfies 𝑣 4
4 = 1/𝑘

notation:  𝔼𝐷𝑓 ≔  𝑣∈𝑈;
𝑣 =1

𝐷 ⋅ 𝑓 (only consider polynomials  easy to integrate)

normalization:  𝔼𝐷1 = 1

non-negativity:  𝔼𝐷ℎ(𝑣)
2 ≥ 0 for every ℎ of deg. ≤ 𝑑/2

orthogonality:  𝔼𝐷 𝑣 4
4 −

1

𝑘
⋅ 𝑔(𝑣) = 0 for every 𝑔 of deg. ≤ 𝑑 − 4



dual view (SOS certificates)

𝑣 4
4 −

1

𝑘
⋅ 𝑔 +  𝑗 ℎ𝑗

2 = −1 over 𝑣 ∈ 𝑈; 𝑣 2 = 1

for some 𝑔 of deg. ≤ 𝑑 − 4 and {ℎ𝑗} of deg. ≤ 𝑑/2

⇔ no deg.-𝑑 pseudo-distr. exists ( no solution exists) 

for approximation algorithms: need pseudo-distr. to extract approx. solution
(hard to exploit non-existence of SOS certificate directly)

deg.-𝑑 pseudo-distr. 𝐷: 𝑣 ∈ 𝑈; 𝑣 2 = 1 → ℝ over unit ℓ2-sphere of 𝑈

degree-𝒅 SOS relaxation for ℓ4/ℓ2

pseudo-distribution satisfies 𝑣 4
4 = 1/𝑘

notation:  𝔼𝐷𝑓 ≔  𝑣∈𝑈;
𝑣 =1

𝐷 ⋅ 𝑓 (only consider polynomials  easy to integrate)

normalization:  𝔼𝐷1 = 1

non-negativity:  𝔼𝐷ℎ(𝑣)
2 ≥ 0 for every ℎ of deg. ≤ 𝑑/2

orthogonality:  𝔼𝐷 𝑣 4
4 −

1

𝑘
⋅ 𝑔(𝑣) = 0 for every 𝑔 of deg. ≤ 𝑑 − 4



Cauchy–Schwarz inequality

Hölder’s inequality

ℓ4-triangle inequality

 𝔼𝐷 𝑢, 𝑣 ≤  𝔼𝐷 𝑢 2 1/2  𝔼𝐷 𝑣 2 1/2

let 𝐷 = 𝑢, 𝑣 be a deg.-4 pseudo-distribution over ℝ𝑛 × ℝ𝑛

 𝔼𝐷  𝑖 𝑢𝑖
3 ⋅ 𝑣𝑖 ≤  𝔼𝐷 𝑢 4

4 3/4  𝔼𝐷 𝑣 4
4 1/4

 𝔼𝐷 𝑢 + 𝑣 4
4 ≤  𝔼𝐷 𝑢 4

4 1/4
+  𝔼𝐷 𝑣 4

4 1/4

following inequalities hold as expected (same as for distributions)

general properties of pseudo-distributions



claim
let 𝑈′ ⊆ ℝ𝑛 be a random 𝑑-dim. subspace with 𝑑 ≪ 𝑛
let 𝑃′ be the orthogonal projector into 𝑈′

then w.h.p, 𝑃′𝑣 4
4 =

𝑂 1

𝑛
𝑣 2

4 −  𝑗 ℎ𝑗 𝑣 2 over 𝑣 ∈ ℝ𝑛 for ℎ𝑗’s of deg. 4

[Barak-Brandao-Harrow-Kelner-S.-Zhou] 

proof sketch

(SOS certificate for classical inequality 𝑃′𝑣 4
4 ≤

𝑂 1

𝑛
𝑣 2

4)

basis change: let 𝑥 = 𝐵𝑇𝑣 where 𝐵’s columns are orthonormal basis of 𝑈

(so that 𝑃′ = 𝐵𝐵𝑇)  𝑃′𝑣 4
4 =

1

𝑛2
 𝑖 𝑏𝑖 , 𝑥

4 with 𝑏1, … , 𝑏𝑛 close to i.i.d. 

standard Gaussian vectors (so that 𝔼𝑏 𝑏, 𝑥 2 = 𝑥 2
2 and 𝔼𝑏 𝑏, 𝑥 4 = 3 ⋅

𝑥 2
4)

enough to show:
1

𝑛
 𝑖=1
𝑛 𝑏𝑖 , 𝑥

4 = 𝑂 1 ⋅ 𝔼𝑏 𝑏, 𝑥 4 −  𝑗 ℎ𝑗
′ 𝑥 2

reduce to deg. 2: 
1

𝑛
 𝑖=1
𝑛 𝑏𝑖

⊗2, 𝑦 2 ≤ 𝑂 1 ⋅ 𝔼𝑏 𝑏⊗2, 𝑦 2 (𝑦 = 𝑥⊗2)

 use concentration inequalities for quadratic forms (aka matrices)



given: some basis of subspace 𝑈 = span 𝑈′ ∪ 𝑣0 ⊆ ℝ𝑛,
where 𝑈′ ⊆ ℝ𝑛 random 𝑑-dim. subspace, 

and 𝑣0 ∈ ℝ𝑛 with 𝑣0 ⊥ 𝑈′, 𝑣0 4
4 =

1

𝑘
, and 𝑣0 2

4 = 1 (e.g., 𝑘-sparse)

approximation algorithm for planted sparse vector

compute deg.-4 pseudo-distr. 𝐷 = {𝑣} over unit ball of 𝑈 satisfying 𝑣 4
4 =

1

𝑘

goal: find unit vector 𝑤 with 𝑤, 𝑣0
2 ≥ 1 − 𝑂 𝑘/𝑛 1/4

algorithm

sample Gaussian distr. 𝑤 with 𝔼 𝑤𝑤𝑇 =  𝔼𝐷𝑣𝑣
𝑇 and renormalize

analysis

claim:  𝔼𝐷 𝑣, 𝑣0
2 ≥ 1 − 𝑂 𝑘/𝑛 1/4 ( Gaussian 𝑤 almost 1-dim.)



analysis

claim:  𝔼𝐷 𝑣, 𝑣0
2 ≥ 1 − 𝑂 𝑘/𝑛 1/4 ( Gaussian 𝑤 almost 1-dim.)

1

𝑘1/4
=  𝔼𝐷 𝑣 4

4 1/4
(𝐷 satisfies ‖ ‖𝑣 4

4 =  1 𝑘 )

=  𝔼𝐷 𝑣, 𝑣0 𝑣0 + 𝑃′𝑣 4
4 1/4

(same function)

≤  𝔼𝐷 𝑣, 𝑣0 𝑣0 4
4  1 4

+  𝔼𝐷 𝑃′𝑣 4
4  1 4

(ℓ4-triangle inequ.)

≤
1

𝑘  1 4 ⋅  𝔼𝐷 𝑣, 𝑣0
4  1 4

+
𝑂 1

𝑛1/4
(SOS cert. for 𝑈′)

  𝔼𝐷 𝑣, 𝑣0
4 ≥ 1 − 𝑂 𝑘/𝑛 1/4

  𝔼𝐷 𝑣, 𝑣0
2 ≥ 1 − 𝑂 𝑘/𝑛 1/4 (because 𝑣, 𝑣0

4 = 1 − 𝑃′𝑣 2
2 𝑣, 𝑣0

2)

given: some basis of subspace 𝑈 = span 𝑈′ ∪ 𝑣0 ⊆ ℝ𝑛,
where 𝑈′ ⊆ ℝ𝑛 random 𝑑-dim. subspace, 

and 𝑣0 ∈ ℝ𝑛 with 𝑣0 ⊥ 𝑈′, 𝑣0 4
4 =

1

𝑘
, and 𝑣0 2

4 = 1 (e.g., 𝑘-sparse)

approximation algorithm for planted sparse vector

goal: find unit vector 𝑤 with 𝑤, 𝑣0
2 ≥ 1 − 𝑂 𝑘/𝑛 1/4



Cauchy–Schwarz inequality

Hölder’s inequality

ℓ4-triangle inequality

 𝔼𝐷 𝑢, 𝑣 ≤  𝔼𝐷 𝑢 2 1/2  𝔼𝐷 𝑣 2 1/2

let 𝐷 = 𝑢, 𝑣 be a deg.-4 pseudo-distribution over ℝ𝑛 × ℝ𝑛

 𝔼𝐷  𝑖 𝑢𝑖
3 ⋅ 𝑣𝑖 ≤  𝔼𝐷 𝑢 4

4 3/4  𝔼𝐷 𝑣 4
4 1/4

 𝔼𝐷 𝑢 + 𝑣 4
4 ≤  𝔼𝐷 𝑢 4

4 1/4
+  𝔼𝐷 𝑣 4

4 1/4

following inequalities hold as expected (same as for distributions)

general properties of pseudo-distributions



products of pseudo-distributions

claim
suppose 𝐷,𝐷′: Ω → ℝ is deg.-𝑑 pseudo-distr. over Ω
then, 𝐷⊗𝐷′: Ω × Ω → ℝ is deg.-𝑑 pseudo-distr. over Ω × Ω

proof

tensor products of positive semidefinite matrices 
are positive semidefinite



Cauchy–Schwarz inequality

 𝔼𝐷 𝑢, 𝑣 ≤  𝔼𝐷 𝑢 2
2 1/2  𝔼𝐷 𝑣 2

2 1/2

let 𝐷 = 𝑢, 𝑣 be a deg.-2 pseudo-distribution over ℝ𝑛 × ℝ𝑛

 𝔼𝐷 𝑢, 𝑣
2

=  𝔼𝐷⊗𝐷 𝑢, 𝑣 𝑢′, 𝑣′ (𝐷 ⊗𝐷′ is product pseudo-distr.)

=  𝔼𝐷⊗𝐷  𝑖𝑗 𝑢𝑖𝑣𝑖𝑢𝑗
′𝑣𝑗

′

≤
1

2
 𝔼𝐷⊗𝐷  𝑖𝑗 𝑢𝑖

2 𝑣𝑗
′ 2

+  𝑖𝑗 𝑢𝑗
′ 2

𝑣𝑖
2 (2𝑎𝑏 = 𝑎2 + 𝑏2 − 𝑎 − 𝑏 2) 

=
1

2
 𝔼𝐷⊗𝐷 𝑢 2

2 𝑣′ 2
2 + 𝑢′ 2

2 𝑣 2
2

=  𝔼𝐷 𝑢 2
2 ⋅  𝔼𝐷 𝑣 2

2 (𝐷 ⊗𝐷′ is product pseudo-distr.)

proof



let 𝐷 = 𝑢, 𝑣 be a deg.-4 pseudo-distribution over ℝ𝑛 × ℝ𝑛

proof

Hölder’s inequality

 𝔼𝐷  𝑖 𝑢𝑖
3 ⋅ 𝑣𝑖 ≤  𝔼𝐷 𝑢 4

4 3/4  𝔼𝐷 𝑣 4
4 1/4

 𝔼𝐷  𝑖 𝑢𝑖
3 ⋅ 𝑣𝑖

≤  𝔼𝐷  𝑖 𝑢𝑖
4  1 2

⋅  𝔼𝐷  𝑖 𝑢𝑖
2 ⋅ 𝑣𝑖

2 1/2
(Cauchy-Schwarz)

≤  𝔼𝐷  𝑖 𝑢𝑖
4  1 2

⋅  𝔼𝐷  𝑖 𝑢𝑖
4 ⋅  𝔼𝐷  𝑖 𝑣𝑖

4 1/4
(Cauchy-Schwarz)

we also used:
{𝑢, 𝑣} deg-4 pseudo-distr.  𝑢 ⊗ 𝑢, 𝑢 ⊗ 𝑣 deg.-2 pseudo-distr.
(every deg.-2 poly. in 𝑢 ⊗ 𝑢, 𝑢 ⊗ 𝑣 is deg.-4 poly. in 𝑢, 𝑣 )



let 𝐷 = 𝑢, 𝑣 be a deg.-4 pseudo-distribution over ℝ𝑛 × ℝ𝑛

ℓ4-triangle inequality

 𝔼𝐷 𝑢 + 𝑣 4
4 1/4

≤  𝔼𝐷 𝑢 4
4 1/4

+  𝔼𝐷 𝑣 4
4 1/4

proof

expand 𝑢 + 𝑣 4
4 in terms of  𝑖 𝑢𝑖

4,  𝑖 𝑢𝑖
3𝑣𝑖 ,  𝑖 𝑢𝑖

2𝑣𝑖
2,  𝑖 𝑢𝑖𝑣𝑖

3,  𝑖 𝑣𝑖
4

bound pseudo-expect. of “mixed terms” using Cauchy-Schwarz / Hölder

check that total is equal to right-hand side 



tensor decomposition

given: tensor 𝑇 ≈  𝑖 𝑎𝑖
⊗4

(in spectral norm) for nice 𝑎1, … , 𝑎𝑚 ∈ ℝ𝑛

goal: find set of vectors 𝐵 ≈ ±𝑎1, … , ±𝑎𝑚

for simplicity: orthonormal and 𝑚 = 𝑛

approach

show “uniqueness”:  𝑖 𝑎𝑖
⊗4

≈  𝑖 𝑏𝑖
⊗4

⇒ ±𝑎1, … , ±𝑎𝑚 ≈ ±𝑏1, … , ±𝑏𝑚

show that uniqueness proof translates to SOS certificate

 any pseudo-distribution over decomposition is “concentrated” on 
unique decomposition ±𝑎1, … , ±𝑎𝑚

 recover decomposition by reweighing pseudo-distribution by log 𝑛
degree polynomial (approximation to 𝛿 function)


