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encoded as low-degree polynomial in R[x]

meta-task ‘
example: f(x) = Zi,je[n] Wij (xi - xj)

given: functions fi, ..., fr: {£1}"* = R
find:  solutionx € {+1}"to{f; =0, ..., f;;, = 0}

—
07/1‘/.4.
. 1 1 2
Laplacian L; = mzijEE(G) " (xi - xj) ':\‘%__‘_ .

examples: combinatorial optimization problem on graph G

_ 1 _ n
MAX CUT: {Lg =1—¢}over {£1} where 1 — ¢ is guess

for optimum value
MAX BISECTION: {L; =1 —¢,,;x; = 0} over {+1}"

goal: develop SDP-based algorithms with provable guarantees
in terms of complexity and approximation

(“on the edge intractability” = need strongest possible relaxations)



meta-task

given: functions fi, ..., fr: {£1}"* = R
find:  solutionx € {+1}"to{f; =0, ..., f;;, = 0}

goal: develop SDP-based algorithms with provable guarantees
in terms of complexity and approximation

price of convexity: individual solutions = distributions over solutions

price of tractability: can only enforce “efficiently checkable knowledge”
about solutions

. o distributioni over solutions
i -
individual \
\ .

solutions p e L,
pseudo-distributions over solutions
(consistent with efficiently checkable knowledge)




examples
o _ . uniform distribution: D = 27"
distribution D over {+1} fixed 2-bit parity: D(x) = (1 + x,x,)/2"

function D: {+1}" > R <€——— # function values is exponential
- need careful representation

non-negativity: D(x) = 0 forall x € {£1}"

normalization: er{il} D(x) =1 # independent inequalities is exponential
—> not efficiently checkable

distribution D satisfies {f; = 0, ..., f;,, = 0} for some f;: {+1}" - R
EpfZ + -+ f2 =0 (equivalently: Pp{Vi.f; # 0} = 0)

convex: D, D' satisfy conditions
- (D + D")/2 satisfies conditions

examples
fixed 2-bit parity distribution satisfies {x;x, = 1}
uniform distribution does not satisfy {f = 0} for any f # 0




deg.-d pseudo-distribution D
~distribetionb-over {+1}"

function D: {+1}" - R

convenient notation: Epf =Y., D(x)f (x)
“pseudo-expectation of f under D”

non-negativity: Dtx=>-0-foralx-e{t+ifi=

normalization: Y. ¢4y D(x) = 1

pseudo-

\_'_I

Yxeqrnyn D) f(x)? = 0 for
every deg.-d /2 polynomial f

distribution D satisfies {f; = 0, ..., f;,, = 0} for some f;: {+1}" - R

EpEpfi + -+ fm =0 (equivatently=Privifrs-64=-0)

deg.-2n pseudo-distributions are actual distributions
(point-indicators 1, have deg. n > D(x) = E, lfx} > 0)




deg.-d pseudo-distr. D: {+1}" - R
notation: Epf == Y, D(x)f(x), “pseudo-expectation of f under D”
non-negativity: E, f2 > 0 for every deg.-d /2 poly. f

normalization: Ep1 = 1

pseudo-distr. D satisfies {f; = 0, ..., f,,, = 0} for some f;: {+1}" - R
Epf2+ -+ f2=0 (equivalently: Epf; - g = 0 whenever deg g < d — deg f;)



deg.-d pseudo-distr. D: {+1}" - R
notation: Epf == Y, D(x)f (x), “pseudo-expectation of f under D”
non-negativity: Ep f? > 0 for every deg.-d /2 poly. f

normalization: Ep1 = 1

pseudo-distr. D satisfies {f; = 0, ..., f,,, = 0} for some f;: {+1}" - R
Epf2+ -+ f2=0 (equivalently: Epf; - g = 0 whenever deg g < d — deg f;)

claim: can compute such D in time n%@ if it exists (otherwise, certify that no

solution to original problem exists) [Shor, Parrilo, Lasserre]

(can assume D is deg.-d polynomial = separation problem mfin Epf? is nt-

dim. eigenvalue prob. = n%@-time via grad. descent / ellipsoid method)




deg.-d pseudo-distr. D: {+1}" - R
notation: Epf == Y, D(x)f (x), “pseudo-expectation of f under D”
non-negativity: Ep f? > 0 for every deg.-d /2 poly. f

normalization: Ep1 = 1

pseudo-distr. D satisfies {f; = 0, ..., f,,, = 0} for some f;: {+1}" - R
Epf2+ -+ f2=0 (equivalently: Epf; - g = 0 whenever deg g < d — deg f;)

surprising property: Epf = 0 for many* low-degree polynomials f
such that {f = 0} follows from {f; = 0, ..., f,;, = 0} by “explicit proof”

soon: examples of such properties and how to exploit them
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deg.-d pseudo-distr. D: {+1}" - R
notation: Epf == Y, D(x)f (x), “pseudo-expectation of f under D”
non-negativity: Ep f? > 0 for every deg.-d /2 poly. f

normalization: Ep1 = 1

pseudo-distr. D satisfies {f; = 0, ...(f =M forcome £:- {413 > R

ﬁg’D f12 4o 4 fn% =0 (equival n%@ _time algorithms cannot* distinguish
between deg.-d pseudo-distributions and
surprising property: Ep f = 0 for r]\deg.-al part of actual distr’s

~N

J

such that {f = 0} follows from {f; = 0, ..., f;,, = 0} by “>Zplicit proof”

roperties and how tg#&ploit them
deg.-d part of actual distr.p pertl w £plol

over optimal solutions \

pseudo-distr. over _5 efficient algorithm ——> approximate solution
optimal solutions (to original problem)

\,

emerging algorithm-design paradigm:
analyze algorithm pretending that underlying actual distribution exists;

verify only afterwards that low-deg. pseudo-distr’s satisfy required properties

J



dual view (sum-of-squares proof system)

either
3 deg.-d pseudo-distribution D over {+1}" satisfying {f; = 0, ..., f;,, = 0}
or
3 g1, - gm and hy, ..., hy such that ¥, f; - g; + X h7 = —1 over {£1}"
and deg f; + degg; < danddegh; < d/2

\

\ derivation of unsatisfiable constraint {—1 > 0}

from{f; =0,...,f,,, = 0} over {+1}"

if =1 € K, then 3 separating hyperplane D
withEp —1=—-1and E,f > 0 forall f € K,

Ko ={f=2ifi 9i+2;hf



pseudo-distribution satisfies all local properties of {+1}"

example: triangle inequalities over {+1}"

— 2 2

[ED(XL' - X]) + (X] - Xk) - (Xi - Xk)z >0
claim

suppose f = 0is d/2-junta over {+1}" (depends on < d /2 coordinates)
then, E,f = 0

proof: \/f has degree < d/2 > Epf = ED(ﬁ)Z >0

corollary
for any set S of < d coordinates, marginal D' = {x¢}p is actual distribution

D’(xs) = z D(xS, X[n]\s) = EDl{xs} >0
X[n\s '

d-junta

(also captured by LP methods, e.g., Sherali-Adams hierarchies ... )



conditioning pseudo-distributions
claim

Vi € [n],o € {£1}. D' = {x | x; = J}D is deg.-(d — 2) pseudo-distr.

proof
D'(x) =

D(x) - 1{x o)

—_ 2
> Eprf? o« Epliye)f? = Bp (1 ,c)f) 2
4

degf < (d —2)/2 degly, _q)f < d/2

3 {x] a}

(also captured by LP methods, e.g., Sherali-Adams hierarchies ... )



pseudo-covariances are covariances of distributions over R"

claim
there exists a (Gaussian) distr. {¢} over R" such that
Epx =E¢& and EpxxT = E &&7

\ consequence: Epq = Egsq
proof for every q of deg. 2

letu =Epxand M = Ep(x — u)(x — )T
choose {¢} to be Gaussian with mean y and covariance M
matrix M p.s.d. because v Mv = Ep(vTx)? > 0 forall v € R"

square of linear form



pseudo-distr.’s satisfy (compositions of) low-deg. univariate properties

claim

for every univariate p = 0 over R and every n-variate polynomial q
with degp - degq < d, _ S —— useful class of non-local
Epp(q(x)) 20 higher-deg. inequalities

enough to show: p is sum of squares

proof by induction on degp o(@) > 0

choose: minimizer a of p

then: p= p(a) + (x — a)? - p’ for some polynomial P’ with degp’ < degp

NN

squares sum of squares by ind. hyp.



MAX CUT
given: deg.-d pseudo-distr. D over {+1}", satisfies {L; = 1 — ¢}
goal: findy € {£1}" with L;(y) = 1 — 0(/¢) [Goeman-Williamson]
/ T :;/‘)/L.

1 1 2
Lc = mzijeE(G)Z (xi . x]-) ——

algorithm -~——_.
sample from Gaussian distr. {£} over R with E £éT = Ep xxT

outputy = sgn ¢

analysis
claim: IPD{xl- = xj} =1-n= P{)’i * Yj} =1- O(W)

proof: {§;,&;} satisfies —E §;; = —Epx;x; = 1 — 0(n) and E§ = &7 =1
- (tedious calculation) - P{sgn & # sgn fj} >1- 0(\/ﬁ)



low global correlation in (pseudo-)distributions [Barak-Raghavendra-S,,
Raghavendra-Tan]

claim
Vr.3 deg.-(d — 2r) pseudo-distribution D', obtained by conditioning D,

Avg; iem] Ip (xl, ])<1/r

\

proof mutual information: I(x,y) = H(x) — H(x|y)

potential Avg;c,1H (x;); greedily condition on variables to maximize
potential decrease until global correlation is low

how often do we need to condition?

potential decrease > Avg;epH(x;) — Ange[n]AVgie[n]H(xi | xj)
- AVgL]E I (XL,X])

—> only need to condition < r times



MAX BISECTION d= 1/80(1) [Raghavendra-Tan]

given: deg.-d pseudo-distr. D over {+1}", satisfies {L; = 1 —¢,),;x; = 0}

goal: findy € {+1}* with L;(y) =21 —-0(/e)and }; y; = 0

algorithm
let D' be conditioning of D with global correlation < g0(1)
sample Gaussian {{} with same deg.-2 moments as D’

output y with y; = sgn(§; — t;) (choose t; € Rso that Ey; = Epx;)

analysis (t; = 0 is worst case = same analysis as MAX CUT)

almost as before: Ppi{x; # x;} = 1—n = Ply; # y;} = 1 - 0(y7)

new: I(xl-,xj) < 01 5 Ey;y; = E XX + £0(1) E(Zixi)z — 0

> EIX vl < (EBQ;y)?)Y? = (E(Zixi)z)l/z + 0 . = 0 .y
- getbisection y’ from y by correcting 9 fraction of vertices
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sparse vector

given: linear subspace U € R" (represented by some basis),
parameter k € [n]

promise: v, € U such that v, is k-sparse (and v, € {0, +1}")

goal: find k-sparse vector v € U

efficient approximation algorithm for k = Q(n) would be major step
toward refuting Khot's Unique Games Conjecture and improved
guarantees for MAX CUT, VERTEX COVER, ...

planted / average-case version (benchmark for unsupervised learning tasks)
subspace U spanned by d — 1 random vectors and some k-sparse vector v,

. : k
previous best algorithms only work for very sparse vectors - = 1/Vd
[Spielman-Wang-Wright, Demanet-Hand]

here: deg.-4 pseudo-distributions work for% =Q(Mm)uptod < 0(H/n)
[Barak-Kelner-S.]



analytical proxy for sparsity (tightif v € {0, £1}")

v 1 v 1 v
[ ||oo> [ IIZ 1 ad” ||4

Ivlly = kvl = vl = k

if vector v is k-sparse then

limitations of ¢, /£ (previous best algorithm; exact via linear programming)

v = sum of d random %1 vectors with same first coordinate
: d
Ivllw = d, ||Vl <d+nVd - ratio ~ va

n
: . k1
- /¥, algorithm fails for ~>—

limitations of std. SDP relaxation for £, /£, (best proxy for sparsity)

“ideal object”: distribution D over ¢, unit sphere of subspace U
2, -constraint: Ep||v||? < k &— notalow-deg. polynomial in v

. —> unclear how to represent
tractable relaxation: },; ;|Epv;vi| < k
Zl'fl b ]l - (also NP-hard in worst-case)

[d'Aspremont-El Ghaoui-Jordan-Lanckriet]

but: for uniform distr. D over £, sphere of d-dim. rand. subspace
Zi,j|IEDvivj| ~ \/% —> same limitation as £, /¥



degree-d SOS relaxation for £, /¢,

deg.-d pseudo-distr. D: {v € U; ||v||, = 1} = R over unit #,-sphere of U

notation: EDf = f{ VEU; }D - f (only consider polynomials = easy to integrate)
lvil=1

non-negativity: Eph(v)? > 0 for every h of deg. < d /2

normalization: Ep1 = 1

pseudo-distribution satisfies {||v||; = 1/k}

orthogonality: E, (llvlli — %) - g(v) = 0forevery g ofdeg. < d — 4



degree-d SOS relaxation for £, /¢,

deg.-d pseudo-distr. D: {v € U; ||v||, = 1} = R over unit #,-sphere of U

notation: EDf = f{ VEU; }D - f (only consider polynomials = easy to integrate)
lvil=1
non-negativity: Eph(v)? > 0 for every h of deg. < d /2

normalization: Ep1 = 1
pseudo-distribution satisfies {||v||; = 1/k}
orthogonality: E, (llvlli — %) - g(v) = 0forevery g ofdeg. < d — 4

how to find pseudo-distributions?

set of deg.-d pseudo-distributions
= convex set with n?@-time separation oracle

separation problem

given: function D (represented as deg.-d polynomial)
check: quadratic form f — Ejf? is p.s.d. or output
violated constraint E,f? < 0




degree-d SOS relaxation for £, /¢,

deg.-d pseudo-distr. D: {v € U; ||v||, = 1} = R over unit #,-sphere of U
notation: Ep f := f{ VEU: }D - f (only consider polynomials = easy to integrate)
non-negativity: EDlT(Jllﬂ;% > ( for every h of deg. < d /2
normalization: Ep1 = 1

pseudo-distribution satisfies {||v||; = 1/k}
orthogonality: E, (llvlli - %) - g(v) = 0 forevery g ofdeg. < d — 4

how to use pseudo-distributions?

rule of thumb: set of deg.-d pseudo-moments {EDf | deg f < d} difficult*
to distinguish / separate from deg.-d moments of actual distr. of solutions

also: values {ED fldegf > d} do not carry additional information
- no need to look at them

(* unless you invest n(@ time to distinguish)



degree-d SOS relaxation for £, /¢,

deg.-d pseudo-distr. D: {v € U; ||v||, = 1} = R over unit #,-sphere of U

notation: EDf = f{ VEU; }D - f (only consider polynomials = easy to integrate)
lvil=1

non-negativity: Eph(v)? > 0 for every h of deg. < d /2
normalization: Ep1 = 1

pseudo-distribution satisfies {||v||; = 1/k}
orthogonality: E, (llvlli — %) - g(v) = 0forevery g ofdeg. < d — 4

dual view (SOS certificates)

1
(Ivll} =) - g + %;h? = —1over {v € Us ||v]l, = 1}

for some g of deg. < d — 4 and {h;} of deg. < d /2

& no deg.-d pseudo-distr. exists (= no solution exists)

for approximation algorithms: need pseudo-distr. to extract approx. solution
(hard to exploit non-existence of SOS certificate directly)



general properties of pseudo-distributions

let D = {u, v} be a deg.-4 pseudo-distribution over R" x R"
following inequalities hold as expected (same as for distributions)

Cauchy-Schwarz inequality

Epu,v) < (Epllull?)”*(Epllvl?) "
Holder’s inequality

Ep Siud - v < (Bpllulld)™* (Epllviiy)

?,-triangle inequality

— — 1/4  ,~ 1/4
Epllu+vlid < (Epllulld) ™ + (Epllvii})



claim
let U' € R™ be a random d-dim. subspace with d < \/n
let P’ be the orthogonal projector into U’

then wh.p, ||P'v||} = % lvll5 — 2 hj(v)2 over v € R" for h;’s of deg. 4

[Barak-Brandao-Harrow-Kelner-S.-Zhou]

(SOS certificate for classical inequality ||P'v||; < —= 0(1) lv13)

proof sketch

basis change: let x = BT v where B’s columns are orthonormal basis of U
(so that P' = BBT) > ||P'v||§ = = ¥(b;, x)* with by, ..., by, close to i.i.d.

standard Gaussian vectors (so that E, (b, x)? = ||x||5 and E, (b, x)* = 3 -

1x113)
enough to show: — iz1(by, x)* = 0(1) - Ep(b, x)* — X hi(x)?

reduce to deg. 2: ﬁ ?:1<bl®2,y>2 < 0(1) - Ep(b®?%,y)? (y = x%?)

—> use concentration inequalities for quadratic forms (aka matrices)



approximation algorithm for planted sparse vector

given: some basis of subspace U = span U’ U {v,} € R",
where U’ € R"™ random d-dim. subspace,

and v, € R" with vy L U/, ||volli = %, and ||v,||5 = 1 (e.g., k-sparse)

goal:  find unit vector w with (w, vy)? = 1 — 0(k/n)/*

algorithm

compute deg.-4 pseudo-distr. D = {v} over unit ball of U satisfying {llvllﬁ{ = %}

sample Gaussian distr. {w} with Eww” = E,vvT and renormalize

analysis

claim: Ep(v, vy)?> = 1 — 0(k/n)Y* (> Gaussian {w} almost 1-dim.)



approximation algorithm for planted sparse vector

given: some basis of subspace U = span U’ U {v,} € R",

where U’ € R"™ random d-dim. subspace,

and v, € R" with vy L U/, ||volli = %, and ||v,||5 = 1 (e.g., k-sparse)
goal:  find unit vector w with {(w, vy)? > 1 — 0(k/n)/*
analysis

claim: Ep(v, vy)? = 1 — 0(k/n)Y* (> Gaussian {w} almost 1-dim.)

L= (Epllvl)" (D satisfies {[[vll} = 1/
— (E‘:D (v, Vo)V + P'vlli)l/4 (same function)
< (ED (v, vo)volli)IM - (ﬁ]\EID||P'v||?})1/4 (£,-triangle inequ.)
< k11/4 - (Ep(v, v0)4)1/4 + 282 (SOS cert. for U")

> Ep(v,vg)* > 1 —0(k/n)/*
> Ep(v,v9)* 2 1= 0(k/m)'*  (because (v,v5)" = (1 — |[P'v[|3)(v,v)%)



general properties of pseudo-distributions

let D = {u, v} be a deg.-4 pseudo-distribution over R" x R"
following inequalities hold as expected (same as for distributions)

Cauchy-Schwarz inequality

Epu,v) < (Epllull?)”*(Epllvl?) "
Holder’s inequality

Ep Siud - v < (Bpllulld)™* (Epllviiy)

?,-triangle inequality

— — 1/4  ,~ 1/4
Epllu+vlid < (Epllulld) ™ + (Epllvii})



products of pseudo-distributions

claim
suppose D,D": Q) — R is deg.-d pseudo-distr. over Q
then,D @ D": Q X Q — R is deg.-d pseudo-distr. over Q X Q

proof

tensor products of positive semidefinite matrices
are positive semidefinite



let D = {u, v} be a deg.-2 pseudo-distribution over R" x R"

Cauchy-Schwarz inequality

Ep(u,v) < (Epllull2)”*(Epllvliz)"

proof
—~ 2
(]ED (u; v))
= Epgp{u, v){u',v') (D ® D' is product pseudo-distr.)
- ]ED®D ZU uiviu]{vj,
1~ 2 2
< E]:ED@D ZU uiz (U]{) + Zl](u]’) Ul'z (Zab = Cl2 + bz — (a — b)z)

1~
= - Epgollullzllv'llz + lw'lZlv]Z

= Epllulls - Epl|vl|3 (D ® D' is product pseudo-distr.)



let D = {u, v} be a deg.-4 pseudo-distribution over R" x R"
Holder’s inequality

i — 3/4 /1~ 1/4
Ep Xiui - v < (Epllullz)™ (Epllvilz)
proof

ED Zlu? ‘ vi

< (IED Ziu?)l/z : (ED Zlulz : viz)l/z (Cauchy-Schwarz)

~ 1/2 =~ ~ 1/4
< (EpXiut) " - (Ep Xjuf - Ep X;vf) (Cauchy-Schwarz)

we also used:
{u, v} deg-4 pseudo-distr. 2 {u @ u, u ® v} deg.-2 pseudo-distr.
(every deg.-2 poly.in {u @ u,u @ v}is deg.-4 poly. in {u, v})



let D = {u, v} be a deg.-4 pseudo-distribution over R" x R"
£,-triangle inequality
— an1/4 = /4 = 4\ 1/4
(Epllu+vli2) " < (Epllullz)” + (Epllvilz)
proof
expand ||u + v||5 in terms of Y; uf, ¥; uiv;, Y ufvE, ¥ uvi, ¥ v
bound pseudo-expect. of “mixed terms” using Cauchy-Schwarz / Holder

check that total is equal to right-hand side



tensor decomposition for simplicity: orthonormaland m = n

given: tensorT = ) ai®4 (in spectral norm) for nice a4, ..., a,;, € R™
goal: find set of vectors B = {*+aq, ..., ta,;}

approach

show “uniqueness”: }; ai®4 DN bi®4 = {tay, .., xan} = {£by, ..., £bp,}

show that uniqueness proof translates to SOS certificate

—> any pseudo-distribution over decomposition is “concentrated” on
unique decomposition {+ay, ..., *a,,}

—> recover decomposition by reweighing pseudo-distribution by logn
degree polynomial (approximation to 6 function)



