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Abstract

We prove super-polynomial lower bounds on the size of linear pro-
gramming relaxations for approximation versions of constraint satisfaction
problems. We show that for these problems, polynomial-sized linear pro-
grams are exactly as powerful as programs arising from a constant number
of rounds of the Sherali-Adams hierarchy.

In particular, any polynomial-sized linear program for Max Cut has
an integrality gap of 1

2 and any such linear program for Max 3-Sat has an
integrality gap of 7

8 .

1 Introduction

Linear programming is one of the most powerful tools known for finding
approximately optimal solutions to NP-hard problems. We refer to the books
[Vaz01, WS11] which each contain a wealth of examples. If P , NP, then for many
such problems, polynomial-sized linear programs (LPs) that compute arbitrarily
good approximations do not exist.

Thus a line of research has sought to prove lower bounds on the efficacy of
small linear programs. The construction of integrality gaps for specific LPs has
long been a topic of interest in approximation algorithms. Arora, Bollobás, and
Lovász [ABL02] initiated a a more systematic study; they explored the limitations
of LPs arising from lift-and-project hierarchies like those of Lovász and Schrijver
[LS91] and Sherali and Adams [SA90]. There has now been an extensive amount
of progress made in this area; one can see a sampling in the section on previous
work.

Arguably, the ultimate goal of this study is to prove unconditional lower
bounds for every sufficiently small LP. Since linear programming is P-complete
under various notions of reduction, this would require proving that NP does not
have polynomial-size circuits (see, e.g., the discussion in [Yan91]). But one could
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still hope to complete this program for LPs that use the natural encoding of the
underlying combinatorial problem.

We make progress toward this goal for the class of constraint satisfaction
problems (CSPs). For instance, we prove that every polynomial-sized LP for Max
Cut has an integrality gap of 1

2 , answering a question from [BFPS12]. As another
example, every such LP for Max 3-Sat has an integrality gap of 7

8 . In fact, in both

cases these integrality gaps hold for LPs of size n
δ log n

log log n for some constant δ > 0.
Corresponding upper bounds for both problems can be achieved by simple

polynomial-sized LPs. For Max 3-Sat, a 7
8 -approximation is best-possible assum-

ing P , NP [Hås01]. For Max Cut, the famous SDP-based algorithm of Goemans
and Williamson [GW95] achieves a 0.878-approximation. In this case, our result
yields a strict separation between the power of polynomial-sized LPs and SDPs
for a natural optimization problem.

To accomplish this, we show that for approximating CSPs, polynomial-sized
LPs are exactly as powerful as those programs arising from O(1) rounds of the
Sherali-Adams hierarchy. We are then able to employ the powerful Sherali-
Adams gaps that appear in prior work. This offers a potential framework for
understanding the power of linear programs for many problems by relating their
expressive power to that of the very explicit Sherali-Adams hierarchy.

In Section 1.2, we discuss our approach for the specific example of Max Cut,
including the class of LPs to which our results apply. Section 2 is devoted to a
review of CSPs and their linear relaxations. There we explain our basic approach
to proving lower bounds by exhibiting an appropriate separating hyperplane. We
also review the Sherali-Adams hierarchy for CSPs. In Section 3, we present the
technical components of our approach, as well as the proof of our main theorem.
Finally, Section 4 contains an illustrative discussion of how Sherali-Adams gap
examples can be used to construct corresponding gaps for symmetric LPs. This
connection is quantitatively stronger than our result for general LPs.

1.1 History and context

Extended formulations. In a seminal paper, Yannakakis [Yan91] proved that
every symmetric LP (i.e., one whose formulation is invariant under permutations
of the variables) for TSP has exponential size. Only recently was a similar lower
bound given for general LPs. More precisely, Fiorini, et. al. [FMP+12] show
that the extension complexity of the TSP polytope is exponential. Braun, et. al.
[BFPS12] expand the notion of extension complexity to include approximation
problems and show that approximating Max Clique within O(n1/2−ε) requires
LPs of size 2Ω(nε). Building on that work, Braverman and Moitra [BM13] show
that approximating Max Cliquewithin O(n1−ε) requires LPs of size 2Ω(nε).

These three latter papers all use Yannakakis’ connection between extension
complexity and non-negative rank (see, e.g., [FMP+12], for a detailed discussion).
They are based on increasingly more sophisticated analyses of a single family
of slack matrices first defined in [FMP+12] (and extended to the approximation
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setting by [BFPS12]). A major contribution of the present work is that the
connection between general LPs and the Sherali-Adams hierarchy allows one to
employ a much richer family of hard instances.

LP and SDP hierarchies. As mentioned previously, starting with the works
[ABL02, ABLT06], the efficacy of LP and SDP hierarchies for approximation
problems has been extensively studied. We refer to the survey of Laurent [Lau03]
for a discussion of the various hierarchies and their relationships.

We mention a few results that will be quite useful for us. Fernández de
la Vega and Mathieu [FdlVKM07] showed that for any fixed ε > 0 and k, Max
Cut has an integrality gap of 1

2 + ε even after k rounds of the Sherali-Adams
hierarchy. In a paper of Charikar, Makarychev, and Makarychev [CMM09], it
is shown that Max Cut and Vertex Cover have integrality gaps of 1

2 + ε and
2 − ε, respectively, for nΩ(ε) rounds of the Sherali-Adams hierarchy. In work of
Schoenebeck [Sch08], tight bounds are given on the number of rounds needed
to solve approximate k-CSPs in the Lasserre hierarchy (which, in particular, is
stronger than the Sherali-Adams hierarchy). For instance, he shows that for every
ε > 0, Max 3-Sat has a 7

8 + ε integrality gap even after Ω(n) rounds. There are also
Sherali-Adams integrality gaps for CSPs with a pairwise independent predicate,
due to Benabbas et. al. [BGMT12].

1.2 Outline: Max Cut

We now present the basic details of our approach applied to the MaxCut problem.
To this end, consider a graph G = (V,E) with |V| = n. For any S ⊆ V, we use

G(S) def
=
|E(S, S̄)|
|E|

to denote the fraction of edges of G crossing the cut (S, S̄). The maximum cut
value of G is opt(G) = maxS⊆V G(S).

The standard LP. To construct an LP for computing (or approximating) opt(G), it
is natural to introduce variables x = (x1, x2, . . . , xn) ∈ {±1}n corresponding to the
vertices of G. One can then write, for instance,

opt(G) = max
x∈{±1}n

1
|E|

∑
{i, j}∈E

1 − xix j

2
.

To convert this computation into a linear program, we need to linearize the
objective function.

The usual way is to introduce new LP variables y = (yi, j) ∈ R(n
2) meant to

represent the quantities (1 − xix j)/2. Now consider the vector vG ∈ {0, 1}(
n
2) such

that (vG){i, j} = 1 precisely when {i, j} ∈ E. Given that we have linearized both the
graph G and the cut variable x, we can consider the LP relaxation

L(G) = max
y∈P
〈vG, y〉 ,

3



where P is any polytope containing all the vectors y such that yi, j = (1 − xix j/2)
for some x ∈ {±1}n. The standard relaxation corresponds to a polytope P defined
by the constraints {0 6 yi, j 6 1 : i, j ∈ V} and{

yi, j 6 yi,k + yk, j, yi, j + yi,k + yk, j 6 2 : i, j, k ∈ V
}
.

Clearly P is characterized by O(n3) inequalities.

All linearizations are equivalent. But it is important to point out that, for our
purposes, any linearization of the natural formulation of Max Cut suffices. In
fact, all such linearizations are equivalent after applying an appropriate linear
transformation. We only require that there is a number m ∈N such that:

1. For every graph G, we have a vector vG ∈ R
m.

2. For every cut S ⊆ V, we have a vector yS ∈ R
m.

3. For all graphs G and vectors yS, the condition G(S) = 〈vG, yS〉 holds.

Now any polytope P ⊆ Rm, such that yS ∈ P for every S ⊆ V, yields a viable LP
relaxation: L(G) = maxy∈P〈vG, y〉. The size of this relaxation is simply the number
of facets of P, i.e. the number of linear inequalities needed to specify P.

Remark 1.1. We stress that the polytope P depends only on the input size. This
is akin to lower bounds in non-uniform models of computation like circuits
wherein there is a single circuit for all inputs of a certain size. The input graph G
is used only to define the objective function being maximized. In other words,
the variables and constraints of the linear program are fixed for each input size
while the objective function is defined by the input. To the best of our knowledge,
all linear and semi-definite programs designed for approximating max-CSP
problems are subsumed by relaxations of this nature.

In Section 3, we prove that every such relaxation of polynomial size has an
integrality gap of 1

2 for Max Cut.

Toward this end, we recall a known Sherali-Adams gap example: In [FdlVKM07,
CMM09], it is shown that for every ε > 0 and every d ∈ N, there are graphs
G with opt(G) 6 s, but SAd(G) > c, where s 6 1

2 + ε, and c > 1 − ε, and SAd
denotes the LP-value of the d-round Sherali-Adams relaxation (see Section 2 for
the definition).

Proving a lower bound. In Theorem 2.2, we recall that if there is an LP re-
laxation L of size R such that L(G) 6 c whenever opt(G) 6 s, then a simple
application of Farkas’ Lemma shows that there are non-negative functions
q1, . . . , qR : {±1}n → R>0 such that for every graph G with opt(G) 6 s, there are
coefficients λ1, . . . , λR > 0 satisfying

c − G = λ1q1 + · · · + λRqR . (1.1)

(Note that we have earlier viewed G as a function on cuts and we now view it
as a function on {±1}n by associating these vectors with cuts.) These functions

4



qi : {±1}n → R>0 encode the slack of each constraint of the LP. Thus if the ith LP
constraint is of the form 〈Ai, z〉 6 bi, then qi(x) = bi − 〈Ai, ySx〉 where ySx is the cut
vector corresponding to x ∈ {±1}n.

The d-round Sherali-Adams relaxation for a graph G0 has SAd(G0) 6 c if and
only if there exist a family of non-negative d-juntas { fi : {−1, 1}n → R>0} such
that

c − G0 =
∑

i

λi fi , (1.2)

where λi > 0 for each i. See Observation 2.4 and the surrounding discussion.
We recall that a d-junta is a function whose value depends on at most d of its

inputs. In particular, if G0 is a (c, s) gap instance, i.e. such that opt(G0) 6 s but
SAd(G0) > c, then no such representation (1.2) with d-juntas can exist. Our goal is
to derive an instance G from G0 such that no representation of the form (1.1) can
exist.

This proceeds in three steps: First, we argue that, by a truncation argument,
it suffices to consider functions {qi} that are sufficiently smooth. Then in Section
3.1, we show that any sufficiently smooth qi can be approximated (in a certain
weak sense) by a K-junta q′i for K which may be quite large (e.g., K = n0.2).

In Section 3.2, we employ a random restriction argument: By planting the
instance G0 at random inside a larger graph G, we can ensure that for every q′i ,
the set of significant coordinates when restricted to G0 is much smaller; in fact, we
show that with high probability over the random planting, every such q′i has only
d significant coordinates in the support of G0. Here we use crucially the fact that
we have only R functions {qi}.

This means that, restricted to G0, every qi is weakly approximated by a d-junta
q′i . More specifically, all the low-degree Fourier coefficients of qi − q′i are small.
Now the fact that no representation of the form (1.2) exists should disprove a
representation of the form (1.1) as long as the “approximation” does not hurt
us too much. Here we use the fact that the d-round Sherali-Adams relaxation
is only capable of “perceiving” low-degree functions (more technically, the d-
round Sherali-Adams functional introduced in (2.1) is a degree-d multilinear
polynomial). In particular, it suffices that the low-degree parts of qi and q′i are
close.

The ingredients are all put together in Section 3.3, where one can find the
proof of our main theorem for general CSPs.

2 Background

We now review the maximization versions of boolean CSPs, their linear program-
ming relaxations, and related issues.

Throughout the paper, for a function f : {±1}n → R, we write E f =
2−n ∑

x∈{±1}n f (x). If 1 : {±1}n → R, we denote the inner product 〈 f , 1〉 = E[ f1]
on the Hilbert space L2({−1, 1}n). Recall that any f : {±1}n → R can be written
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uniquely in the Fourier basis as f =
∑
α⊆[n] f̂ (α)χα, where χα(x) =

∏
i∈α xi and

f̂ (α) = 〈 f , χα〉. A function f is called a d-junta for d ∈ [n] if f depends only on a
subset S ⊆ [n] of coordinates with |S| 6 d. In other words, f can be written as
f =

∑
α⊆S f̂ (α)χα.

We say that f is a density if it is non-negative and satisfies E f = 1. For such
an f , we let µ f denote the corresponding probability measure on {±1}n. Observe
that for any 1 : {±1}n → R, we have Ex∼µ f [1(x)] = 〈 f , 1〉.

Constraint Satisfaction Problems. Constraint satisfaction problems form a
broad class of discrete optimization problems that include, for example, Max
Cut and Max 3-Sat. For simplicity of presentation, we will focus on constraint
satisfaction problems with a boolean alphabet, though similar ideas extend to
larger domains (of constant size).

For a finite collection Π = {P} of k-ary predicates P : {±1}k → {0, 1}, we let Max-
Π denote the following optimization problem: An instance = consists of boolean
variables X1, . . . ,Xn and a collection of Π-constraints P1(X) = 1, . . . ,Pm(X) = 1
over these variables. A Π-constraint is a predicate P0 : {±1}n → {0, 1} such that
P0(X) = P(Xi1 , . . . ,Xik) for some P ∈ Π and distinct indices i1, . . . , ik ∈ [n]. The
goal is to find an assignment x ∈ {±1}n that satisfies as many of the constraints as
possible, that is, which maximizes

=(x) def
= 1

m

∑
i

Pi(x) .

We denote the optimal value of an assignment for = as opt(=) = maxx∈{±1}n =(x).

Examples: Max Cut corresponds to the case where Π consists of the binary
inequality predicate. For Max 3-Sat, Π contains all eight 3-literal disjunctions,
e.g., X1 ∨ X̄2 ∨ X̄3.

Linear Programming Relaxations for CSPs. In order to write an LP relaxation
for such a problem, we need to linearize the objective function. For n ∈ N, let
Max-Πn be the set of Max-Π instances on n variables. An LP-relaxation of size R
for Max-Πn consists of the following.

Linearization: For every= ∈Max-Πn, we associate a vector =̃ ∈ Rm and for every
assignment x ∈ {±1}n, we associate a point x̃ ∈ Rm, such that =(x) = 〈=̃, x̃〉
for all = ∈Max-Πn and all x ∈ {±1}n.

Polytope: A convex polytope P ⊆ Rm described by R linear inequalities, such
that x̃ ∈ P for all assignments x ∈ {±1}n. The polytope P is independent of
the instance = of Max-Πn.

Given an instance = ∈ Max-Πn, the LP relaxation L outputs the value
L(=) = maxy∈P〈=̃, y〉. Since x̃ ∈ P for all assignments x ∈ {±1}n and 〈=̃, x̃〉 = =(x),
we have L(=) > opt(=) for instances = ∈Max-Πn.
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Remark 2.1. The choice of linearization does not affect the minimal size of an LP
relaxation; by applying an appropriate linear transformation, one sees that all
linearizations are equivalent. For concreteness, one could view x 7→ =(x) as a
degree-k multilinear polynomial. In the Fourier basis {χα : α ⊆ [n]}, one would
have J̃ =

∑
α Ĵ(α)χα and x̃ =

∑
α χα(x)χα.

(c, s)-approximation. We say that a linear programming relaxationL for Max-Πn
achieves a (c, s)-approximation if L(=) 6 c for all instances = ∈ Max-Πn with
opt(=) 6 s. We also say thatL achieves anα-factor approximation ifL(=) 6 α opt(=)
for all = ∈Max-Πn.

The following theorem is inspired by Yannakakis’s characterization of exact
linear programming relaxations. It appears in similar form in previous works
[Pas12] and [BFPS12, Thm. 1]. For simplicity, we specialize it here for constraint
satisfaction problems.

Theorem 2.2. There exists an LP relaxation of size R that achieves a (c, s)-approximation
for Max-Πn if and only if there exist non-negative functions q1, . . . , qR : {±1}n → R>0
such that for every instance = ∈ Max-Πn with opt(=) 6 s, the function c − = is a
nonnegative combination of q1, . . . , qR, i.e.

c − = ∈
{∑

i
λiqi

∣∣∣∣ λ1, . . . , λR > 0
}
.

In other words, the kernel (=, x) 7→ c − =(x) has a nonnegative factorization of rank R.

A communication model. The characterization in Theorem 2.2 has an illustra-
tive interpretation as a two-party, one-way communication complexity problem:
Alice’s input is a Max-Π instance =with opt(=) 6 s. Bob’s input is an assignment
x ∈ {±1}n. Their goal is to compute the value =(x) in expectation. To this end,
Alice sends Bob a randomized message containing at most L bits. Given the
message Bob outputs deterministically a number v such that v 6 c. The protocol
is correct if for every input pair (=, x), the expected output satisfies E v = =(x)
(the expectation is over Alice’s randomness).

An L-bit protocol for this communication problem yields an LP relaxation of
size 2L: If Bob outputs a value v(x, i) based on message i from Alice, then define
qi(x) = c − v(x, i). This yields 2L non-negative functions satisfying the conditions
of Theorem 2.2.

On the other hand, if there exist R = 2L functions {q1, q2, . . . , qR} as in The-
orem 2.2, then by adding an additional non-negative function qR+1, we may
assume that

∑R+1
i=1 λi = 1, i.e. that we have a convex combination instead of a

non-negative combination. This yields a strategy for Alice and Bob: Alice sends
an index i ∈ [R + 1], drawn from a distribution depending on = (specified by the
coefficients {λi}), and then Bob outputs c − qi(x) 6 c.

Example: Suppose the optimization problem is Max Cut. In this case, Alice
receives a graph G = (V,E) and Bob a cut S ⊆ V. If Alice sends Bob a uniformly
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random edge {u, v} ∈ E and Bob outputs the value |1S(u) − 1S(v)|, the result is a
communication (in expectation) protocol using at most log2

(n
2
)

bits of communi-
cation. In any protocol achieving a less trivial approximation, Bob would have to
always output numbers strictly less than 1. A similar communication in expecta-
tion model is considered in [FFGT11], where they show a strong connection to
non-negative rank.

LP Lower Bounds from Test Functions. The following lemma will allows us
to prove lower bounds for general LP relaxations. For ε = 0, the function H in
the statement of the lemma would correspond to a hyperplane separating c − =
and the cone generated by q1, . . . , qR. The presence of ε will allow us to tolerate
some noise in the arguments that follow.

Lemma 2.3. In order to show that (c, s)-Max-Πn requires LP relaxations of size
greater than R, it is sufficient to prove the following: For every collection of densities
q1, . . . , qR : {±1}n → R>0, there exists ε > 0, a function H : {±1}n → R and a Max-Πn
instance = such that

1. 〈H, c − =〉 < −ε

2. 〈H, qi〉 > −ε .

Proof. We will argue that H certifies that c − = is not a nonnegative combination
of q1, . . . , qR. Let γ = c − E=. For the sake of contradiction, suppose that
c − = =

∑
i λiqi for λ1, . . . , λR > 0. Then, γ = c − E= =

∑
i λiE qi =

∑
i λi. Also,

〈H, c − =〉 = 〈H,
∑

i

λiqi〉 =
∑

i

λi〈H, qi〉 > −ε
∑

i

λi = −εγ ,

which contradicts the condition 〈H, c − =〉 < −ε since γ 6 c 6 1. �

Sherali-Adams LP relaxations for CSPs. A primary component of our ap-
proach involves leveraging known integrality gaps for the Sherali-Adams (SA)
hierarchy. To that end, we now give a brief overview of Sherali-Adams LP
relaxations. For a more detailed account, we refer the reader to [Lau03].

A d-round Sherali-Adams LP relaxation for a Max-Πn instance will consist of
variables {XS : S ⊆ [n], |S| 6 d} for all products of up to degree d on the n-variables.
These variables {XS : |S| 6 d} are to be thought of as the moments up to degree d
of the variables, under a purported distribution.

An important property of an SA solution {XS : |S| 6 d} is that these moments
agree with a set of local marginal distributions. In particular, for every set S ⊆ [n]
with |S| 6 d there exists a distribution µS over {±1}S such that,

E
x∼µS

χA(x) = XA ∀A ⊆ S .

In an alternate but equivalent terminology, a d-round SA instance can be
thought of as d-local expectation functional (d-`.e.f.). Specifically, a d-local expectation
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functional is a linear functional Ẽ on degree-d multilinear polynomials such
that Ẽ 1 = 1 and ẼP > 0 for every degree-d multilinear polynomial P that is
nonnegative over {±1}n and depends only on d variables. In terms of the local
marginal distributions, Ẽ is the unique linear functional on degree d polynomials
satisfying

Ẽχα = E
x∼µS

χS(x) ∀|S| 6 d,S ⊆ [n] .

The d-round Sherali-Adams value of a Max-Πn instance = is defined as

SAd(=) def
= max

d-`.e.f. Ẽ
Ẽ= .

This optimization problem can be implemented by an nO(d)-sized linear program-
ming relaxation for Max-Πn. (Notice that Ẽ is only an nd-dimensional object.)
In particular, if d-rounds of Sherali-Adams achieve a (c, s)-approximation for
Max-Πn, then so do general nO(d)-sized LP relaxations.

Given such a d-`.e.f. Ẽ, we can extend it linearly to all functions on {±1}n (as
opposed to just degree-d polynomials). Concretely, we set Ẽ f = 0 for all functions
f that are orthogonal to the subspace of degree-d functions, i.e., orthogonal to the
span of {χα : |α| 6 d}. We can represent Ẽ by a function H : {±1}R → R such that
Ẽ f = 〈H, f 〉 for all f : {±1}R → R. Concretely,

H =
∑

α⊆[n] : |α|6d

cαχα for cα = Ẽχα , (2.1)

where {χα} is the Fourier basis.
In Section 3, We will use a modification of H as a test function in the sense of

Lemma 2.3. The crucial property of the test function H that makes it useful for
our purposes is the following.

Observation 2.4. Suppose that f : {±1}n → R depends only on a subset of at most
d coordinates S ⊆ [n], then

〈H, f 〉 = E
x∼µS

[
f (x)

]
for some probability measure µS on {±1}n.

One should consider this observation in light of Lemma 2.3. If H is the linear
functional corresponding to d rounds of the Sherali-Adams hierarchy and qi is a
non-negative d-junta, then 〈H, qi〉 > 0.

Remark 2.5. Some work on Sherali-Adams relaxations for Max Cut focus on
edge variables instead of vertex variables. This includes [FdlVKM07, CMM09].
In those papers, the d-round Sherali-Adams relaxation consists of variables
{XS : S ⊆

([n]
2
)
, |S| 6 d} for every subset of d edges in the complete graph. Since

their base polytope also includes triangle inequalities, any
(d
2
)
-round Sherali-

Adams solution with edge variables can be converted to a d-round solution for
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vertex variables. One should observe that the d-round vertex relaxation is at least
as strong as the d-round edge relaxation.

Moreover, both papers [FdlVKM07, CMM09] actually prove a lower bound
against the d-round vertex version and then argue that this yields a lower bound
for the weaker edge relaxation. For general max-CSPs, the vertex version is
arguably the canonical relaxation, and it is perhaps misguided to consider the
edge version even for Max Cut. In [Sch08] (which studies general CSPs), the
more natural vertex version is considered.

A major benefit of the “extended formulation” model to which our results
apply is that the edge/vertex relaxation distinctions are not relevant; in fact no
specific meaning is ascribed to the variables of the LP. All that matters is the
number of defining inequalities.

3 Sherali-Adams and General LPs

Our main theorem is that general LP relaxations are no more powerful than
Sherali-Adams relaxations (in the polynomial-size regime).

Theorem 3.1 (Main). Fix a positive number d ∈N. Suppose that the d-round Sherali-
Adams relaxation cannot achieve a (c, s)-approximation for Max-Πn for every n. Then
no sequence of LP relaxations of size at most nd/2 can achieve a (c, s)-approximation for
Max-Πn for every n.

We prove the following more general result in Section 3.3.

Theorem 3.2. Consider a function f :N→N. Suppose that the f (n)-round Sherali-
Adams relaxation cannot achieve a (c, s)-approximation for Max-Πn. Then for all suffi-
ciently large n, no LP relaxation of size at most n f (n)2

can achieve a (c, s)-approximation
for Max-ΠN, where N 6 n10 f (n).

In particular, by choosing f (n) � log n
log log n , known Sherali-Adams gaps for Max

Cut [CMM09] and Max 3-Sat [Sch08] imply the same integrality gaps for LPs of

size nΩ( log n
log log n ).

3.1 High-Entropy Distributions vs. Juntas

Fix some n ∈N. We now prove that every distribution on n bits with very high
entropy has its low-degree part “close to uniform” off a small set of coordinates.
For brevity, we write S \ v to denote S \ {v}.

Let (X1, . . . ,Xn) ∈ {±1}n be correlated random bits with distribution µ. For a
subset S ⊆ [n], we use the notation XS = {Xi : i ∈ S}. We first prove the following
lemma. Afterward, we use it to bound the Fourier coefficients of µ. Here, and in
what follows, H(·) denotes the Shannon entropy measured in bits.

10



Lemma 3.3. For all 1 6 d, t 6 n and β > 0, the following holds. If µ has entropy > n− t,
there exists a set J ⊆ [n] of at most td

β coordinates such that for all subsets A * J with
|A| 6 d, we have

max
v∈A

H(Xv | XA\v) > 1 − β . (3.1)

For 0 < β < 1, consider the hypergraph Gβ on vertex set [n] that contains a
hyperedge e of size at most d whenever, for all v ∈ e, we have

H(Xv | Xe\v) 6 1 − β . (3.2)

Lemma 3.3 follows directly from the next claim.

Proposition 3.4. If µ has entropy n − t, then |
⋃

e∈E(Gβ) e| 6 td
β .

Proof. Let J =
⋃

e∈E(Gβ) e denote the set of vertices participating in an edge of
Gβ. Since each hyperedge contains at most d vertices, we can find a sequence
e1, e2, . . . , er of at least r > |J|/d hyperedges such that for each i = 1, 2, . . . , r, the set
ei \ (ei−1 ∪ · · · ∪ e1) contains at least one vertex ui ∈ J.

Observe that the vertices u1, . . . ,ur are distinct.
Writing U = {u1, . . . ,ur} and W = [n] \U, we can upper bound the entropy of

X1, . . . ,Xn using the chain rule:

H(X1, . . . ,Xn) = H (XW) +

r∑
i=1

H(Xui | XW∪{u1,...,ui−1})

6 H (XW) +

r∑
i=1

H(Xui | Xei\ui)

6 |W| + |U| · (1 − β)
6 n − |J|β/d .

The first inequality uses the fact that ei \ ui ⊆ W ∪ {u1, . . . ,ui−1} (because ei \ ui
does not contain any of the vertices ui, . . . ,ur). The second inequality follows
directly from the definition of the hyperedges in Gβ.

Since X1, . . . ,Xn has entropy at least n − t by assumption, it follows that
|J| 6 td/β. �

We now record a Fourier-theoretic consequence of Lemma 3.3. To this end,
recall that for two probability measures µ and ν over {±1}n, one defines the
KL-divergence as the quantity

D(µ ‖ ν) = E
µ

[
log2

µ(x)
ν(x)

]
.

In this case, Pinsker’s inequality (and its sharp form due to Kullback, Csiszár
and Kemperman, see e.g. [Tsy09, Lemma 2.5]) states that

D(µ ‖ ν) >
1

ln 4
‖µ − ν‖21. (3.3)

11



Lemma 3.5. Let µ be a distribution as in the statement of Lemma 3.3, and let J ⊆ [n] be
the corresponding set of coordinates. If A ⊆ [n] satisfies |A| 6 d and A * J, then∣∣∣∣∣Eµ [χA(x)]

∣∣∣∣∣ 6 √
(ln 4)β.

Proof. For x ∈ {±1}n and S ⊆ [n], we use xS to denote x restricted to the bits in S.
Since |A| 6 d and A * J, Lemma 3.3 implies that some v ∈ A satisfies (3.1). For
y ∈ {±1}A\v, denote by µ|y the distribution of xv conditioned on the event xA\v = y.
We bound ∣∣∣∣∣Eµ [χA(x)]

∣∣∣∣∣ 6 Ey∼µ
∣∣∣∣∣Eµ [χA(x) | xA\v = y]

∣∣∣∣∣ .
Denote by ν the uniform distribution on {±1}. For any y ∈ {±1}A\v,∣∣∣∣∣Eµ [χA(x) | xA\v = y]

∣∣∣∣∣ = ‖µ|y − ν‖1 6
√

(ln 4)D(µ|y ‖ ν) ,

by (3.3).
Since

D(µ|y ‖ ν) = 1 −H(µ|y) ,

we get ∣∣∣∣∣Eµ [χA(x)]
∣∣∣∣∣ 6 Ey∼µ √

(ln 4)(1 −H(µ|y)) 6
√

(ln 4)(1 − E
y

[H(µ|y)]) ,

where the last inequality is Cauchy–Schwarz. The desired bound follows because
Ey[H(µ|y)] = H(Xv | XA\v) > 1 − β. �

Finally, we arrive the primary goal of this section.

Lemma 3.6 (High-Entropy Distributions vs Juntas). Let q : {±1}n → R>0 be a
density and let µq denote the corresponding measure on {±1}n. If µq has entropy least
n − t for some t 6 n, then for every 1 6 d 6 n and γ > 0, there exists a set J ⊆ [n] with

|J| 6
4td
γ2 .

such that for all subsets α * J with |α| 6 d, we have |q̂(α)| 6 γ.

Proof. Set β =
γ2

4 . Now apply Lemma 3.5 and use the fact that q̂(α) = Ex∼µq[χα(x)].
�

3.2 Random Restrictions

We first recall the following standard estimates (see, e.g., [McD98]). Suppose
X1, . . . ,Xn are i.i.d {0, 1} random variables with E[Xi] = p. Then,

P

 n∑
i=1

Xi >
pn
2

 > 1 − e−pn/8 . (3.4)
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Furthermore, if pn
1−p 6 1/2, then

P

 n∑
i=1

Xi > t

 =

n∑
i=t

(
n
i

)
pi(1 − p)n−i 6 (pn)t

∞∑
i=0

(pn/(1 − p))i 6 2(pn)t . (3.5)

Lemma 3.7. For any d ∈ N, the following holds. Let Q be a collection of densities
q : {±1}n → R>0 such that the corresponding measures µq have entropy at least n − t. If
|Q| 6 nd/2, then for all integers m with 3 6 m 6 n/4, there exists a set S ⊆ [n] such that

– |S| = m

– For each q ∈ Q, there exists a set of at most d coordinates J(q) ⊆ S such that under
the distribution µq, all d-wise correlations in S − J(q) are small. Quantitatively,
we have

|q̂(α)| 6
(

32mtd
√

n

)1/2

∀α ⊆ S, α * J(q), |α| 6 d

Proof. We will sample the set S ⊆ [n] by including each element independently
with probability 2m/n, then argue that with non-zero probability, both the
conditions on S hold.

First, by (3.4), we have |S| > m with probability at least 1 − e−m/4 > 1/2.

Fix γ =
(

32mtd
√

n

)1/2

. By Lemma 3.6, for each q ∈ Q there exists a set J′(q) of at

most 4td
γ2 6

√
n

8m coordinates such that for all subsets α * J′(q) with |α| 6 d, we have
|q̂(α)| 6 γ.

The set J(q) for a distribution q is given by J(q) = J′(q)∩S. Clearly,E[|J′(q)∩S|] =
2m
n |J
′(q)| 6 2m

n ·
√

n
8m 6 1/4. Thus by (3.5), we can write

P
[
|J(q) ∩ S| > d

]
6 2

(2m
n
· |J′(q)|

)d
6 2 ·

(
2m
n
·

√
n

8m

)d

6
2

4dnd/2
.

The existence of the set S follows by taking a union bound over all the |Q| 6 nd/2

densities in the family Q. Note that we have concluded with |S| > m, but we can
remove some elements from S to achieve |S| = m. �

3.3 Proof of Main Theorem – Theorem 3.1

In this subsection, we will prove Theorems 3.2 and 3.1. Let m 6 n be parameters
m,n ∈ N to be chosen later. Let =0 be a Max-Πm instance with SAd(=0) > c and
opt(=0) 6 s. Our goal is to show that for all ε > 0 and all large enough n ∈N, any
nd/2-sized LP relaxation for Max-Πn cannot certify opt(=) < c − ε for all “shifts”
= of =0. (Here, “shift” means that we plant =0 on some subset of the variables
{1, . . . ,n}.)

Let Q denote a collection of densities q : {±1}n → R>0 on {±1}n with |Q| 6 nd/2.
We will show that there exists a shift = of =0 and a test functional H ∈ L2({−1, 1}n)
that satisfies the conditions of Lemma 2.3 (lower bounds from test functions).
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Let B ⊆ {±1}n be the subset of points where one of the densities q is exception-
ally large. Formally, we define

B = {x ∈ {±1}n | ∃q ∈ Q. q(x) > nd
} .

By Markov’s inequality, the set B has measure at most E1B 6 |Q| · n−d 6 n−d/2.
We decompose each q ∈ Q into three parts

q = q′ + qbad − E qbad

with qbad = q · 1B (and therefore q′ = q · (1 − 1B) + E qbad). The function
q′ : {±1}n → R>0 is a density because

E q′ = E q · (1 − 1B) + E q · 1B = 1 .

Since q(x) < nd for every point x < B, the function q′ satisfies q′ 6 nd + 1, which
implies that the min-entropy (and thus Shannon entropy) of the distribution
corresponding to q′ is at least n − t where t = d log2 n + 1.

By Lemma 3.7, there exists a set S ⊆ [n] of size m such that every q ∈ Q,
every Fourier coefficient q̂′(α) with degree |α| 6 d and α * J(q) satisfies |q̂′(α)| 6 K,
where

K 6 8
(

md log2 n
√

n

)1/2

.

For a subset T ⊆ [n], let q|T denote the marginal of q on T, so that q|T(x) =
Ey∈{±1}n q(xT, y[n]\T). (Equivalently, q|T =

∑
α⊆T q̂(α)χα.) In this notation, the

`1-norm of the degree-6 d Fourier coefficients of q′
|J(q) − q′

|S is bounded by∑
α⊆S
α*J(q)
|α|6d

|q̂′(α)| 6 Kmd. (3.6)

Let η = md
·max(3n−d/2,K), and assume that n is chosen large enough so that

η < 1
2 .

Let = be the Max-Πn instance obtained by planting the Max-Πm instance =0
on the variable set S. Let H be a d-round Sherali-Adams solution (in the sense
of (2.1)) for =with value c. Further, we will choose a Sherali-Adams solution H
that satisfies Ĥ(α) = 0 for α * S. This is possible since all the constraints in = are
contained within S. (Since = is a shift of =0, it has the same Sherali-Adams value,
SAd(=) = SAd(=0))

We claim that H′ = (1 − 1B) ·H is a test function in the sense of Lemma 2.3.
Recall that ‖=‖∞ 6 1. Furthermore, by (2.1), we have ‖H‖∞ 6 md. Using these,

〈H′, c − 2η − =〉 = 〈H, c − 2η − =〉 − 〈H · (c − 2η − =),1B〉

6 −2η − 〈H · (c − 2η − =),1B〉

( because 〈H, 1〉 = 1 and 〈H,=〉 = SAd(=))
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6 −2η + (c + 2η + ‖=‖∞)‖H‖∞ · E1B

6 −2η + 3md
· n−d/2

< −η .

Finally,

〈H′, q〉 = 〈H′, q′ − E qbad〉 + 〈H′, qbad〉

= 〈H′, q′ − E qbad〉 +0 (using supp(qbad) ∩ supp(H′) = ∅)

= 〈H, q′ − E qbad〉 +0 (using supp(q′ − E qbad) ∩ supp(H −H′) = ∅)

= 〈H, q′〉 −E qbad (using 〈H, 1〉 = 1)

= 〈H, q′
|S〉 − E qbad (using Ĥ(α) = 0 for α * S)

= 〈H, q′
|J(q)〉 − 〈H, q

′

|J(q) − q′
|S〉 − E qbad

> 〈H, q′
|J(q)〉 −η −E qbad (using |Ĥ(α)| 6 1 for all α ⊆ S, deg(H) 6 d

and our Fourier-`1-norm bound (3.6) for
q′
|J(q) − q′

|S)

> E qbad − η − E qbad

> −η.

The last step uses that q′
|J(q) is a d-junta with q′

|J(q) > E qbad (because q′ > E qbad

by construction). Since H is a d-round Sherali-Adams functional, it satisfies
〈H, q′

|J(q)〉 > E qbad (by the d-`.e.f. property).
We conclude that by Lemma 2.3, the cone generated by Q does not contain

the function c − 2η − = .

We see that for any collection Q of at most nd/2 densities, there exists a
Max-Πn instance = with opt(=) 6 s (a shift of =0) such that c − 2η − = is not in
the cone generated by Q. By Theorem 2.2, it follows that any nd/2-sized linear
programming relaxation cannot achieve a (c − 2η, s)-approximation for Max-Πn.
Finally, note that asymptotically, we have

η = O

md
√

md log n
n1/4

 . (3.7)

�

Proof of Theorem 3.2. Fix an instance size m and put d = f (m). In the preceding
argument, require that n grows like m10d = m10 f (m) so that η = o(1)) (see (3.7)).
The lower bound achieved is nd/2 > m5 f (m)2

. �

4 Symmetric Linear Programs

We will now prove the following theorem relating Sherali-Adams gaps to those
for symmetric LPs for Max Cut.
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Theorem 4.1. Suppose that the t-round Sherali-Adams relaxation for Max Cut cannot
achieve a (c, s)-approximation on graphs with n vertices. Then no symmetric LP of size
6

(N
t
)

can achieve a (c, s)-approximation on N-vertex graphs, where N = 2n.

We will require the following lemma of Yannakakis.

Lemma 4.2 ([Yan91, Claim 2]). Let H be a group of permutations whose index in Sn
is at most

(n
k
)

for some k < n/4. Then there exists a set J of size at most k such that H
contains all even permutations that fix the elements of J.

Lemma 4.3. Suppose a family of functions F = { fi : {±1}n → R : i = 1, 2, . . . ,M} is
closed under permutation of its inputs, and M <

(n
k
)

for k < n/4, then each function
fi depends only on a subset Si ⊆ [n] of at most k coordinates and possibly the value∑

a∈[n] xa.

Proof. Let Orb( f ) denote the orbit of a function f under permutation of its inputs.
Since F is closed under permutation of inputs to the functions, it contains the
orbits of each of the functions f1, . . . , fM.

This implies that the for each of the functions fi, we have |Orb( fi)| <
(n

k
)
.

Hence for each fi the automorphism group of all permutations that preserve the
function fi is large, i.e., |Aut( fi)| > k!(n − k)!. By Lemma 4.2, the automorphism
group Aut( fi) contains all even permutations that fix a subset of coordinates Ji
with |Ji| 6 k.

We claim that Aut( fi) contains all permutations that fix the coordinates in
Ji. We know that for every x, and every even permutation σ of J̄i, fi(x) = fi(σx).
For every x ∈ {±1}n, there will be two coordinates a, b ∈ J̄i such that xa = xb.
Let πab denote the permutation that swaps xa, xb. Since πab(x) = x, we have
fi(πab(x)) = fi(x). So for all even permutations σ,

fi(σπabx) = fi(πabx) = fi(x)

As σ varies over all even permutations, σπab varies over all odd permutations,
leading to the conclusion that for all permutations π fixing the coordinates of Ji,
fi(x) = fi(πx).

This symmetry of the function fi implies that it depends only on the assignment
to Ji and the hamming weight of the assignment to J̄i. The hamming weight of
the assignment to J̄i is equal to

∑
a xa −

∑
a∈Ji

xa. This shows that fi only depends
on the coordiantes in Ji and the value

∑
a∈[n] xa. �

Let = be a Sherali-Adams integrality gap instance of Max Cut. Suppose
{XS}S∈[n],|S|6t is the t-round Sherali-Adams solution on =.

Construct a new graph =′ = =1 ∪ =2 consisting of two disjoint copies of the
instance =. Let N = 2n denote the number of vertices of =′. Let us suppose that
=1 is on vertices {1, . . . ,n} and =2 is on {n + 1, . . . , 2n}.

We will now extend the Sherali-Adams LP solution for = to a Sherali-Adams
solution for =′. Roughly speaking, we will copy the SA-solution as is on to =1
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and negate all its values on =2. In other words, the Sherali-Adams solution on =′

is so designed that every pair of vertices xi, xn+i always have opposite values.
Formally, for any subset S ⊆ [2n] define S1 = S ∩ {1, . . . ,n} and S2 = {i − n | i ∈

S \ S1}. Then, we can describe the SA solution {YS}S⊆[2n],|S|6t as follows,

YS = (−1)|S2|XS1⊕S2

Here S1 ⊕ S2 is the symmetric difference between the two sets.

Definition 4.4. For a set S ⊆ [2n] of the form S = S1 ∪ (S2 + n) where S1,S2 ⊆ [n],
define wt(S) = |S1 ⊕ S2|.

More generally, we will define {YS}S⊆[2n] for all subsets S ⊆ [2n].

YS =

(−1)|S2|XS1⊕S2 if wt(S) 6 t
0 otherwise

Observation 4.5. For any set S, wt(S ⊕ {i}) = wt(S ⊕ {n + i}).

Proof. It is easy to see that both values are equal to the hamming weight of the
F2 vector 1S1 ⊕ 1S2 ⊕ ei where 1S1 ,1S2 ∈ F

n
2 are indicators of subsets S1,S2 and

ei ∈ F
n
2 is the ith standard basis vector. �

Define a function H : {±1}N → R as

H(x) =
∑

S⊆[N]

YSχS(x) , (4.1)

where {χS} is the Fourier basis over {±1}N.

Lemma 4.6. For every S ⊆ [2n] and all i ∈ [n], YS⊕{i} = −YS⊕{n+i}.

Proof. Let S = S1 ∪ (S2 + n) for some S1,S2 ⊆ [n]. By Observation 4.5, wt(S⊕ {i}) =
wt(S ⊕ {n + i}). If wt(S ⊕ {i}) = wt(S ⊕ {n + i}) > t, then by definition we will have
YS⊕{i} = YS⊕{n+i} = 0.

On the other hand, if wt(S ⊕ {i}) = wt(S ⊕ {n + i}) 6 t then,

YS⊕{i} = (−1)|S2|X(S1⊕{i})⊕S2

and
YS⊕{n+i} = (−1)|S2⊕{i}|XS1⊕({i}⊕S2)

Therefore, also in this case YS⊕{i} = −YS⊕{n+i}. �

Lemma 4.7. For any polynomial p(x1, . . . , xN), we have 〈H, (
∑N

i=1 xi)p〉 = 0.
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Proof. By linearity of the inner product, it is sufficient to prove the above claim
when p is a monomial. Recall that,

〈H,

∑
i

xi

 p〉 = E
x∈{±1}N

H(x)

∑
i

xi

 p(x)


Since x takes values in {±1}N, it is sufficient to show the above claim for the
elements of the Fourier basis {χS}.

Fix a monomial χS(x). We can write the above inner product as,〈 ∑
A⊆[N]

YAχA(x), χS(x)

∑
i

xi

〉 = E
x∈{±1}N

χS(x)
∑

A⊆[N],i∈[2n]

YAχA⊕{i}(x)


= E

x∈{±1}N

χS(x)
∑

B⊆[N]

χB(x)

 ∑
i∈[2n]

YB⊕{i}




= 0 (because
∑

i∈[2n]

YB⊕{i} = 0 since YB⊕{i} = −YB⊕{n+i})

�

Lemma 4.8. If f : {±1}N → R>0 is a function that depends on a subset J ⊆ [N] of at
most t coordinates and possibly the value

∑N
i=1 xi, then

〈H, f 〉 > 0 .

Proof. Write the function f as a polynomial in xJ = {xi | i ∈ J} and
∑

i xi as follows,

f = p0(xJ) +

N∑
i=1

pi(xJ)

∑
i

xi


i

.

Using Lemma 4.6, we have
〈H, f 〉 = 〈H, p0〉 .

Since p0 depends on at most t coordinates, by Observation 2.4 we can write,

〈H, p0〉 = E
xJ∼µJ

[p0(xJ)] ,

where µJ is some distribution on xJ.
Define a distributionµ on {±1}N as follows: Sample xJ fromµJ and then sample

x J̄ uniformly randomly from among all assignments that satisfy
∑N

i=1 xi = 0. This
is feasible since |J| = t < n/2. Note that the distribution µ is supported entirely on
the set {x ∈ {±1}N |

∑
i xi = 0}. Therefore, we have

〈H, p0〉 = E
xJ∼µJ

[p0(xJ)]

= E
x∼µ

[p0(xJ)]
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= E
x∼µ

p0(xJ) +

N∑
i=1

pi(xJ)

∑
i

xi


i (because

∑
i

xi = 0 on the support of µ)

= E
x∼µ

[ f (x)] > 0 (because f is pointwise non-negative) �

We are now in position to prove the main theorem of this section.

Proof of Theorem 4.1. Suppose that N is even. Let F = { f1, . . . , fM} denote the
family of functions from {±1}N to R>0 associated with some symmetric LP
relaxation of Max Cut, i.e. those coming from an application of Theorem 2.2.

By the symmetry assumption, the family F is closed under permutations of
its inputs. Hence, by Lemma 4.3 each of its functions fi depend on a set Ji of at
most t coordinates and possibly the value

∑n
i=1 xi.

Consider a graph = on n = N/2 nodes with SAt(=) > c, and let =′ be the
graph obtained by taking two copies of = as discussed before. Then =′ has the
property that SAt(=′) = SAt(=) and opt(=′) = opt(=). Let H be the corresponding
functional defined in (4.1).

Let us consider =′ as a function on {±1}N assigning cuts to their Max Cut
value in =′. Suppose we can express express,

c − =′ =

M∑
i=1

λi fi ,

wherein λi > 0. Taking inner product with the functional H on both sides yields

〈H, c − =′〉 = c − SAt(=′) < 0

while,
〈H, fi〉 > 0 ∀i by Lemma 4.8 ,

a contradiction. �

5 Conclusion

We have shown that for constraint satisfaction problems, there is an intimate
relationship between general polynomial-sized linear programs and those arising
from O(1) rounds of the Sherali-Adams hierarchy. There are a few natural
questions that readily suggest themselves.

Firstly, our quantitative bounds are far from optimal. For instance, it is known
that the integrality gap of 1/2 + ε for Max Cut persists for ncε rounds, where cε
is some constant depending on ε [CMM09], while we are only able to prove an

integrality gap for LPs of size nΩ( log n
log log n ). This is due to the factor of md appearing

in our Fourier estimate (3.6).
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Question 5.1. Is it the case that for approximating (Boolean) max-CSP problems
on n variables, linear programs of size R(n) are only as powerful as those arising
from poly( log R(n)

log n ) rounds of the Sherali-Adams hierarchy?

Secondly, given the connection for linear programs, it is natural to suspect
that a similar phenomenon holds for SDPs.

Question 5.2. For max-CSP problems, is there a connection between the efficacy
of general SDPs and those from the Lasserre SDP hierarchy?

Finally, our techniques have made very strong use of the product structure
on the space of feasible assignments for CSPs. One might hope to extend these
connections to other types of problems like finding maximum-weight perfect
matchings in general graphs [Yan91] or approximating vertex cover.
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