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Abstract. We regard the problem of communication in the presence dfyfau
transmissions. In contrast to the classical works in théaawe assume some
structure on the times when the faults occur. More realgst@&ms the “burst error
model”, in which all faults occur in some small time interval

Like previous work, our problem can best be modelled as aplager perfect
information game, in which one player (“Paul”) has to guessimberz from
{1,...,n} using Yes/No-questions, which the second player (“Cajdhes to
answer truthfully apart from few lies. In our setting, aétdihave to be in a con-
secutive set ok rounds.

We show that (for bigz) Paul needs roughljog n + loglogn + k rounds to
determine the number, which is omtymore than the case of just one single lie.

1 Introduction and Results

Communication in the presence of transmission faults is #-stdied subject.
Pelc’s [Pel02] great survey lists more than a hundred rafesgon such problems.

1.1 Communication Model with Errors

The customary model is that there are two entities, “Sended’ “Receiver”. Sender
wants to send a message to Receiver. The message is repdeiserat numbes: from
[n] :={1,...,n}. If we have an error-free channel, it is clear that Sendedsemsend
log(n) := log,(n) bits (and Receiver only needs to listen).

In the model with errors, however, some of the bits sent byd8eare flipped. Of
course, we need some restriction on the occurrence of eg®therwise no reliable
communication is possible. Typically, we assume that sugdrgonly occur a certain
number of times, at a certain rate or according to a certaibatyility distribution.

To compete with the errors, we often assume a two-way comeatian, that is, Re-
ceiver may send out information to Sender. However, we glfyichink of the situation
as not symmetric: Bits sent from Receiver to Sender are rilgwped (no errors occur).
This model is justified in many practical situations where eaommunication partner
has much less energy available and thus his sendings arevoloegable to errors.



1.2 Liar Games

We often adopt a worst-case view. Hence we do not assumertite & be random, but
rather to be decided on by a malevolent adversary. In factnesethink of that sender
not really wanting to share his sectet but rather trying to keep it by intentionally
causing errors (lying). This leads to a so-called game In the following, we adopt
the language usually used in the analysis of such gamesrtioydar, Sender/Lier will
be called “Carole”, an anagram of oracle, and Receiver, 8tguestioning Carole to
reveal the secret, will be called “Paul” in honor of Paul &gthe great questioner.

The rules of the game are as follows: Carole decides on a nufgbaet): € [n].
There argg rounds. Each round, Paul asks a Yes/No-question, whichi€answers.
In doing so, Carole may lie according to further specificadidPaul wins the game, if
afterq such rounds, he knows the number.

To make this a perfect information game (in-line with our stezase view), let us
assume that Carole does not have to decide on the numbeforehand, but rather
tries to answer in a way that is consistent with some seceettdehnical reasons, we
shall also allow that she lies in a way that is inconsistetti any secret, which will be
viewed as a win for Paul as well.

We remark that, depending on the parameterg, and on the lying restrictions
either Paul or Carole has a winning strategy. So we say thalt Wias if he has a
winning strategy.

Note that this set-up perfectly models the communicatiarblem with errors.
There is one more remark regarding Paul’s questions. It sg¢leat his communication
effort is much higher, since each question can only be repted by a: bit string.

This could be justfied by the stronger battery Paul has coeaitarCarole, but there
is a more natural explanation: If Paul and Carole agree onraramication protocol
beforehand, then Paul does not need to transmit his qusestiauffices that he merely
repeats the bit he just received and Carole can deduce theuestion from this and
the agreed-on protocol.

In the following, we rather use the language of games thanotheommunication
protocols. With the above equivalence at hand, this is merguestion of taste and we
follow the authors of previous work in this respect.

1.3 Previous Results

As said, liar games are an intensively studied subject. We briefly state the main
results relevant for our work and refer to the survey papéc FRel02] for a more
complete coverage.

The first to notice the connection between erroneous congation and such
games was Alfréd Rényi [Rén61,Rén76]. However, fomaldme most of this commu-
nity was not aware of Rényi's work and cited Ulam [Ula76] agentor of liar games.

Pelc [Pel87] was the first to completely analyse the game evithlie. He showed
that Paul wins foreven if n < 27/(¢+ 1), andforoddnif n < (27 —¢+1)/(g+1).
There are numerous results foe= 2, 3, or 4 lies, which we will not discuss here.

Spencer [Spe92] solved the general problem for any fixed euibf lies. Here
Paul wins ifn < 29/( %) (1 + o(1)), where( %) = S5 (9).
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All results above concern the fully adaptive (‘real gameiftimg with unrestricted
questions and fixed numbers of lies. The problem has a quferetit nature if only
comparison questions (“lIs < s?” for somes € [n]) are allowed [BK93], a constant
fraction of lies is allowed in any initial segment of round[89], or Paul’'s questions
have to come in two batches, where Carole gives her answirafter having received
the whole batch [CM99].

1.4 Our Contribution

Translating the above results back into the model of errosemmmunication, the
errors occur independently at arbitrary times. While thighthbe true for some types
of errors, we feel that it is much more likely that the errocsur in bunchs. We think,
e.g., of atmospheric disorders. Here, not only a single Wit affected, but a whole
sequence of bits sent.

In the game theoretic setting, we allow Carole to lie up tomes, but only in a way
that all lies occur ink consecutive rounds. Note that, in théseunds, Carole may lie,
but of course she does not have to.

The additional interval restriction makes Carole’s positmuch harder. Roughly
speaking, Paul only needsmore questions than in the one-lie game. This shows that,
in scenarios where it can be assumed, using our intervahgdgn is a valuable im-
provement. More precisely, we show the following.

Theorem 1. Letn,q € Nandk € N>».

(i) Paulwinsifq > [logn] + k + [loglog2n] andq > [logn] + 2k.
(i) Carole winsifq < logn + 2k.
(iiiy Carole winsifq < logn + k + loglog2n — 1.

We assumed: > 2 as otherwise the game in consideration would revert to the
searching game with just one lie.

Note that Theorem 1 gives almost matching lower and uppend®an the number
of questions Paul needs to reliably distinguisimtegers. Specifically, for all choices of
n andk, the upper and lower bound differ by at m@st

2 Notation and Preliminaries

We describe a game position by a non-negative vebtoe (zy,...,xo), wherex;
is the number of integers for which (assuming it to be the emiranswer) Carole is
allowed to lie within the next questions. Note that for the analysis, it does not matter
which are the particular integers that Carole may lieifdmes, it is only their number
that matters.

In particular,zy, is the number of integers for which Carole has never lied 2arid
the number of integers for which Carole must not lie anymiiate thatzfz0 x; <n,
and this is strict if there are integers for which Carole wibbave lied at two times
separated by at leaktrounds. For the initial position, denoté&f, we haver;, = n and
{1,‘0:...:1']@,1:0.



We continue formalizing the questions Paul is asking. Na#t that a Yes/No-
questions can always be expressed in the farnz “S?” for someS C [n]. Since again
for the analysis the particular integers are not so releveedescribe the question via
an integer vector = (vy,...,vg), wherev; is the number of integers that (i) are in
S and (ii) Carole may liei times for. Consequently, we have< v; < z; for all
i € {0,...,k}. To ease the language, we identify questions with theiresponding
vectors.

Depending on Carole’s answer there are two possibilitiegi®next game position
P’, namelyP’ = YES(P,v) andP’ = NO(P,v), where

YES(P,v) = (U, Tk — Uk, Th—1, Th—2, - - -, T1 + V0)
NO(P,v) = YES(P, P —v) = (T — Uk, Uk, Th—1, Tke2, - - - , L1 + To — Vo)

Note that neithet’ES (P, v) nor NO(P,v) depends on any; with 0 < ¢ < k. For the
integers corresponding to these entries, Carole’s ansges dlot affect the state of the
game.

For a positionP = (xg, ..., xo), a question (i.e. an integer vectowith 0 < v <
P) is aperfect bisectiotif vy = %azo andv, = %vk.

Recall thatt ES(P, v) and NO(P, v) do not depend omy, ..., v;_1, SO if Paul can
make a perfect bisection, then the successor state doespenid on Carole’s answer.

We call a question guasi-perfect bisectioif v; € {|x;/2], [z;/2]} fori =0 and
i=k.

We conclude this section by explaining when some positidretter than another:

Lemma 2. LetP = (zy,...,x0) andP’ = (z},. .., x;) be positions (= non-negative
inegral vectors). Assume th&and P’ have the following property:
k k
S owi <) forall j=0,...,k. (1)
1=y i=j

Then for anyy, we have the implication
Paul can winP’ in ¢ rounds = Paul can winP in ¢ rounds

In this case, we call positioR at least as goods P/, and we callP’ at most as good
asp.

Proof. Though the statement is rather technical, the idea is sirdygecan generatg’
out of P by (i) allowing Carole some additional lies a@ij adding some more numbers
to the search space. Clearly, both operations will make #meegharder for Paul, so if
he has a winning strategy fd?’ in ¢ rounds, then exactly the same strategy will also
win P.

So we want to prove that we can indeed transfétrimto P’ by operationgi) and
(ii) . We use an inductive argument. Firstly, we add some numbieypex, to P until
we get equality forj = 0,i.e., Y% 2 = 2% 4l

Now we havery = S-F i —SF a0 > 38 2 =% | @) = 2, somg—af >
0. We choosexr, — x;, numbers inP at thex,-position. For these numbers, we allow



Carole to lie in the next step. So we get a new posifidn= (xy, ..., z2, 21 + z9 —
z}, z},), and we know thaP is at least as good d2!.

Now inductively we produce a sequeneéé := P, P!, P2, ... P* with the follow-
ing properties:

— P~ lis atleast as good &' (in the sense of equation (1)).
— P'is generated fron®~! by operatlons of typ€é) and(ii).
— For0 < g <iwe haveﬂ = z , wherez? is thej-entry of P°.

k
—ZJ 0%5 == 09cjf0rz>0

Indeed, we have already construcfetl Out of Pi—!, by the same construction we get
P?, namely by allowing one additional I|e for some numbers fr:o’m (Formally by
settingP* = (z ',..., 2 1,2 +alT) —2)_ g, 2]y, 2i75, ...,z ). Note that
P*~! andP? are identical except for the components1 andi. It is easy to check that
P has the desired properties.

Finally, we end up withP*, which is automatically identical t&”.

Altogether, we have constructét! out of P by the feasible operatior{§ and(ii) .
This proves the claim.

3 Upper Bounds and Strategies for Paul

In this section, we give a strategy for Paul. In this way, wewdeupper bounds on
the number of questions Paul needs in order to reveal thetsece [n]. We show
(Corollary 6) that fom being a power o2, Paul can win if

q > max {k +logn + [loglogn], 2k + logn}.

Our strategy is constructive, that is, immediately yielde#iciently executable proto-
col for the underlying communication problem.

Here is an outline of the strategy. Assume thas a power of two. Clearly, some
strategy working for a larget will also work for a smaller one, hence this assumption
is fine (apart from possible a minor loss in the resulting ls)nif all z; are even, Paul
can ask the question= £ P. He does so for the firdbg n rounds of the game (Main
Game), resulting in a position witty, = 1. Now the aim is to get rid of this one integer
Carole has not lied for yet. To do so, we ask a “trigger questimughly (1,0, ...,0).
Either we succeeded with our plan and simply repeat askingélh of thez-integers
(Endgame 1), or we end up with very few possible integersgaitber (Endgame 11),
allowing an easy analysis.

Lemma 3 (Main Game).If n is a power o2, then with the firsin = logn questions
Paul can reach position

P™=(1,1,2,...,2572 (m — k 4+ 1)2F1).

Proof. In the firstm rounds, Paul can always ask questions of the ferm P/2, where
P is the current game position. The position aftesuch perfect bisections is

Pk — (2m7k’ 2m7k’ 2m7k+1’ e 2m71).



A simple inductive argument shows that the position after v questions withy <
m—kis

Pk+v _ (zm—k,—v 2m—k—u 2m—k—u+1 o 2m—u—2 (V + 1) . 2m—u—1).
Forv = m — k, we get the statement of the lemma.

After the first m questions, Paul asks a “trigger questiom™*! =
(1,0,...,0,28=2), If k is sufficiently small compared ta, Carole will not give up
the relatively many possibilities encodedig and therefore answer “No”. The follow-
ing two lemmas deal with both possible successor positiwaselyY ES(P™, v™+1)
andNO(P™, vy™m+1),

Lemma 4 (Endgame I).From position
NO(P™, v™ 1) =(0,2°,2° ... 2573 (m — k4 1)2F 1)

Paul wins the game (by reaching positih . . ., 0, 1)), with at mostc — 1 + [logm|
questions.

Proof. With k—2 perfect bisections, Paul reaches the position wjth= ... = 22 = 0,
o1 =1landzy = 2(m — k+ 1) + V722071 /21 = 2 — k.

In the next question, Paul asks for — [k/2] integers corresponding to the last
entry of the position. So the next position is no more than

(0,...,0,m — |k/2] +1) < (0,...,0,m).

From this position on, the game reverts to classical “Twepiyestions” problem
for a universe of sizen. So Paul can win withllog m] additional questions.
The total number of questions is at most

k—2 +1 +[logm] <k—1+ [logm].
Lemma5 (Endgame Il). Paul can win with at mostk — 1 questions from position
YES(P™,v™ ) = (1,0,2°,21, ... 273 2F=2)

Proof. With k — 2 quasi-perfect bisections, Paul reaches a position atdsagbod as

k—2
(1,0,...,0,) "2'/2) = (1,0...,0,k — 1).
=0

Now Paul asks for the number corresponding to the first erfttigeoposition, that
is, the questiom = (1,0,...,0). If the answer is “Yes”, Paul wins instantly. Otherwise,
the position i50, 1,0, ...,k — 1). Playing the “Twenty Questions” game on the- 1
integers corresponding to the last entry, we reach with[log k] additional questions
a position withzy = x,_1_; = 1 and all other entries naught. From this position, Paul
can win ink — t questions.

The total number of questions is at most

E=2+ 14+ k=2k-1.



Corollary 6. Forlogn € N, Paul can win if
q > max {k + logn + [loglogn], 2k + logn}.

Proof. By Lemma 3, we neetbgn questions for the main game. Then Paul asks one
“trigger question”. Depending on Carole’s answer, Pauhagitplays Endgame | or
Endgame Il. In the first case, he nedds- [loglogn] — 1 further questions to win
the game (Lemma 4). In the latter case, Paul wins @ith- 1 questions (Lemma 5).

If n is not a power of two, we can replace the starting posifios: (n,0,...,0)
by (2/es(™)1), 0,...,0), which is at most as good @& By the Corollary, Paul can still
win if

q > max {k + [logn] + [loglogn], 2k + [logn]},

which is the statement in Theorem 1 (i).

4 Lower Bound

In this section, we prove lower bounds showing that ouregjies given in the previous
section are optimal up to a small constant number of questide start by defining the
following formal weight function

k—1

wi (T, ... w0) = ( — k +2)28 1y + Z 20,
=0

The weight function is supposed to determine whether it ssiide for Paul to find
out the correct number g rounds. It does not quite so, but it solves only a formal
relaxation of the problem. (That’s why it is calléafmal weight function.)

Note that the weight function is linear in its variables.

The following lemma summarises the important propertiesuch a formal weight
function.

Lemma 7. (i) Triangleequality: Forall j > k + 1 and for all integral vectors® and
va

w;(P) = w1 (VES(P,0)) + w;_1 (NO(P,v)).

(Note: We do not require that the entries@fandv are positive.)
(ii) Formal descent: For all j > k£ + 1 and for all integral P, there is a formal choice
v for Paul, such that

w;—1(YES(P,v)) = w;_1(NO(P,v)), if w;(P) is even.

w;_1 (YES(P,v)) = w;—1(NO(P,v)) + 1, if w;(P) is odd.

By a formal choice, we mean an integral vector with possielyative entries.
(i) Starting condition: For j = k, if P is a state with non-negative integral entires, we
havewy, (P) < 2% if and only if Paul can win the situatioR in k rounds.



Proof. Let P = (xg,...,zo), v = (vg, ... vo). Direct calculation proves the assertion:

Wj—1 (YES(P, ’U)) +wj—1 (NO(P, U))

k-2
<(j — k125 oy 4 26N — o) + Z 2wt + (vo + x1)>
i—1

k—2
+ <(] — k4 128 oy —vp) + 28 Loy + Z 2iwi1 + (zo — vo + x1)>
i=1
k—2
(G —k+1)2" oy + 26y + ) "2 a4+ 20 +
=1

k—1
= (j—k+ 128 o + ) 2% + 221 + 20
=2
k—1
= (j—k+1)2 2+ ) 2
=0
= w;(P)

This proves the triangle equality.

Obviously, if P = (0,...,0,2,0,...,0), then Paul can choose =
(0,...,0,1,0,...,0), and thus obtainv;_1(YES(P,v)) = w;—1(NO(P,v)). (Be-
cause by symmetryES(P,v) = NO(P,v).)

But w; is linear in all entries, so it suffices to prove the claim fBr =
0,...,0,1,0,...,0), with thei-th entry= 1. Let P = (0,...,0,1,0,...,0), but
with the: — 1-th entry= 1. Now puta := w;(P) — 2w;_1(P’). We must distinguish
two cases:

— w,;(P) is even: Then alsa is even. Puv := P+ (0,.
P'+(0,...,0,%),s0w;_1(YES(P,v)) = w;j_1(P")+
hand, by the triangle equality;_1 (NO(P, v)) = w,(
Lw;(P) = w1 (YES(P,v)).

— w;(P)isodd: Thenalsa is odd. Put := P+(0,...,0, ). ThenYES(P,v) =
P+ (0,...,0,%), sow;_1(YES(P,v)) = wj_l(P') ol = L(w;(P) +
1). On the other hand, by the triangle equality;,_, (NO(P,v)) = wJ(P) -

w;j—1 (YES(P,v)) = 3(w;(P) — 1) = w;—1(YES(P,v)) — 1.

%) ThenYES(P,v) =

= sw;(P). Onthe other

]53) wj_l(YES(P,’U)) =

For the starting condition, note that duejte= &, the weight function simplifies to
wk(]}k, .. ,Z‘O) = Zf:() 27.137
Case liz;, > 1
In this case, there is a ch{@; on thex-position.

First assume that the weight¥s2*. Then there is some other chify. Now Carol
can take the following strategy: In the remainihgounds, she always says th@ is
the correct chip. Then after tihemoves(C; is still in the game. But so i€, because it
takes at least moves to travel down all the way to thg-position and one more to be
kicked out. Hence, there are two chips left and Paul canrmtidevhich one is correct.



Now assume that the weightis 2. ThenC is the only chip, and Paul has already
won.
Case 2z, =0
First assume that the weight is 2*. Then Paul chooses the question :=
(0,...,0, L%xoj). (L | means rounding down to the next integer.) The two possible
consecutive states differ only at thg-position, and it is better for Carole to take
NO(P,v) = (0,zy,...,z2,21 + | 320]), having weight

- k-1
1 )
w(NO(P,v)) = §:L'o-‘ + 21+ E 2wy
i=1

- k
1 i—1
_ 51-0%;2

So Paul can assure that in the following state, the weighit3$—!. By induction, after
k rounds the weight i< 1, implying that only one chip is left. Hence, Paul wins the
game.

Now assume that the weight is 2. Paul asks a question, and Carol choses the
answer that leaves more chips on theposition. The other positions are indifferent
against Carols choice, and the consecutive stafe,is = (0, z,...,z2,21 + Zo),
with somez, > 0.

Then the weight of the new position is at least

k—1

w(Pnew) > 530 +x1 + Z 2ixi+1
i=1

k
. i—1,,
o + E 27wy
=1

w(pP) _ 2 k—1
=—">— =2"""
2 ” 2

>

N | =

So Carol can assure that in the following state, the weight 8*~'. By induction,
after k rounds the weight is> 1. But during those rounds, all chips must move all the
way down to thery-position. So all chips have weight implying that there is more
than one chip left. Hence, Carol wins the game.

Corollary 8. If P is a state in the liars game, and;if> k with w;(P) > 27, then Paul
can not win the game withimoves.

Hence,max{j > k| w;(P) < 27} is a lower bound for the minimal number of
guestions that Paul needs.

Proof. Assume Paul had a strategy that would yield him victorymoves. Then Carol
does the following: In each round, she picks the answer Wwigthigher weight function.



By the triangle equality, the new weight will be at least hbE old weight. Hence, we
have the invariant thab;(P;) > 2%, whereP; is the state when there aiguestions
left.

In particular, fori = k, we havew;,(Py) > 2%, and by our assumption, Paul can still
win within &£ moves. This is a contradiction to the starting conditionaf theorem.

We now show an almost tight lower bound for the case that 22" To do so, we
need the following lemma.

Lemma 9. For n = 2, Paul needs at leagk + 1 questions to win the game.

Proof. For the firstk questions Carole claims that = 1, and for the nexk ques-
tions she claims = 2. Now Paul needs one additional questions to finally detezgmin
Carole’s choice.

The above lower bound far = 2 extends in the following way to arbitrary.
Lemma 10. Paul needs at leadbg n + 2k questions to win the game.

Proof. From the start positiof, 0, ..., 0), Paul needs at leakign — 1 questions to
reach a positio® = (xy, ..., o) with x = 2, if Carole always chooses an answer
that yields the largest entry in the first component of theesasor position. Lemma 9
implies that Paul needs at le&dt + 1 questions to win the game from positiéh

Thus the total number of questions needed for Paul to win Hreegis at least
logn + 2k.

Theorem 1 (ii) is now a corollary of the lemma above.

Proof (Theorem 1 (ii))If n < 29-2* then Paul may ask less thag n + 2k questions
and henceforth cannot win the game by Lemma 10.
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