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Abstract— With the work of Khot and Vishnoi [18] as a
starting point, we obtain integrality gaps for certain strong SDP
relaxations of U G. Specifically, we exhibit a U
G gap instance for the basic semidefinite program strengthened
by all valid linear inequalities on the inner products of up to
exp(Ω(log log n)1/4) vectors. For a stronger relaxation obtained from
the basic semidefinite program by R rounds of Sherali–Adams lift-
and-project, we prove a U G integrality gap for R =
Ω(log log n)1/4.

By composing these SDP gaps with UGC-hardness reductions,
the above results imply corresponding integrality gaps for every
problem for which a UGC-based hardness is known. Consequently,
this work implies that including any valid constraints on up
to exp(Ω(log log n)1/4) vectors to natural semidefinite program,
does not improve the approximation ratio for any problem in
the following classes: constraint satisfaction problems, ordering
constraint satisfaction problems and metric labeling problems over
constant-size metrics.

We obtain similar SDP integrality gaps for B S,
building on [11]. We also exhibit, for explicit constants γ, δ > 0, an
n-point negative-type metric which requires distortion Ω(log log n)γ
to embed into `1, although all its subsets of size exp(Ω(log log n)δ)
embed isometrically into `1.

Keywords-semidefinite programming, approximation algorithms,
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1. I

U G (UG) is a constraint satisfaction problem
where the input consists of a constraint graph G, a label set
[q], and a bijection πuv : [q]→ [q] for each edge e = (u, v) ∈
E(G). The objective is to find a labeling of the vertices in
G so as to maximize the number of edges that are satisfied.
Here an edge e = (u, v) is said to be satisfied by a labeling if
u is assigned a label `u and v is assigned a label `v such that
πuv(`u) = `v. The Unique Games Conjecture (UGC) of [14]
asserts that for arbitrarily small constants η, δ > 0, with a
sufficiently large label set [q], it is NP-hard to decide whether
there is a labeling that satisfies 1 − η fraction of the edges
or, no labeling satisfies more than δ fraction of the edges.

Over the last few years, the Unique Games Conjecture
has fueled many of the major developments in hardness of
approximation. Starting with the work of Khot [14] on M-
2SAT-D, hardness of approximation results for several
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fundamental problems like M C [15], V C [16],
non-uniform S C [9], [18] and M-2-SAT [5] have
been obtained assuming the Unique Games Conjecture. In
more recent work [21], [13], [19], [23], assuming UGC,
approximability of large classes of problems have been
determined. Specifically, the work on UGC based hardness
results has demonstrated the following (in a precise sense):

For every constraint satisfaction problem, ordering con-
straint satisfaction problem, metric labeling problem over
constant size metric space, the following holds: Assuming
UGC, it is NP-hard to approximate to a ratio better than
the integrality gap of an simple generic semidefinite relax-
ation SDPgen (for its definition see e.g. [21] or [22]).

Irrespective of the truth of UGC, it is now clear that UGC
precisely identifies an algorithmic barrier reached by existing
work on approximation algorithms. A natural question
that arises is whether stronger semidefinite programming
relaxations are sufficient to breach this barrier and disprove
the UGC? Or does disproving UGC warrant the use of a
new technique different from semidefinite programming?

Unfortunately, progress towards answering this compelling
question has been slow and difficult. In the influential paper
of Khot–Vishnoi [18], the authors construct an integrality gap
instance for a simple SDP relaxation of UG. To the
best of our knowledge, this is the sole SDP gap construction
for unique games that appears in literature. On one hand, this
leaves out the possibility that strong SDPs disprove UGC.
More alarmingly, except in a few cases, most UGC based
hardness results could possibly be falsified using a strong
SDP relaxation. Except for V C [12], and k-CSPs
[25], [31], in all other cases, there are no strong SDP gaps
supporting a UG hardness result.

Obtaining strong SDP gaps that support a UGC based
hardness result has been a difficult exercise. In fact, the
work of [18] stemmed out of an effort in this direction for
the S C problem. Specifically, the Goemans–Linial
conjecture regarding embeddability of L2

2 metrics in to L1
was refuted in [18] by constructing a SDP gap supporting
the UGC based hardness for S C.

The following possibility is entirely consistent with the
existing literature: Even for the M C problem which is
fairly well studied [15], [20], including an extra inequality
on every set of 5 variables in to the standard semidefinite
program yields a better approximation, thus disproving UGC.



1.1. Results

Our main result is an integrality gap for certain strong SDP
relaxations of U G. We consider two hierarchies
of SDP relaxations denoted by {LHR}R∈� and {SAR}R∈�. The
Rth level relaxation LHR consists of the following: 1) SDP
vectors for every vertex of the unique game, 2) All valid
constraints on vectors corresponding to at most R vertices.
Equivalently, the LHR relaxation consists of SDP vectors and
local distributions µS over integral assignments to sets S of
at most R variables, such that the second moments of local
distributions µS match the corresponding inner products of
SDP vectors.

The SAR relaxation is a strengthening of LHR with the
additional constraint that for two sets S ,T of size at most R,
the corresponding local distribution over integral assignments
µS , µT must have the same marginal distribution over S ∩ T .
The SAR relaxation corresponds to simple SDP relaxation
strengthened by Rth round of Sherali-Adams hierarchy [28].
Let LHR(Υ) and SAR(Υ) denote the optimum value of the
corresponding SDP relaxations on the instance Υ. Further,
let opt(Υ) denote the value of the optimum labeling for Υ.
For the LH and SA hierarchies, we show:

Theorem 1.1: For all constants η, δ > 0, there exists a
U G instance Υ on N vertices such that LHR(Υ) >
1 − η and opt(Υ) 6 δ for R = Ω(exp((log log N)1/4)).

Theorem 1.2: For all constants η, δ > 0, there exists a
Unique games instance Υ on N vertices such that SAR(Υ) >
1 − η and opt(Υ) 6 δ for R = Ω((log log N)1/4).

Demonstrated for the first time in [18], and used in
numerous later works [8], [27], [31], [21], [13], [19], it
is by now well known that integrality gaps can be composed
with hardness reductions. In particular, given a reduction Φ

from unique games to a certain problem Λ, on starting the
reduction with a integrality gap instance Υ for unique games,
the resulting instance Φ(Υ) is a corresponding integrality gap
for Λ. Composing the integrality gap instance for LHR or
SAR relaxation of unique games, along with UG reductions
in [15], [5], [21], [13], [19], [23], one can obtain integrality
gaps for LHR and SAR relaxations of several combinatorial
optimization problems. For the sake of succinctness, we will
state the following general theorem:

Theorem 1.3: Let Λ denote a problem in one of the
following classes:

– G C S P: a gener-
alization of CSPs permitting bounded payoff functions
(positive or negative), instead of predicates [21, Defini-
tion 3.1]

– O C S P: a class
of problems containing M A S,
B [10], with predicates/bounded payoff func-
tions on orderings of elements.

Let SDPgen denote the SDP relaxation that yields the
optimal approximation ratio for Λ under UGC. Then the

following holds: Given an instance Υ of the problem Λ, with
SDPgen(Υ) > c and opt(Υ) 6 s, for every constant η > 0,
there exists an instance Υη over N variables such that

– LHR(Υη) > c − η and opt(Υη) 6 s + η for R =

Ωη(exp((log log N)1/4)),
– SAR(Υη) > c − η and opt(Υη) 6 s + η for R =

Ωη((log log N)1/4).
The classes of problems for which the above result holds

include M C [15], M 2-S [5], G P-
 [23] k-C [19] and MA S [13].
Notable exceptions that do not directly fall under this
framework (but are still UG-hard) are V C and
S C.

Reductions from U G to S C have been
exhibited in [18] and [9]. With the integrality gap for LHR

relaxation of U G (Theorem 1.1), these reductions
imply a corresponding LHR integrality gap for S C.
Viewed as a metric space, the SDP vectors of the integrality
gap instance yield the following result,

Theorem 1.4: For some absolute constants γ, δ > 0, there
exists an N-point L2

2 metric that requires distortion at least
Ω(log log N)δ to embed in to L1, while every set of size at
most O(exp((log log N)γ)) embeds isometrically in to L1.

The U S C problem is among the many
important problems for which no reduction from U
G is known. In [11], the techniques of [18] were
extended to obtain an integrality gap for U S
C for the SDP with triangle inequalities. Roughly speaking,
the SDP gap construction in [11] consists of the hypercube
with its vertices identified by certain symmetries such as
cyclic shift of the coordinates. Using a similar construction,
we obtain the following SDP integrality gap for the B
S problem,

Theorem 1.5: For some absolute constants γ, δ > 0, there
exists an instance G on N vertices of B S
such that the ratio opt(G)/LHR(G) > Ω(log log N)δ for R =

O(log log N)γ.

1.2. Related Work

Considerable progress has been made in understanding the
limits of linear programming hierarchies [2], [3], [29], [27],
[8]. Lower bound results of this nature are fewer in the case of
semidefinite programs. A Ω(n)-round lower bound for proving
unsatisfiability of random 3-SAT formulae was obtained for
the Lovász–Schrijver SDP hierarchy (LS+) in [6], [1]. In turn,
this lower bound leads to Ω(n)-round LS+ integrality gaps
for problems like S C, H V C,
where a matching NP-hardness result is known. Similarly,
the 7/6-integrality gap for Ω(n) rounds of LS+ in [26] falls in
a regime where a matching NP-hardness result is known. A
significant exception is the result of Georgiou et al. [12] that
exhibited a 2 − ε-integrality gap for Ω(

√
log n/log log n) rounds

of LS+ hierarchy. In a beautiful work, Schoenebeck [25]
exhibited integrality gaps for R 3-SAT in the Lasserre



SDP hierarchy. Building on this result, Tulsiani [31] obtained
an Ω(n)-round integrality gap matching the corresponding
UG hardness for k-CSP [24].

Independent of our work, Khot and Saket [17] obtained
integrality gap constructions for the M C and the
S C problems against the SAR hierarchy. While
the integrality gap instances in [17] are nearly identical
to the corresponding ones in this work, the SDP solutions
are considerably different. In particular, this work develops
additional technical machinery to obtain SDP gaps for U
G, which in turn yields gaps for a large array of other
problems.

1.3. Overview of the Technique

In this section, we will present a brief overview of our
techniques and a road map for the rest of the paper.

The overall strategy in this work to construct SDP
integrality gaps is along the lines of Khot–Vishnoi [18].
Let us suppose we wish to construct an SDP integrality gap
for a problem Λ (say M C). Let ΦΛ be a reduction from
U G to the problem Λ. The idea is to start from an
SDP integrality gap Υ for U G, and then execute
the reduction ΦΛ on the instance Υ, to obtain the SDP gap
instance ΦΛ(Υ). Surprisingly, as demonstrated in [18], the
SDP vector solution for Υ can be transformed through the
reduction to obtain the SDP solution for ΦΛ(Υ).

Although this technique has been used extensively in
numerous works [8], [27], [31], [21], [13], [19] since [18],
there is a crucial distinction between [18] and later works.
In all other works, starting with an SDP gap Υ for U
G, one obtains an integrality gap for an SDP relaxation
that is no stronger. For instance, starting with a integrality
gap for 10-rounds of a SDP hierarchy, the resulting SDP gap
instance satisfies at most 10 rounds of the same hierarchy.

The surprising aspect of [18], is that it harnesses the UG
reduction ΦΛ to obtain an integrality gap for a “stronger”
SDP relaxation than the one which it stared with. Specifically,
starting with an integrality gap Υ for a simple SDP relaxation
of UG, [18] obtain an SDP gap for M C which
obeys all valid constraints on 3 variables. The proof of this
fact (the triangle inequality) is perhaps the most technical
and least understood aspect about [18]. One of the main
contributions of this work is to conceptualize and simplify
this aspect of [18]. Armed with the understanding of [18],
we then develop the requisite machinery to extend it to a
strong SDP integrality gap for U G.

To obtain strong SDP gaps for U G, we will
apply the above strategy on a reduction from U G
to E2Linq due to Khot et al. [15]. Note that E2Linq is a
special case of U G. In this article, an integrality
gap instance for the basic semidefinite program of U
G, will be referred to as a weak gap instance (see
Definition 3.1). Formally, we show the following reduction
from a weak gap instance for U G over a large

alphabet to an integrality gap for a strong SDP relaxation of
E2Linq.

Theorem 1.6: For a prime q and γ > 0, let Φγ,q denote the
reduction from U G to E2Linq with completeness
1 − γ. Let Υ be a weak (1 − η, δ)-gap instance of U
G. Then, for every q of order unity, there exists an SDP
solution for the E2Linq instance Φγ,q(Υ) such that

– the SDP solution is feasible for LHR for R = 2O(1/η1/4),
– the SDP solution is feasible for SAR for R = O(η1/4),
– the SDP solution has value 1 − γ − oη,δ(1) for Φγ,q(Υ).

In particular, the E2Linq instance Φγ,q(Υ) is a (1 − γ −
oη,δ(1), q−η/2 + oη,δ(1))) integrality gap instance for the
relaxation LHR for R = 2Ω(1/η1/4). Further, Φγ,q(Υ) is a
(1 − γ − oη,δ(1), q−η/2 + oη,δ(1)) integrality gap instance for
the relaxation SAR for R = Ω(1/η1/4).

Combining the weak gap for U G constructed
in [18], with the above theorem yields Theorem 1.1 and
Theorem 1.2. As already pointed out, by now it is fairly
straightforward to translate an R-round integrality gap for
U G to an R-round integrality gap for other
problems (using known UG-hardness reductions). Hence,
Theorem 1.3 is a consequence of Theorem 1.1 and Theo-
rem 1.2.

1.3.1. Example of M C: For the sake of exposition,
we will describe how our techniques can be used to construct
an SDP integrality gap for M C. Extending the approach
to obtain U G integrality gap mentioned above,
requires additional ideas such as tensoring for �q-vectors,
and a more involved construction of SDP vectors.

Let Υ be a (weak) SDP integrality gap instance for U
G with alphabet [n] (e.g., the one in [18]). We obtain a
M C instance G from Υ by executing the UG hardness
reduction for M C in [15]. Suppose the reduction has
completeness c and soundness s (with c/s = 0.878, say). We
claim that this M C instance G is essentially a (c, s)-
integrality gap for a strong SDP relaxation of M C. The
challenge is to exhibit a strong SDP solution of value roughly
c. We start from an optimal SDP solution B for Υ. This SDP
solution consists of “clouds” B ∈ B of n orthonormal vector.
Each cloud in B corresponds to a vertex in Υ and each
vector in the cloud corresponds to a label for that vertex. The
clouds satisfy the following properties (see §3 for further
justification of these properties):

1.) Matching Property: For every two clouds A, B ∈ B,
there exists a matching πB←A : A → B along which the
inner product of vectors between A and B is maximized.
Specifically, if ρ(A, B) := maxa∈A,b∈B〈a, b〉, then for each
vector a in A, we have 〈a, πB←A(a)〉 = ρ(A, B). It is not hard
to see that this matching is unique if ρ(A, B)2 > 1/2 (using
orthonormality).

2.) Integrality Property: The vectors in the SDP solu-
tion B are normalized {±1}-vectors. Specifically,

⋃
B ⊆

{1/
√

d,−1/
√

d}d for some d ∈ �.



We can now describe how to construct a good SDP solution
for G from the SDP solution B for Υ.
Global vector solution. The vectors that we assign to the
vertices of G resemble (somewhat simpler in this work) the
vectors in [18]. According to the reduction, the vertices of Υ

are of the form (B, x) where B is a cloud and x ∈ {±1}B is a
{±1}-assignment to the elements of the clouds. To a vertex
(B, x), we can essentially assign the vector

VB,x := 1
√

n

∑
b∈Bxbb⊗t .

(In the final construction we use different, more complicated
vectors, because it allows us to improve the parameters
significantly.) A simple calculation [18] shows that for
constant t ∈ �, this vector solution has SDP-objective value
≈ c. The interesting part is to show that vector solution
is feasible for the SDP. The crucial property of this SDP
solution is that the inner product of two vectors 〈VA,x,VB,y〉

is essentially determined by terms corresponding to the
matching πB←A,
Tensoring Lemma:

〈VA,x,VB,y〉 = 1
n
∑

a∈A〈xaa⊗t, yπB←A(a)πB←A(a)⊗t〉 ±2(1/2)t/2 .

In this sense, the tensoring allows the vectors to find the best
matching between their clouds.
Local integral distributions. Unlike [18], instead of
directly showing that the inner products of the vectors satisfy
the desired inequalities (e.g., the L2

2-triangle inequality), we
exhibit a collection of distributions over {±1}-assignments to
subsets of vertices, such that the second-moments of the distri-
butions match the inner products of the vectors. Specifically,
we want distributions {µS : {±1}S → �+}S⊆V(G),|S |6R such that
EZ∼µS [ZA,xZB,y] = 〈VA,x,VB,y〉. (Here, R is a parameter that
we will choose later.) The existence of an integral distribution
matching the inner products shows that the vectors satisfy
all valid inequalities involving up to R vertices, including
the triangle inequality (for R > 3).

As a first step, let us see how to construct a distribution
over assignments to just two vertices S = {(A, x), (B, y)} that
roughly matches the inner product above: Pick a random
vector a ∈ A. Set b := πB←A(a). Pick a random coordinate
r ∈ [dt]. Output the assignment ZA,x = sign

(
xaa⊗t(r)

)
, ZB,y =

sign
(
ybb⊗t(r)

)
. We see that the second-moment E ZA,xZB,y is

exactly equal to the sum that dominates the inner product
〈VA,x,VB,y〉 (from the Tensoring Lemma). Here, we use the
integrality property of the vectors in the clouds.

For larger sets S of vertices, the challenge is to find
a distribution over labelings for the clouds in S that are
consistent with the matchings πB←A. Another illustrative case
is when every pair A, B of clouds in S is highly correlated
(say ρ(A, B) > 0.99). In this case, the matchings are consistent
in the sense that for any three clouds A, B,C in S , we have
πA←C = πA←B◦πB←C . Hence, we can easily find a distribution
over labelings {`A}A∈S such that Pr {`A = a} = 1/n for every
a ∈ A and Pr {`A = πA←B(`B)} = 1.

Geometric partitioning schemes. In order to deal with
general sets S of size up to R (where some clouds might not
be highly correlated), we use geometric partitioning schemes.
The goal is that every cluster of clouds in S is pairwise
highly correlated. In that case, we will perform the above
sampling procedure independently for each cluster.

One of our partitioning schemes consists of a distribution
over partitions P of the set of clouds B. The distribution has
the property that any two clouds A, B with ρ(A, B) < 0.99
fall into the same cluster with probability close to zero, say δ.
And, on the other hand, any two clouds A, B with ρ(A, B)t > δ
fall in the same cluster with probability 1 − δ (Here, t will
depend on δ). Hence for any fixed set S of size at most
R, if we choose a partition according to this distribution,
then all clusters of S are pairwise highly correlated with
probability at least 1−R2δ. For two clouds A, B, if ρ(A, B)t 6
δ, then the inner product 〈VA,x,VB,y〉 6 δ ± 2(1/2)t/2 and an
arbitrary choice of labellings would result in a correlation
E ZA,xZB,y ≈ 0, thus matching the inner product within error
O(δ). On the other hand, if ρ(A, B)t > δ, with probability at
least 1− δ−R2δ, A, B fall in the same cluster and the cluster
containing them is pairwise highly correlated. Therefore the
resulting moment E ZA,xZB,y matches the inner product within
an error O(δ + R2δ).
Robustness lemma for strong SDP relaxations. Finally,
we exhibit a procedure to modify the local distributions
and the SDP vectors that are approximately consistent, to
a perfectly feasible solution. In other words, we show a
robustness property for the SDP hierarchies we consider in
that, approximately feasible solutions to these hierarchies can
be converted in to feasible solutions with a small loss in the
objective value. To illustrate the idea, consider a set of unit
vectors {vi}

n
i=1 that satisfy all triangle inequalities up to an

additive error of ε, i.e., ‖vi − v j‖
2 + ‖v j − vk‖

2 −‖vi − vk‖
2 > −ε.

Let {wi}
n
i=1 be a set of unit vectors that are orthogonal to

all the vectors {vi}
n
i=1, and to each other. Notice that the

vectors {wi} have a slack on every triangle inequality, i.e,
‖wi − w j‖

2 + ‖w j − wk‖
2 − ‖wi − wk‖

2 > 2. Define a new SDP
solution {ui}

n
i=1 as ui =

√
1 − ε · vi +

√
ε ·wi. The slack in the

triangle inequality for {wi}
n
i=1 would compensate for the slight

infeasibility of the original vectors {vi}
n
i=1 and the resulting

vectors satisfy the triangle inequality.

2. P

2.1. Notation

For finite sets Σ and S , we denote by ΣS the set of
functions from S to Σ. We call such a function sometimes a
Σ-assignment to S . For a finite set X, a distribution on X is a
function µ : X → � such that

∑
x∈X µ(x) = 1 and µ(x) > 0 for

all x ∈ X. We let ∆(X) denote the set of distributions on X.
We sometimes refer to a member of ∆(ΣS ) as a distribution
over Σ-assignments to S . For a function f : ΣS → � and a
distribution µ on ΣS , we denote the expectation of f with



respect to µ by Ex∼µ f (x) def
=

∑
x∈ΣS µ(x) f (x). For an event

E ⊆ ΣS and a distribution µ on ΣS , we denote the probability
of E with respect to µ by Prx∼µ E

def
= Ex∼µ 1E(x) =

∑
x∈E µ(x).

Here, 1E denotes the 0/1-indicator function of the set E.
For a subset T ⊆ S , let us define the marginal distribution
marginT µ : ΣT → �+ as marginT µ(x) def

=
∑
y∈ΣS \T µ(x, y) .

Here, (x, y) denote the Σ-assignment to S that agrees with x
on T and with y on S \ T .

2.2. SDP Hierarchies

In this section, we present formal definitions of the LHR

and SAR relaxations. Let Υ be a problem instance over a set
of variables V. An SDP solution for the instance Υ consists
of the following:

1) A collection of (local) distributions {µS }S⊆V,|S |6R,
where µS : �S

q → �+ is a distribution over �q-
assignments to S , that is, µS ∈ ∆(�S

q ).
2) A (global) vector solution {ui,a}i∈V,a∈�q , where ui,a ∈ �d

for every i ∈ V and a ∈ �q.

The intention for the local distributions {µS } is that they
arise as the marginal distribution of a global distribution
µ : �Vq → �+ over �q-assignments to the variables V. The
intention for the vector solution {ui,a} is that all vectors
have only {0, 1}-coordinates and that for every i and every
coordinate r, exactly one of the vectors ui,1, . . . , ui,q has a 1
in the rth coordinate. We assume that the objective of the
instance Υ can be expressed as a linear function in the local
distributions, say

∑
S⊆V,|S |6R

∑
x∈�S

q
cS ,x µS (x).

LHR-Relaxation.

maximize
∑

S⊆V,|S |6R
∑

x∈�S
q
cS ,x µS (x) (1)

subject to

〈ui,a, u j,b〉 = Prx∼µS

{
xi = a, x j = b

} (
S ⊆ V, |S | 6 R,
i, j ∈ S , a, b ∈ [q]

)
, (2)

〈ui,a, u0〉 = Prx∼µS {xi = a}
(
S ⊆ V, |S | 6 R,
i ∈ S , a ∈ [q]

)
. (3)

Here, u0 ∈ �d is an arbitrary fixed unit vector. We say that
an SDP solution {µS }, {ui,a} for Υ is feasible for LHR if it
satisfies the constraints (2)–(3). We denote by LHR(Υ) the
value of an optimal solution to this relaxation.

Remark 2.1: A feasible solution for LHR satisfies all valid
linear inequalities on the inner products of the vectors
corresponding to up to R variables in V.
The SAR relaxation is a stronger SDP relaxation with
an additional consistency requirement between the local
distributions µS .

SAR-Relaxation:

maximize
∑

S⊆V,|S |6R
∑

x∈�S
q
cS ,x µS (x) (4)

subject to

〈ui,a, u j,b〉 = Prx∼µS

{
xi = a, x j = b

} (
S ⊆ V, |S | 6 R,
i, j ∈ S , a, b ∈ [q]

)
, (5)

〈ui,a, u0〉 = Prx∼µS {xi = a}
(
S ⊆ V, |S | 6 R,
i ∈ S , a ∈ [q]

)
, (6)∥∥∥marginA∩B µA −marginA∩B µB

∥∥∥
1 = 0

(
A, B ⊆ V,
|A|, |B| 6 R

)
. (7)

We say an SDP solution {µS }, {ui,a} is feasible for SAR if it
satisfies the constraints (5)–(7). We denote by SAR(Υ) the
value of an optimal solution to this relaxation.

2.3. Smoothing

Here we show that approximately feasible SDP solutions
can be made into feasible SDP solutions without losing too
much in the objective value. Instead of directly bounding the
loss in objective value we give bounds on the “change” of the
local distribution in L1-norm. In our applications, this bound
on the L1-norm will imply a similar bound on the loss in
objective value (the reason being that in our applications the
objective function is Lipschitz with respect to the L1-norm).

Definition 2.2: An SDP solution {ui,a}i∈V,a∈�q ,
{µS }S⊆V,|S |6R is said to be ε-infeasible for LHR (or
SAR) if it satisfies all the constraints of the program up to
an additive error of ε.

Theorem 2.3: Given an ε-infeasible solution {ui,a}i∈V,a∈�q ,
{µS }S⊆V,|S |6R to the LHR relaxation, there exists a feasible
solution {u′i,a}, {µ

′
S }S⊂V,|S |6R for LHR such that for all subsets

S ⊆ V, |S | 6 R, ‖µS − µ
′
S ‖1 6 poly(q) · R2ε.

Theorem 2.4: Given an ε-infeasible solution {ui,a}i∈V,a∈�q ,
{µS }S⊆V,|S |6R to the SAR relaxation, there exists a feasible
solution {u′i,a}, {µ

′
S }S⊆V,|S |6R for SAR such that for all subsets

S ⊆ V, |S | 6 R, ‖µS − µ
′
S ‖1 6 poly(q) · ε · qR.

The proofs of the above theorems are nearly identical to
the proof of Theorem 4.6 in [22], and the details are deferred
to the full version.

2.4. Integral Vectors

Let q be a prime. In the following, we develop a natural
generalization of {±1}-vectors (see §1.3.1) to a q-ary alphabet
and a suitable notion of tensor products of such vectors.

Definition 2.5: A �q-integral vector v : R → �q is a
function from a probability space R to �q. For a �q-integral
vector v : R → �q, its symmetrization ṽ : R × �∗q → �q is
defined by ṽ(r, t) = t · v(r).
Given a map f : �q → �

d, we denote by f (v) := f ◦ v the
composition of functions f and v. The following function
will be relevant to us:

Define ψ : �q → �
q−1 as ψ(i) := ψi, where ψ0, ψ1, . . . , ψq−1

denote the corners of the q-ary simplex in �q−1, translated
so that the origin is its geometric center. Thus, the function



ψ satisfies,

〈ψ(a), ψ(b)〉 =

1 if a = b ,
− 1

q−1 if a , b .

Remark 2.6: The following notions are equivalent: col-
lection of �q-valued functions on some probability space
R ⇐⇒ collection of jointly-distributed, �q-valued random
variables ⇐⇒ distribution over �q-assignments.
For the case of �q-integral vector, the tensor product
operation is to be defined carefully, in order to mimic the
properties of the traditional tensor product. We will use the
following definition for the tensor operation ⊗q.

Definition 2.7: Given two �q-valued functions u : R → �q

and u′ : R′ → �q, define the symmetrized tensor product
u ⊗q u′ : (R × �∗q) × (R′ × �∗q)→ �q as (u ⊗q u′) (r, t, r′, t′) def

=

t · u(r) + t′ · u′(r′).
Like the traditional tensor product, the inner products

multiply on taking ⊗q products.
Lemma 2.8: For any �q-valued functions u, v : R →

�q and u′, v′ : R′ → �q, 〈ψ(u ⊗q u′), ψ(v ⊗q v′)〉 =

〈ψ(u), ψ(v)〉〈ψ(u′), ψ(v′)〉.
We need the following simple technical observation in one

of our proofs.
Observation 2.9: Let u, v : R → �q be two “symmetric”

�q-integral vectors,1 that is, Prr{u(r) − v(r) = a} = Prr{u(r) −
v(r) = b} for all a, b ∈ �∗q. Then, for all a, b ∈ �q, we have
Er〈ψ(a + u(r)), ψ(b + v(r))〉 = 〈a ⊗q u, b ⊗q v〉.

For notational convenience, we will abbreviate ⊗q by ⊗
whenever the meaning is clear from the context.

The following transformation inspired by the rounding
scheme for U G in Charikar et al. [7] 2 yields a
way to generate �q-integral vectors from arbitrary vectors.

Observation 2.10: Define the function ζ : Gq → �q on the
Gaussian domain as follows: ζ(x1, . . . , xq) = argmaxi∈[q]xi.
Given a family of unit vectors {v1, . . . , vn} ∈ �

d, define the set
of �q-valued functions v∗1, . . . , v

∗
n : R → �q with R = (Gd)q

—the Gaussian space of appropriate dimension— as follows:
v∗i (g1, . . . , gq) = ζ(〈vi, g1〉, . . . , 〈vi, gq〉) for g1, . . . , gq ∈ (Gd)q.
The �q-valued functions {v∗i } satisfy 〈ψ(u∗), ψ(v∗)〉 = 0
whenever 〈u, v〉 = 0, and 〈ψ(u∗), ψ(v∗)〉 = 1 − f (ε, q) =

1 − O(
√
ε log q) whenever 〈u, v〉 = 1 − ε.

Proof: To see the first assertion, observe that if 〈u, v〉 =

0, then the sets of random variables {〈u, g1〉, . . . , 〈u, gq〉}

and {〈v, g1〉, . . . , 〈v, gq〉} are completely independent of
each other. Therefore, 〈ψ(u∗), ψ(v∗)〉 = Er∈Gdq [ψ(u∗(r))] ·
Er∈Gdq [ψ(u∗(r))] = 0. The second assertion follows from
Lemma C.8 in [7].

1 In our applications, the vectors u and v will be tensor powers. In this
case, the symmetry condition is always satisfied.

2This observation has been communicated to us by Boaz Barak.

3. W G I  U G

Formally, a weak gap instance for Unique games is defined
as follows.

Definition 3.1: (Weak SDP solutions and weak gap in-
stances) Let Υ = (V, E, {πe : [n] → [n]}e∈E). We say a
collection B = {Bu}u∈V is a weak SDP solution of value
1 − η for Υ if the following conditions hold:

1) For every vertex u ∈ V , the collection B contains
an ordered set Bu = {bu,1, . . . , bu,n} of n orthonormal
vectors in �d.

2) Any two vectors in
⋃
B have non-negative inner

product and any three vectors in
⋃
B satisfy the `2

2-
triangle inequality (‖x − y‖2 6 ‖x − z‖2 + ‖z − y‖2).

3) For every pair of vertices u, v ∈ V , the sets Bu and Bv
satisfy the following strong matching property: There
exists n disjoint matchings between Bu, Bv given by
bijections π(1), . . . , π(n) : Bu → Bv such that for all i ∈
[n], b, b′ ∈ Bu, we have 〈b, π(i)(b)〉 = 〈b′, π(i)(b′)〉 .

4) For every edge e = (u, v) ∈ E, the vector sets Bu and
Bv have significant correlation under the permutation
π = πe. Specifically, 〈bu,`, bv,π(`)〉

2 > 0.99 for all ` ∈ [n].
5) The collection B of orthonormal sets is a good SDP

solution for Υ, in the sense that

E
v∈V

E
w,w′∈N(v)

π=πw,v, π
′=πw′ ,v

1
n

∑
`∈[n]

〈bw,π(`), bw′,π′(`)〉 > 1 − η.

We say that Υ is a weak (1 − η, δ)-gap instance of U
G if Υ has a weak SDP solution of value 1 − η and
no labeling for Υ satisfies more than a δ fraction of the
constraints.
Starting with the integrality gap instance Υ for U G
constructed in Khot–Vishnoi [18], delete all edges of Υ that
contribute less than

√
3/4 to the SDP objective. It is easy

to see that the resulting instance Υ′ is a weak gap instance.
Thus, the following is a direct consequence of Theorem 9.2
and Theorem 9.3 in [18].

Observation 3.2: For all η, δ > 0, there exists a weak
(1 − η, δ)-gap instance with 22O(log (1/δ)/η)

vertices.

3.1. Fq-integrality

Here we use 〈·, ·〉ψ := 〈ψ(·), ψ(·)〉 as inner product for �q-
integral vectors. Observation 2.10 implies that without much
loss we can assume that a weak SDP solution is �q-integral,
that is, all vectors are �q-integral. Formally,

Lemma 3.3: Let Υ = (V, E, {πe}e∈E) be a weak (1 − η, δ)-
gap instance. Then, for every q ∈ �, we can find a weak
�q-integral SDP solution of value 1 − O(

√
η log q) for a

U G instance Υ′ which is obtained from Υ by
deleting O(

√
η log q) edges.

(The proof of the lemma is deferred to the full version.)



3.2. Tensoring

Definition 3.4: For A, B ∈ B, we denote ρ(A, B) def
=

maxa∈A,b∈B|〈a, b〉|. We define πB←A : A → B to be any3

bijection from A to B such that |〈a, πB←A(a)〉| = ρ(A, B)
for all a ∈ A.

As a direct consequence of the orthogonality of the clouds
in B, we have the following fact about the uniqueness of
πB←A for highly correlated clouds A, B ∈ B.

Fact 3.5: Let A, B ∈ B. If ρ(A, B)2 > 3/4, then there exists
exactly one bijection π : A→ B such that |〈a, π(a)〉| = ρ(A, B)
for all a ∈ A. (The constant 3/4 is not optimal.)

Notice that for an edge e = (u, v) in a weak gap instance,
and the corresponding clouds Bu, Bv, the above matching is
nothing but the permutation πu→v. We observe the following
consequence of Fact 3.5 and item 4 of Definition 3.1.

Observation 3.6: If B = {Bu}u∈V is a weak SDP solution
for Υ = (V, E, {πe}e∈E), then for any two edges (w, v), (w′, v) ∈
E, the two bijections π = π−1

(w′,v) ◦ π(w,v) and πBw′←Bw (see
Def. 3.4) give rise to the same matching between the vector
sets Bw and Bw′ , π(i) = j⇐⇒ πBw′←Bw (bw,i) = bw′, j.
Now we state the crucial tensoring lemma, that underlies a
large part of the construction.

Lemma 3.7 (Tensoring Lemma): For t ∈ � and every pair
of clouds A, B ∈ B,

1
n

∑
a∈A,b∈B

a,πA←B(b)

|〈a, b〉|t 6 2 · (3/4)t/2 .

Proof: By orthogonality,
∑

a∈B〈a, b〉2 6 1 for every b ∈ B.
Hence, 〈a, b〉2 6 1/2 for all a , πA←B(b). Thus,

1
n

∑
a∈A,b∈B

a,πA←B(b)

|〈a, b〉|t 6 (1/2)
t−2
2 · 1

n
∑

a∈A,b∈B
|〈a, b〉|2 6 (1/2)

t−2
2 .

(In the lemma, we state the suboptimal bound 2·(3/4)t because
it also holds in a more general setting where the vectors are
not orthogonal but only near-orthogonal.)
The notation X = Y ± Z means that |X − Y | 6 Z.

Corollary 3.8: For an even number t ∈ � and every pair
of clouds A, B ∈ B,

〈 1
√

n

∑
a∈A

a⊗t, 1
√

n

∑
b∈B

b⊗t〉 = ρ(A, B)t ± 2 · (3/4)t/2 .

This fact that the functional ρ(A, B)t is closely approxi-
mated by inner products of averaged-tensored vectors has
implicitly been used in [18] and was explicitly noted in [4,
Lemma 2.2].

3.3. Local Distributions for Unique Games

First, we recall a few facts that are direct consequences
of the (symmetrized) `2

2-triangle inequality.
Fact 3.9: Let a, b, c ∈

⋃
B with |〈a, b〉| = 1 − ηab and

|〈b, c〉| = 1 − ηbc. Then, |〈a, c〉| > 1 − ηab − ηbc.

3The matching property asserts that such a matching exists. If it is not
unique, we pick an arbitrary one. We will assume πA→B = π−1

B→A.

Fact 3.10: Let A, B,C ∈ B with ρ(A, B) = 1 − ηAB and
ρ(B,C) = 1 − ηBC . Then, ρ(A,C) > 1 − ηAB − ηBC .

The construction in the proof of the next lemma is closely
related to propagation-style UG algorithms [30], [4].

Definition 3.11: A set S ⊆ B is consistent if for all A, B ∈
S, ρ(A, B) > 1 − 1/16.

Lemma 3.12: If S ⊆ B is consistent, there exists bijections
{πA : [n]→ A}A∈S such that for all A, B ∈ S, πB = πB←A ◦ πA.

Proof: We can construct the bijections in a greedy
fashion: Start with an arbitrary cloud C ∈ S and choose
an arbitrary bijection πC : [n] → C. For all other clouds
B ∈ S, choose πB := πB←C ◦ πC .

Let A, B be two arbitrary clouds in S. Let σA←B := πA◦π
−1
B .

To prove the lemma, we have to verify that σA←B = πA←B.
By construction, σA←B = πA←C ◦ πC←B. Let η = 1/16. Since
ρ(A,C) > 1−η and ρ(B,C) > 1−η, we have |〈b, σA←B(b)〉| >
1 − 2η for all b ∈ B (using Fact 3.9). Since (1 − 2η)2 >
1 − 4η = 3/4, Fact 3.5 (uniqueness of bijection) implies that
σA←B = πA←B.

Hence, for a consistent set of clouds S, the distribution
over local unique games labelings µS can be defined easily
as follows:

Sample ` ∈ [n] uniformly at random, and for every
cloud A ∈ S, assign πA(`) as label.

3.3.1. Local Distributions via Geometric Decomposition:
To construct a local distribution for a set S which is not
consistent, we partition the set S into consistent clusters. To
this end, we make the following definition:

Definition 3.13: A set S ⊆ B is consistent with respect
to a partition P of B (denoted Cons(S, P)) if

∀C ∈ P. ∀A, B ∈ C ∩ S. ρ(A, B) > 1 − 1/16 .

We use Incons(S, P) to denote the event that S is not
consistent with P. The following is a corollary of Lemma 3.12.

Corollary 3.14: Let P be a partition of B and let S ⊆ B. If
Cons(S, P), then there exists bijections {πA : [n]→ A | A ∈ S}
such that for all C ∈ P, and A, B ∈ C∩S, πB = πB←A◦πA .

Lemma 3.15: For every t ∈ �, there exists a distribution
over partitions P of B such that

ρ(A, B) > 1 − ε =⇒ Pr {P(A) = P(B)} > 1 − O(t
√
ε) ,

ρ(A, B) 6 1 − 1/16 =⇒ Pr {P(A) = P(B)} 6 (3/4)t .

Proof: Let s ∈ � be even and large enough (we will
determine the value of s later). For every set B ∈ B, define
a vector uB ∈ �D with D := ds as uB := 1

√
n

∑
v∈B v

⊗s.
We consider the following distribution over partitions P of
B: Choose t random hyperplanes H1, . . . ,Ht through the
origin in �D. Consider the partition of �D formed by these
hyperplanes. Output the induced partition P of B (two sets
A, B ∈ B are in the same cluster of P if and only if uA and
uB are not separated by any of the hyperplanes H1, . . . ,Ht).



Since s is even, Corollary 3.8 shows that for any two sets
A, B ∈ B, 〈uA, uB〉 = ρ(A, B)s ± 2 · (3/4)−s/2.

Furthermore, if ρ(A, B) = 1 − ε, then 〈uA, uB〉 > (1 − ε)s >
1− sε. Let η = 1/16. We choose s minimally such that (1−η)s +

2 · (3/4)−s/2 6 1/
√

2. (So s is an absolute constant.) Then for
any two sets A, B ∈ B with ρ(A, B) 6 1−η, their vectors have
inner product 〈uA, uB〉 6 1/

√
2. Thus, a random hyperplane

through the origin separates uA and uB with probability at least
1/4. Therefore, Pr {P(A) = P(B)} 6 (3/4)t. On the other hand, if
ρ(A, B) = 1−ε, then the vectors of A and B have inner product
〈uA, uB〉 > 1 − sε. Thus, a random hyperplane through the
origins separates the vectors with probability at most O(

√
ε).

Hence, Pr {P(A) = P(B)} >
(
1 − O(

√
ε)

)t
> 1 − O(t

√
ε).

The previous lemma together with a simple union bound
imply the next corollary.

Corollary 3.16: The distribution over partitions from
Lemma 3.15 satisfies the following property: For every set
S ⊆ B, Pr

{
Incons(S, P)

}
6 |S|2 · (3/4)t

4. I G I  U G
Khot et al. [15] show a UGC-based hardness result for the

E2Linq problem. Specifically, they exhibit a reduction Φγ,q

(see Figure 1) that maps a U G instance Υ to an
E2Linq instance Φγ,q(Υ) such that the following holds: For
every γ > 0 and all q > q0(γ),

– Completeness: If Υ is 1 − η-satisfiable then Φγ,q(Υ) is
1 − γ − oη,δ(1) satisfiable.

– Soundness: If Υ has no labeling satisfying more than δ-
fraction of the constraints, then no assignment satisfies
more than q−η/2+oη,δ(1)-fraction of equations in Φγ,q(Υ).

Here the notation oη,δ(1) refers to any function that tends to
0 whenever η and δ go to naught.

5. C  SDP S  E2LIN()
For a vertex (B, x) ∈ B×�n

q, we index the coordinates of x
by the elements of B. Specifically, we have x = (xb)b∈B ∈ �

B
q .

Geometric Partitioning: Apply Lemma 3.15 to the
collection of sets of vectors B. We obtain a distribution
P over partitions P of B into T disjoint subsets {Pα}

T
α=1. For

a subset S ⊂ B, let S = {Sα}
T
α=1 denote the partition induced

on the set S, that is, Sα := Pα ∩ S. For a family B ∈ B, let
αB denote the index of the set PαB in the partition P that
contains B.

5.1. Vector Solution

Let R is the measure space over which the tensored vectors
b⊗t are defined. The notation Pα(B) denotes the 0/1-indicator
for the event B ∈ Pα.

For a vertex (B, x) ∈ B×�n
q, the corresponding SDP vectors

are given by functions VB,x
j : P × [T ] × R → �q defined as

follows:

WB,x
j (r) = 1

√
n

∑
b∈Bψ

(
xb − j + b⊗t(r)

)
(8)

UB,x
j (P, α, r) = Pα(B) ·WB,x

j (r) (9)

Input A U G instance Υ with vertex set V , edge
set E ⊆ V × V (we assume the graph (V, E) to be regular),
and permutations {πe : [n]→ [n]}e∈E .
Output An E2Linq instance Φγ,q(Υ) with vertex set V =

V×�n
q. Let {Fv : �n

q → �q}v∈V denote an �q-assignment to V.
The constraints of Φγ,q(Υ) are given by the tests performed
by the following probabilistic verifier:

– Pick a random vertex v ∈ V . Choose two random
neighbors w, w′ ∈ N(v) ⊆ V . Let π, π′ denote the
permutations on the edges (w, v) and (w′, v).

– Sample x ∈ �n
q uniformly at random. Generate y ∈ �n

q
as follows:

yi =

xi with probability 1 − γ
uniformly random in �q with probability γ

– Generate a uniform random element c ∈ �q.
– Test if Fw(y ◦ π + c · 1) = Fw′(x ◦ π′) + c. (Here, x ◦ π

denotes the vector (xπ(i))i∈[n].)

Figure 1. Hardness reduction from U G to E2Linq [15]

Further, V0 is a unit vector orthogonal to all the vectors UB,x
j .

Define, VB,x
j = 1

q V0 +

√
q−1
q UB,x

j . Let us evaluate the inner
product between two vectors VA,x

i and VB,y
j , (in this way, we

also clarify the intended measure on the coordinate set)

〈VA,x
i ,VB,y

j 〉 = 1
q2 +

q−1
q2 〈UA,x

i ,UB,y
j 〉

= 1
q2 +

q−1
q2 E

P∼P

∑T
α=1Pα(A)Pα(B)〈WA,x

i ,WB,y
j 〉

= 1
q2 +

q−1
q2 Pr

P∼P
{P(A) = P(B)} 〈WA,x

i ,WB,y
j 〉 (10)

Let us also compute the inner product of WA,x
i and WB,y

j .
Recall the notation 〈u, v〉ψ := 〈ψ(u), ψ(v)〉. The inner product
〈WA,x

i ,WB,y
j 〉 is given by,

= 1
n
∑

a∈A,b∈BEr∼R〈xa − i + a⊗t(r), yb − j + b⊗t(r)〉ψ
= 1

n
∑

a∈A,b∈B
〈(xa − i) ⊗ a⊗t, (yb − j) ⊗ b⊗t〉ψ (by Obs. 2.9)

= 1
n

∑
a∈A,b∈B

〈ψ(xa−i), ψ(yb− j)〉〈a, b〉tψ . (by Lem. 2.8) (11)

5.2. Local Distributions

Fix a subset S ⊂ B of size at most R. In this section, we
will construct a local distribution over �q-assignments for
the vertex set S = S × �n

q (see Figure 2). Clearly, the same
construction also yields a distribution for a general set of
vertices S ′ ⊂ B × �n

q of size at most R.
We need the following two simple observations.
Observation 5.1: For all a, b ∈ �q, we have

Prκ∈�q {a + κ = i, b + κ = j} = 1
q2 +

q−1
q2 〈ψ(a − i), ψ(b − j)〉 .

Observation 5.2: Fix a, b ∈ �q, over a random choice of
h1, h2 ∈ �q, we have Eh1,h2∈�q [〈ψ(a + h1), ψ(b + h2)〉] = 0.



The next lemma shows that the second-order correlations of
the distribution µS approximately match the inner products
of the vector solution {VA,x

i }.
Lemma 5.3: For any two vertices (A, x), (B, y) ∈ S ,

PrZ∼µS

{
ZA,x = i, ZB,y = j

}
= 〈VA,x

i ,VB,y
j 〉 ± 10|S|2(3/4)t/2 .

Proof: Firstly, since Pr[Cons(S, P)] > 1 − |S |2(3/4)t (by
Corollary 3.16), the probability PrµS {Z

A,x= i, ZB,y= j} equals

Pr
µS

{
ZA,x= i, ZB,y= j

∣∣∣ Cons(S, P)
}
± |S |2(3/4)t . (12)

Using Observation 5.1, and the definition of ZA,x and ZB,y

we can write the probability PrµS

{
ZA,x= i, ZB,y= j

∣∣∣ Cons(S,P)
}

as

1
q2 +

q−1
q2 E

P,H,L,r

[
〈ψ(FA,x+hA−i), ψ(FB,y+hB−j)〉

∣∣∣ Cons(S,P)
]
. (13)

If A, B fall in the same set in the partition P (that is αA = αB),
then we have hA = hB. If A, B fall in different sets (that is
αA , αB), then hA, hB are independent random variables
uniformly distributed over �q. Using Observation 5.2, we
can write

E
P,H,L,r

[
〈ψ(FA,x + hA − i), ψ(FB,y + hB − j)〉 | Cons(S,P)

]
= E

P,L,r

[
1(αA = αB)〈ψ(FA,x − i), ψ(FB,y − j)〉 | Cons(S,P)

]
. (14)

Let P be a partition such that Cons(S, P) and αA = αB = α.
The bijections πA, πB (see step 4 Figure 2) satisfy πA = πA←B◦

πB. Note that therefore a = πA←B(b) whenever a = πA(`) and
b = πB(`) for some ` ∈ [n]. Hence, over a random choice of
`α ∈ [n], the pair

(
πA(`α), πA(`α)

)
has the same distribution

as a uniformly random pair
(
a, b

)
with a = πA→B(b). Thus,

E
L

E
r

[
〈ψ(FA,x(P, L, r) − i), ψ(FB,y(P, L, r) − j)〉

]
= 1

n
∑

a∈A,b∈B
a=πA←B(b)

E
r
〈ψ(xa − i + a⊗t(r)), ψ(yb − j + b⊗t(r))〉

= 1
n

∑
a∈A,b∈B

a=πA←B(b)

〈ψ(xa − i), ψ(yb − j)〉 · 〈a, b〉tψ
(by Obs. 2.9
and Lem. 2.8)

= 〈WA,x
i ,WB,y

j 〉 ± 2 · (3/4)t/2 (by Eq. (11) and Lemma 3.7) .

Combining the above expression with (14), we get

E
P,H,L,r

[
〈ψ(FA,x + hA − i), ψ(FB,y + hB − j)〉 | Cons(S,P)

]
= E

P

[
1(αA=αB) | Cons(S,P)

]
〈WA,x

i ,WB,y
j 〉 ± (|S |2(3/4)t + 2 · (3/4)t/2)

= Pr
P

[
P(A) = P(B)

]
〈WA,x

i ,WB,y
j 〉 ± 10|S|2(3/4)t/2 .

In the last step, we used Pr {Cons(S, P)} > 1 − |S |2(3/4)t and
|〈WA,x

i ,WB,y
j 〉| 6 1. Finally, substituting back in (12) yields

the desired result.
Lemma 5.4: Let S′ ⊂ S be two subsets of B and let

S ′ = S′ × �n
q and S = S × �n

q. Then, ‖µS ′ −marginS ′ S ‖1 6
2|S|2(3/4)t .

Proof: For a partition P ∈ P, let µS |P denote the
distribution µS conditioned on the choice of partition P.
Firstly, we will show the following claim:

Claim 5.5: If Cons(S′, P) and Cons(S, P), then µS ′ |P =

marginS ′ µS |P.
Proof: Let {Sα} and {S′α} denote the partitions induced

by P on the sets S and S′ respectively. Since S′ ⊆ S, we
have S′α ⊆ Sα for all α ∈ [T ]. By our assumption, each of
the sets S′α are consistent in that ρ(A, B) > 1 − 1/16 for all
A, B ∈ S′α. Similarly, the sets Sα are also consistent.

Let us consider the pair of sets S′α ⊂ Sα for some α ∈ [T ].
Intuitively, the vectors within these sets fall in to n distinct
clusters. Thus the distribution over the choice of consistent
representatives are the same in µS ′ |P and marginS ′ µS |P.
Formally, we have two sets of bijections ΠS′α = {π′A | A ∈ S

′
α}

and ΠSα = {πA | A ∈ Sα} satisfying the following property
for all A, B ∈ S′α πA→B ◦ π

′
A = π′B and πA→B ◦ πA = πB.

Fix a collection A ∈ S′α. Let ∼ denote that two sets of
random variables are identically distributed.

{π′B(`α) | B ∈ S′α} ∼ {πA→B ◦ π
′
A(`α) | B ∈ S′α}

∼ {πA→B(a) | B ∈ S′α, a is uniformly random in A}

∼ {πA→B ◦ πA(`α) | B ∈ S′α} ∼ {πB(`α) | B ∈ S′α} .

The variables L = {`α} are independent of each other.
Therefore, {π′B(`B) | B ∈ S′} ∼ {πB(`B) | B ∈ S′}. Notice
that the choice of r ∈ R, H and κ are independent of the set
S. Hence, the final assignments {ZB,x | B ∈ S′, x ∈ �n

q} are
identically distributed in both cases.
Returning to the proof of Lemma 5.4, we can write

‖µS ′ −marginS ′ µS ‖1 = ‖EPµS ′ |P − EPmarginS ′ µS |P‖1

6 EP
[
‖µS ′ |P −marginS ′ µS |P‖1

]
(by Jensen’s inequality)

= Pr {Incons(S,P)}E
P

[
‖µS ′ |P −marginS ′ µS |P‖1 | Incons(S,P)

]
.

The first step uses that the operator marginS ′ is linear. The
final step in the above calculation makes use of Claim 5.5.
The lemma follows by observing that Pr[Incons(S, P)] 6
|S|2(3/4)t and ‖µS ′ |P −marginS ′ µS |P‖1 6 2.
The next corollary follows from the previous lemma
(Lemma 5.4) and the triangle inequality.

Corollary 5.6: Let S,S′ be two subsets of B and let S ′ =

S′ × �n
q and S = S × �n

q. Then,

‖marginS∩S ′ µS −marginS∩S ′ µS ′‖1 6 4 max
(
|S|2, |S′|2

)
(3/4)t .

6. P I T

Proof of Theorem 1.6: Using Lemma 3.3, we obtain
a weak �q-integral SDP solution B = {Bu}u∈V of value 1 −
O(

√
η log q) for Υ. We construct a vector solution {VB,x

i | i ∈
�q, B ∈ B, x ∈ �n

q} and local distributions {µS | S ⊆ B × �n
q}

as defined in the previous section (§5).
Lemma 5.3 and Corollary 5.6 show that this SDP solution

is ε-infeasible for SAR and LHR, where ε = O(R2 · (3/4)t/2).



For S = S × �n
q, the local distribution µS over assignments

�S
q is defined by the following sampling procedure:

Partitioning:
1) Sample a partition P = {Pα}

T
α=1 of B from the

distribution P obtained by Lemma 3.15. Let αA, αB

denote the indices of sets in the partition P that contain
A, B ∈ S respectively.

2) If Incons(S, P) then output a uniform random �q-
assignment to S = S × �n

q. Specifically, set
Z(B,x) = uniformly random in �q ∀B ∈ S, x ∈ �n

q .

Choosing consistent representatives:
4) If Cons(S, P) then by Corollary 3.14, for every part
Sα = Pα ∩S, there exists bijections ΠSα = {πB : [n]→
B | B ∈ Sα} such that for every A, B ∈ Sα, πA =

πA←B ◦ πB .
5) Sample L = {`α}

T
α=1 by choosing each `α uniformly at

random from [n]. For every cloud B ∈ S, define `B =

`αB . The choice of L determines a set of representatives
for each B ∈ S. Specifically, the representative of B is
fixed to be πB(`B).

Sampling assignments:
5) Sample r ∈ R from the corresponding probability

measure and assign

FB,x(P, L, r) = xπB(`B) + πB(`B)⊗t(r) .

6) Sample H = {hα}Tα=1 by choosing each hα uniformly
at random from [q]. For every cloud B ∈ B, define
hB = hαB .

7) Sample κ uniformly at random from [q].
8) For each B ∈ Sα and x ∈ �n

q, set

ZB,x(P, L, r,H, κ) = FB,x(P, L, r) + hB + κ .

9) Output the �q-assignment {ZB,x}(B,x)∈S .

Figure 2. Local distribution over �q-assignments

The value of the SDP solution for Φγ,q(Υ) (see Fig. 1) is
given by

E
v∈V

E
w,w′∈N(v)

π=πw,v, π
′=πw′ ,v

E
{x,y}

E
c∈�q

∑q
i=1〈V

w,(x◦π+c·1)
i ,Vw′, y◦π′

i−c 〉 .

Using Eq. (10)–(11),

〈Vw,(x◦π+c·1)
i ,Vw′, y◦π′

i−c 〉 = 1
q2 +

q−1
q2 PrP∼P {P(Bw) = P(Bw′ )}

· 1
n

∑
`,`′∈[n]

〈ψ(xπ(`) + c − i), ψ(yπ′(`′) − (i − c))〉〈bw,`, bw′,`′〉tψ .

Note that 〈ψ(xπ(`) + c − i), ψ(yπ′(`′) − (i − c))〉 =

〈ψ(xπ(`)), ψ(yπ′(`′))〉. Using Observation 3.6, we have
π(w,v)(`) = π(w′,v)(`′) if and only if ` = πBw←Bw′ (`

′). Hence, by

Lemma 3.7,

1
n

∑
`,`′∈[n]

〈ψ(xπ(`)), ψ(yπ′(`′))〉〈bw,`, bw′,`′〉tψ

= 1
n
∑̀
〈ψ(xπ(`)), ψ(yπ(`))〉〈bw,π(`), bw′,π(`)〉

t
ψ ± 2 · R2(3/4)t/2

= 1
n
∑̀
〈ψ(x`), ψ(y`)〉ρ(Bw, Bw′ )t ± O(ε) .

Note that the distribution of {x, y} is independent of the
vertices v, w, w′, and

E
{x,y}

1
n

∑
`∈[n]
〈ψ(x`), ψ(y`)〉 = 1 − γ .

Therefore, if we let ηw,w′ = ρ(Bw, Bw′ ), we can lower bound
the value of the SDP solution as follows

E
v∈V

E
w,w′∈N(v)

E
{x,y}

E
c∈�q

q∑
i=1
〈Vw,(x◦πw,v+c·1)

i ,Vw′, y◦πw′ ,v
i−c 〉

=E
v,w,w′

[
1
q2 +

q−1
q2 Pr

P∼P
[P(Bw)=P(Bw′ )] · q · ρ(Bw,Bw′ )t(1 − γ)

]
± O(ε)

> (1 − γ)E
v,w,w′

Pr
P∼P

[P(Bw) = P(Bw′ )] ρ(Bw, Bw′ )t ± O(ε)

> (1 − γ)E
v,w,w′

(1 − O(t
√
ηw,w′ )) ± O(ε) (using Lemma 3.15)

Using Jensen’s inequality and the fact that Ev,w,w′ ηw,w′ =

O(
√
η log q) (Lemma 3.3), we see that the value of our SDP

solution is at least 1− γ−O(ε+ tη1/4) (recall that we assume
q to be constant).

On smoothing the SDP solution using Theorem 2.3, we
lose O(R2ε) = O(R4(3/4)t) in the SDP value. Thus we can set
t = o(η−1/4) and R = (3/4)t/10 in order to get a feasible SDP
solution for LHR with value 1 − γ − oη,δ(1).

On smoothing the SDP solution using Theorem 2.4, we
lose O(qRε) = O(qR(3/4)t) in the SDP value. Thus we can set,
t = o(η−1/4) and R = t/ log2 q, we would get a feasible SDP
solution for SAR with value 1 − γ − oη,δ(1).

Proof of Theorems 1.1–1.2.: Using Theorem 1.6 with
the Khot–Vishnoi integrality gap instance (Lemma 3.2), we
have N = 22log(1/δ)/η

and thus R = 2O((log log N)1/4). Similarly for
SAR, we get R = O((log log N)1/4).
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