
6 Cryptography (2)

CS 6810 – Theory of Computing, Fall 2012
Instructor: David Steurer
Scribe: Jiaqi Zhai (jz392)
Date: 09/11/2012

6.1 Pseudorandomness

Last time we discussed the ideas of a) using one-time pads for encryption, and b)
simulating one-time pad using pseudorandomness. Pseudorandomness is also
useful for other things, such as determining if BPP is different from P.

6.1.1 Pseudorandom Distributions and Pseudorandom Generators

Suppose there is a distributionD over n bits. D is pseudorandom if and only if it
is indistinguishable from true random bits from the perspective of certain classes
of algorithms, i.e., it fools certain classes of algorithms.

Definition 6.1 (Pseudorandom Distribution). A distribution D over {0, 1}n is
pseudorandom if no polynomial-time machine can distinguishD from Un with
a polynomial advantage. More formally, define

4poly(D,D′) = max
poly-time M

∣∣∣∣∣ Px∼D[M(x) = 1] − P
x∼D′

[M(x) = 1]
∣∣∣∣∣

then we callD a pseudorandom distribution if 4poly(D,Un) 6 n−w(1).

In other words, if you want a polynomial advantage (n−o(1)), you need a
machine that runs in superpolynomial time. Or equivalently, every polynomial-
time machine can only get subpolynomial advantage (n−w(1)).

Definition 6.2 (Pseudorandom Generator). For a polynomial-time computable
function ` : N → N such that `(n) > n for every n and a polynomial-time
computable function Gn : {0, 1}n → {0, 1}`(n), we say that Gn is a pseudorandom
generator (P.R.G.) if Gn(Un) is pseudorandom.

Note that we actually need a family of pseudorandom generators, {Gn}. With
such generators, we only need a key of length n to encrypt a message of length
`(n).

1

CS 6810, Fall 2012, Lecture 6 Scribe: Jiaqi Zhai

6.1.2 Constructing Pseudorandom Generators From One-Way Func-
tions

To construct these generators, we use a primitive called one-way functions.
One-way functions have two properties: (a) easy to compute (polynomial-time
computable); (b) hard to invert (on average). For our proof we only need to
consider the special case of one-way permutations, to simplify our settings:

Definition 6.3 (One-way Permutations). A polynomial-time computable function
fn : {0, 1}n → {0, 1}n is a one-way permutation if f is one-to-one, and for all
polynomial-time machine M,

P
x∈R{0,1}n

[M(f (x)) = x] 6 n−w(1).

Now we need to construct pseudorandom generators from one-way functions
(permutations). Note that one-way functions are about inverting whereas
pseudorandom generators are about distinguishability. It’s useful to first prove
the following theorem by Yao:

Theorem 6.4 (A distribution is pseudorandom iff it is unpredicable.). Given a
distributionD over {0, 1}n. We callD unpredictable if for every polynomial-time machine
M,

P
x∼D,06k6n−1

[
(M(x1, . . . , xk) = xk+1) −

1
2

]
6 n−w(1).

D is pseudorandom if and only if it is unpredictable.

Proof. First we prove that D is pseudorandom ⇒ D is unpredictable. This
direction is easy; we proveD is predictable⇒D is not pseudorandom. IfD is
predictable, then there exists k such that

P
x∼D

[M(x1, . . . , xk) = xk+1] >
1
2

+ n−o(1).

Consider a polynomial-time machine M′ that returns 0 if M(x1, . . . , xk) , xk+1
or 1 if M(x1, . . . , xk) = xk+1. As Px∈D[M′(x) = 1] − Px∈Un[M(x) = 1] > n−o(1), D is
distinguishable.

Then we prove thatD is unpredictable⇒D is pseudorandom. Similarly we
prove the contrapositive. This involves a technique called the hybrid argument.
Define (n + 1) distributionsD0,D1, . . . ,Dn over {0, 1}n, such thatDk’s first k bits
are taken from D and its remaining (n − k) bits are taken from Un. Note that
D0 = Un andDn = D. AsD is not pseudorandom,

4poly(D,Un) > n−o(1).

But ifD and Un are far apart, then one of the pairs (Dk,Dk+1) must also be far
apart:

4poly(D,Un) = 4poly(Dn,D0) 6
n∑

i=1

4poly(Di,Di−1)⇒ ∃k,4poly(Dk,Dk+1) >
n−o(1)

n
.

2

CS 6810, Fall 2012, Lecture 6 Scribe: Jiaqi Zhai

We can then construct a predictor for the (k + 1)-th bit ofD as follows. First run
the polynomial time machine M (the one that satisfies 4poly(Dk,Dk+1) > n−o(1)

n)
on D∗, where D∗’s first k bits are from the input to the predictor and D∗’s last
(n − k) bits are from the corresponding bits in Un. If M’s output y is 1, output the
(k + 1)-th bit inD∗; otherwise, output (1 - the (k + 1)-th bit inD∗). We have

P
x∼D

[M(x1, . . . , xk) = xk+1] =
1
2
P[y = 1|Uk+1 = xk+1] +

1
2
P[y = 0|Uk+1 , xk+1]

=
1
2

+
1
2
(
P[y = 1|Uk+1 = xk+1] − P[y = 1|Uk+1 , xk+1]

)
=

1
2

+ P[y = 1|Uk+1 = xk+1] − Pr[y = 1]

=
1
2

+ P[M(x1, . . . , xk, xk+1,Uk+2, . . . ,Un) = 1]

−P[M(x1, . . . , xk,Uk+1, . . . ,Un) = 1]

>
1
2

+
n−o(1)

n
.

ThusD is predictable. �

Theorem 6.5. Given a one-way function (permutation) f : {0, 1}n → {0, 1}n, there
exists a pseudorandom generator that maps 2n bits into 2n + 1 bits, namely the function
G(x, r) = f (x), r, 〈x, r〉, where 〈x, r〉 is defined as x and r’s inner product

∑n
i=1 xiri (mod

2).

We are interested in this because once we have a pseudorandom generator that
extends the length of input by one bit, we will be able to obtain pseudorandom
generators that extend the length of input by any polynomial number of bits.

Proof. Assume to the contrary that G(x, r) is not pseudorandom. By Theorem 6.4,
G(x, r) is predictable. Note that the first 2n bits of G(x, r) are completely random,
so if G(x, r) is not pseudorandom, then the only predictable bit in G(x, r) must be
its last bit. If this bit is predictable, then for some polynomial time machine M,

P
x,r∈R{0,1}n

[M(f (x), r) = 〈x, r〉] >
1
2

+ n−o(1).

Let ε = n−o(1). Rewrite this as the expected probability over xs,

Ex

[
P

r∈R{0,1}n
[M(f (x), r) = 〈x, r〉]

]
>

1
2

+ ε.

This means that there’s some nontrival fraction of xs that such that
Pr∈R{0,1}n[M(f (x), r) = 〈x, r〉] > 1

2 + ε. We call these xs good and the other xs
bad. Ignore the bad xs. For a particular x, define 1(r) = M(f (x), r).
Claim 6.6. There is a polynomial-time (in n and 1

ε) algorithm A, such that A
computes the short list L of all xs that satisfy Pr∈R{0,1}n[1(r) = 〈x, r〉] > 1

2 + ε.

3

CS 6810, Fall 2012, Lecture 6 Scribe: Jiaqi Zhai

If Claim 6.6 is true, then to invert f (·) we can simply check if f (x) is the
preimage of some element a in L. If |L| is small (polynomial in n and 1

ε), we
will have succeeded in showing a way of inverting f (·) and thus reaching a
contradiction.

Remark: there are two techniques of proving Claim 6.6: one is self-correction, the
other is Fourier analysis. The fourier analysis approach is simpler and the proof
outline is as follows.

Outline. For αs, define function χα(r) = (−1)〈α,r〉, mapping 0 to 1 and 1 to -1. We
have (for good αs)

〈1, χα〉 = Er[1(r) · χα(r)] > ε

The crucial thing is that χαs form an orthogonal basis. The inner product of
1 and χα is like coefficient of 1(·) in that basis. The norm of 1(·) is 1 in this
context. If the vector has norm 1, then it has very few coordinates larger than
ε in any orthogonal basis. The special thing about this particular basis is that
the basis function are indexed by these αs. Note that the dimensionality here
is exponentially large, so it is impractical to check the coefficients one by one.
It turns out that this space allows you to search through it very efficiently -
basically binary search. So we are able to find these coefficients in polynomial
time. (Details after class) �

�

4

	Pseudorandomness
	Pseudorandom Distributions and Pseudorandom Generators
	Constructing Pseudorandom Generators From One-Way Functions

