
2 P vs. NP and Diagonalization

CS 6810 – Theory of Computing, Fall 2012
Instructor: David Steurer
Scribe: Sin–Shuen Cheung (sc2392)
Date: 08/28/2012

In this lecture, we cover the following topics:

1. 3SAT is NP–hard;

2. Time hierarchies;

3. Intermediate problems;

4. Limits of diagonalization.

2.1 3SAT is NP–hard

Definition 2.1 (the class NP). L ⊂ {0, 1}∗ is in the class of NP if there exists a
polynomial p : N→ N and a Turing machine M (called the verifier for L) such
that for every x ∈ {0, 1}∗,

x ∈ L ⇔ ∃y ∈ {0, 1}p(|x|) such that M(x, y) = 1.

If x ∈ L and y ∈ {0, 1}p(|x|) satisfy M(x, y) = 1, then we call y a certificate/witness for
x (with respect to the language L and machine M).

Definition 2.2 (CNF). We call a Boolean formula over variables u1, . . .un in its
CNF form (Conjunctive Normal Form) if it is an AND of OR’s of all variables and
their negations. For instance, the following form is a 3CNF formula:

(u1 ∨ ū2 ∨ u3) ∧ (u3 ∨ ū3 ∨ u4) ∧ (ū1 ∨ u3 ∨ ū4).

Definition 2.3 (3SAT). 3SAT is the language of all satisfiable 3CNF formulae;
that is

3SAT = { 3CNF φ : ∃ satisfied assignment for φ}.

Definition 2.4 (LP).

LP = {linear programming problem P : ∃ feasible solution for P}

Definition 2.5 (NP–hard). L is NP–hard if every NP problem reduces to it by
polynomial–time Karp reduction.

Theorem 2.6. 3SAT is NP–hard.

1

CS 6810, Fall 2012, Lecture 2 Scribe: Sin–Shuen Cheung

Sketch of proof: To prove that 3SAT is NP–hard, we follow the outline below

LM
i)
−→ TMSAT

ii)
−→ CircuitSAT

iii)
−−→ 3SAT ,

where each → denotes a polynomial Karp reduction. We use LM to denote
any language L that is verifiable by polynomial–time Turing machine M. The
language TMSAT is defined as follows:

Definition 2.7 (TMSAT).

TMSAT = {(α, x, 1n, 1t)|∃y ∈ {0, 1}n s.t. Mα outputs 1 on input (x, y) within t steps}.,

where Mα denotes the deterministic Turing machine represented by string α.

Next, we give the definition for the language CircuitSAT.

Definition 2.8 (CircuitSAT).

CircuitSAT = {circuit C | ∃y ∈ {0, 1}n s.t. C(y) = 1}.

Now we proceed to the reductions.

i) From LM to TMSAT is easy. Given an instance x for LMα , we can use (α, x, 1n, 1t)
as the input instance for TMSAT.

ii) The key to this reduction is that any t–time bounded Turing machine M can
be simulated by a Boolean circuit C of size roughly t2. We use Q to denote
the set of all possible configurations of M, and let zi to denote its state at time
step i. To check that zi is correctly performed by M, we only need to know
the previous configuration zi−1 and the cells that the head currently reads.
Since M is a deterministic Turing machine, there can be only one zi such that
the zi satisfies the correctness constraints with respect to the previous state,
the input position and the head location. Therefore we can use a circuit CM
to simulate M. The size of the circuit depends on the total possible states of
M.

iii) Finally, the reduction from CircuitSAT to 3SAT follows from the fact that each
vertex k of a circuit can correspond to a variable zk. The relation between
vertex k and its parents i, j can be formulated as a 3CNFφi jk(z), which satisfies
that

φi jk(z) = 1 iff zk = zi ∧ z j.

2.2 Time hierarchies

Theorem 2.9 (Time hierarchy theorem). If t(n) � T(n), the inclusion
TIME(t) ⊂TIME(T) is strict.

2

CS 6810, Fall 2012, Lecture 2 Scribe: Sin–Shuen Cheung

Proof. By diagonalization. Here we list the Turing machines with time bound t
as follows:

M1 M2 M3 · · · Mn · · ·

M1 M1(M1) M1(M2) M1(M3) · · · M1(Mn) · · ·

M2 M2(M1) M2(M2) M2(M3) · · · M2(Mn) · · ·

M3 M3(M1) M3(M2) M3(M3) · · · M3(Mn) · · ·

...
...

...
...

...
...

...
Mn Mn(M1) Mn(M2) Mn(M3) · · · Mn(Mn) · · ·

...
...

...
...

...
...

...

Now we construct a language L by imposing the following constraints:

L(Mi) = 1 −Mi(Mi) ∀i = 1,

It is easy to see that none of the listed Turing machines with time bound t can
decide this language. On the other hand, we can always use a universal Turing
machine to simulate any of the listed Turing machinse with only logarithmic
delay. This guarantees that U(Mi,Mi) can be computed in TIME(t log t) and
hence we can take the negation of the output to decide L. �

2.3 Intermediate Problems Exist

Many natural NP problem turn out to be either in P or NP–hard (e.g., 3SAT, LP).
Could it be that every NP problem is either NP–hard or in P? The following
theorem says that there has to exist intermediate problems (unless P=NP, which
means every NP problem is in P and NP–hard).

It would be very interesting to show that a natural problem is intermediate
(assuming something about P vs NP). The classical candidates are Factoring and
Graph Isomorphism (both are unlikely to be NP–hard, but both could very well
be in P). Some approximation problems are also candidates for intermediate NP
problems (e.g., MAXCUT).

Theorem 2.10 (Ladner). If P! = NP, then there exists a language L such that L < P,
L ∈ NP and L < NP–complete (w.r.t. usual reductions).

Proof. The proof is based on padding 3SAT instances. (There are also
proofs based on a different idea. See references if you are interested.) For
a function h : N → N, let 3SATh be the language {(φ, 1h(φ)) |φ ∈ 3SAT},
meaning that the satisfiable formulas padded with h(|φ|) 1’s. The goal is
to choose h such that 3SATh is in NP and neither in P nor NP–hard (unless P=NP).

Note that the faster h grows (such that we get to spend more time on formulas
of the same size) the easier 3SATh becomes. So the idea is that we have h growing
fast enough such that the problem is not NP–hard but slow enough so that it is

3

CS 6810, Fall 2012, Lecture 2 Scribe: Sin–Shuen Cheung

not in P (unless P=NP).

Claim 2.11. If h is polynomial–time computable, then 3SATh is in NP.

Proof. We can use the same verifier as for 3SAT except that we have to check
that the padding has the right length. We can do that efficiently because h is
polynomial–time computable.

Claim 2.12. If 1h(n) ∈ nω(1), then 3SATh is not NP–hard (unless P=NP).

Proof. For the sake of contradiction, suppose 3SATh is NP–hard and hence f is a
polynomial–time Karp reduction from 3SAT to 3SATh. Then f maps to formula
φ′ . If we iterate this reduction, we can solve 3SAT in polynomial time.

Claim 2.13. If P! = NP, then there exists h that is polynomial–time computable,
grows super–polynomially, but 3SATh is not in P.

Note that the claims together imply the theorem.
Remark 2.14. The proof of the claim is not hard but it involves a sub-
tle diagonalization argument (see section 3.3 in [AroraB09] or the note
http://oldblog.computationalcomplexity.org/media/ladner.pdf)

Let us prove a weaker version of Claim 3, which gives the right intuition.

Claim 2.15. If P! = NP in a meaningful way, namely there exists polynomial–time
computable function t such that t grows super–polynomially and 3SAT requires
time tω(1), then 3SATt is not in P.

Proof. For the sake of contradiction, assume 3SATt is in P. Then, we can solve
3SAT in time tO(1), contradicting our assumption.

Taking Claim 2.11, Claim 2.12 and Claim 2.15 together shows that if P differs
from NP in a meaningful way, then there exists intermediate problems in NP.

2.4 Relativization

Suppose we have the access to some oracle O ⊂ {0, 1}∗, which is assumed to do
certain computations in only one time step. Given an oracle O, we can define the
counterpart complexity classes PO and NPO correspondingly. Now the question
is do we have PO! = NPO for any oracle O? The answer is NO!

We say that a proof about Turing machines relativizes if the proof goes
through even if we allow the machines access to any fixed oracle O (the oracle

1 f (n) ∈ ω(1(n)) means that f (n) dominates 1(n) asymptotically, that is f (n)
1(n) > k for all k.

4

CS 6810, Fall 2012, Lecture 2 Scribe: Sin–Shuen Cheung

corresponds to some decision problem).

Diagonalization proofs tend to relativize, e.g., the proof of the time hierarchy
theorem also works relative to an oracle.

We want to show that relativizing proofs cannot settle the P vs NP question.
To do so, we will show that there exist oracles A and B such that PA = NPA and
PB! = NPB.

Why does this show that relativizing proofs cannot settle P vs NP? Suppose
there is a relativizing proof for P! = NP. Then we get a contradiction to PA = NPA.
On the other hand, suppose there is a relativizing proof for P = NP. The we get a
contradiction to PB! = NPB.

For A, we can use an oracle that allows us to simulate exponential time
computation (e.g., an oracle for an EXPTIME complete language). Even for
such an oracle, NPA machine can be simulated in exponential time. Hence,
NPB=EXPTIME=PB. (Here, EXPTIME means TIME(2poly(n)) .)

The choice of B is more subtle. Here is the idea: we’d like to choose B such
that for all n, B ∩ {0, 1}n is a tiny, random, but non–empty subset of all n–bit
strings. Such an oracle would be utterly useless for P. It can query B only on a
polynomial number of n–bit strings. So most likely none of the queries are in B
and the polynomial–time machine doesn’t learn anything interesting about B.
On the other hand, the NP machine can guess which n–bit strings are contained
in B and then use the oracle to verify it.

Formally, we consider the problem UB consisting of all unary strings 1n such
that B ∩ {0, 1}n is non–empty.

Claim 2.16. UB is in NPB.

Proof. The verifier M(1n, y) only needs to check that |y| = n and that y is in B
(which it can do using the oracle B).

Claim 2.17. There exists B such that UB is not in PB.

Proof. By diagonalization. Let us enumerate all polynomial–time machines
M1,M2, ... and numbers n1,n2, ... with n1 = 1 and ni = 2ni−1 (we just want that the
numbers ni grow very fast). We want to choose B such that for all i. (Then, the
problem UB is not solved by any of the machines Mi, which implies the claim.)

We can use the following algorithm to construct B,

– Initialize B to be 0 everywhere;

5

CS 6810, Fall 2012, Lecture 2 Scribe: Sin–Shuen Cheung

– For i from 1 to infinity,

– Invariant: for all ni-bit strings z (and longer strings) we have B(z) = 0

– Run MB
i on 1ni . Let Si be the set of points queried in the oracle. (Note

|Si| = poly(ni).)

– If MB
i (1ni) = 0, find a ni–bit string zi outside of Si and set B(zi) = 1.

Why does this procedure work? You should be able to convince yourself that
the invariant holds. Another important point is that setting B(zi) = 1 does not
affect previous iterations because ni is much larger than ni−1 and all considered
machines are polynomially bounded.

6

	3SAT is 1NP–hard
	Time hierarchies
	Intermediate Problems Exist
	Relativization

